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Abstract:
In this paper we introduce a new types of ideals in KS- Semigroups in ordinary and fuzzy sense,we called it
KS-H- ideal and fuzzy KS-H-ideal and study its properties

1.Introduction

The notation of BCK algebra introduced by Y.Imai and K.Ise'ki [3] in 1966 . In the same year , K.Ise'ki
[2]introduced the notation of BCI algebra which is a generalization of BCK algebra. In 2006 ,Kyung Ho Kim

[5] introduced a new class of algebraic structure called KS semigroup .In 2009 Jocelyns S. Paradero Vilea and
Mila Cawi [ 10] characterized ideals of KS- Semigroups and prove some properties .In 2007 , D.R. Prince
Wiliams and Husain Shamshad[9] fuzzify KS semigroup and called it fuzzy KS Semigroups and introduced the
notations of fuzzy subKS- Semigroups,,fuzzy KS ideal ,fuzzy KS P ideal and investigated some of their related
properties in this paper we define a KS —H ideal and a fuzzy KS H- ideal on KS —Semigroups , we prove some of
properties on it .

keywords: Semigroup, BCK algebra, H-ideal, P-ideal,ideal, Ks —semigroup,

2.Preliminary
This section contains some basic concepts we needed it in this paper

Definition (2.1)[9 ]: An algebraic system (X, *, 0) is called a BCK algebra if it satisfies the following
conditions:

L((x *y) *(x #2)) #(z #y) =0,

2. ((x *(x *y)) *y =0,

3.xxx=0,

4.0 xx=0

50f x*y=0and y *x=0 thenx =y, forallx,y,z e X .
Remarks (2.2)[6] : Let X be a BCK algebra then:

a) A partial ordering ” <” on X can be defined by x <y if and only if x xy = 0.
b) A BCK-algebra X has the following properties:

1.x*x0=x.

2.If x*y=0 and y*z=0 imply x*z=0 .

3.If x*y=0 implies (x*2)*(y*z)=0 and (z*y)*(z*x)=0.

4. If (x*y)*z=(x*2)*y.

Definition (2. 3)[9]

A KS-semigroup is a non-empty set X with two binary operation " « " and " ." , and a constant 0 satisfies the
following axioms:

1. (X, *, 0) is a BCK-algebra

2. (X, .) is a semigroup,
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3. X(y *2) = (Xy) * (x.2) and (X * ).z = (x.2) = (y.z), forallx,y,z € X.

Definition (2. 4) [9] A non empty subset S of X with binary operation * and . is called sub KS-semigroup of X
if it satisfies the following condition :

1- x*yeS V Xx,yeS.
2- XyeS VYV XYyeS

Definition (2. 5) [7] A strong KS-semigroup is a KS-semigroup X satisfying : x*y=x*x.y forallx,y € X

Lemma(2.6) [7]:Let X be a strong KS-semigroup then :

1- xy*y=0 forall x,yeX.
2- X*y=0x*xy=0 for all x,yeX.

Definition (2. 7) [11] A non empty subset | of a BCK —algebra X is called a H- ideal of X if the following
conditions hold :

1-0el.
2-1f x*(y*z)el and yel =x*zel, forallx,y,zeX

Definition( 2. 8) [7] Let X and Y be KS-semigroups . a mapping f : X — Y is called a KS-Semigroup.
homomorphism (briefly homomorphism ) if f(x*y)=f(x)* f(y) and f(xy)=f(x)f(y) forall x,yeX

. Let f:X —>Y KS-Semigroup homomorphism . then the set {x € X/ f(x) =0} is called the kernel of f , and
denote by ker f . moreover the set {f (x) e Y/x e X} is called the image of f and denote by Im f .

Definition (2. 9) [9] A non-empty subset A of a semigroup (X, .) is said to be left (resp. right) stable if xa € A
(resp.ax € A) whenever x € X and a €A.

Both left and right stable is called two-sided stable or simply stable.

Definition. (2.10) [9]A non-empty subset A of a KS-semigroup X is said to be left (resp. right) ideal of X if :
1. Ais left (resp.right) stable subset of (X,.) and

2.x+*y eA and y eAimplythat x € A, forallx,y € X.

If Ais both left and right ideal then A is called two-sided ideal or simply an ideal .
Remarks (2.11)

mlet A be a KS-ideal then 0 A forall xe X since A # 6 then 3 a € A such that xa,ax € A,put x =
Oweget0€EA

mlet f:X—>Y KS-Semigroup homomorphismthen f(0)=0 andif x<y, then f(xX)< f(y) ,[7].

m ker f isa KS-ideal[7].

Definition (2.12) [9] A non-empty subset A of a KS-Semigroup X is said to be left (resp.right) p-ideal of X if :
1. Alis a left (resp. right) stable subset of (X, .) and,

2.(x*y)*zeAandy*z € Aimplythatx*z €A, forallx,y,z € X.

If A'is both left and right p- ideal then A is called two sided ideal or simply p-ideal
Theorem (2.13) [7] Every p-ideal of a KS-Semigroup X is an ideal but convers is not true

Definition (2.14) [10] The element e is called a unity in a KS-semigroup X if ex=xe=x Vxe X.

Definition (2.15) [1] Let X be a non-empty set a fuzzy subset of X is a function x: X — [0, 1].
Remarks (2.16)[1]

Let X be a non-empty set then :

1) each fuzzy subset A and u of X,if A< u meanthat A(a)<u(a) for all aeX.

2) if x<y implies that z(X)> u(y) for all x,yeX.
3) If 1, v be two fuzzy set of X and a<b such that a,b€[0]], then 1y < 3.
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Definition (2.17) [9]L et X be a non-empty set and let p be the fuzzy subset of X for a fixed 0 <t < 1,the set 4 =
{x € X [ u(x) >t} is called an upper level set of pn

Definition (2. 18) [9] Let f: X —> Y be afmapping of KS-Semigroup and u be a fuzzy subset of Y . The map
yT is the pre-image of x underf if x4 =u(f(x) VxeX .

Definition (2.19) [5] Let X be a BCK —algebra a fuzzy subset 4 of Xis called a fuzzy subalgebra of X if it
satisfies the fallowing condition :  z(x*y) > min{u(x), u(y)} Vx,yeX.

Definition (2.20) [11] A fuzzy set  of BCK —algebra X is called a fuzzy H-ideal if it satisfies :
1- x(0)> u(x) vxeX,
2- p(x*z) 2 mindu(x*(y*2)), u(y)} V xy,zeX .

Definition (2.21) [9] A fuzzy set £ defined on X is called a fuzzy subKS-semigroup of X if it satisfies the
fallowing conditions :

L p(x*x2) = minfu(x), 1(x2)}
2. p(x1x2) = minfu(x), p(x2)} ¥ xq,%2 € X
Definition (2.22) [9] A fuzzy subset p of X is called a left fuzzy KS-ideal if :
KSIL. u(0) = u(x)
KSI2. u(x) > min{u(x *y), u(y)}
KSI3. u(xa) >min{u(x), u(a)} forallx,y,a e X.
A fuzzy subset x is called a right fuzzy KS-ideal if it satisfies KSI1, KSI2 and KSl4:
w(@x) >minf{u(x), u(a)}, forallx,y,a € X.
A fuzzy subset 1 of X is called a fuzzy KS-ideal if it is both left and right fuzzy KS-ideal of X.
Definition (2.23) [9] A fuzzy subset p of X is called a left fuzzy p-ideal if :
KSP1. 1(0) > u(x)
KSP2. pu(x*z) Zzmin{u((x *y) * 2), u(y * 2)}
KSP3. u(xa) >min{u(x), (@)} forallx,y,z,a e X.

A fuzzy subset u is called a right fuzzy p-ideal if it satisfies KSP1, KSP2 and KSP4 : u(ax) > min{u(x), u(a)}
forallx,y,a € X.

A fuzzy subset 1 of X is called a fuzzy p-ideal if it is both left and right
fuzzy p-ideal of X.
Theorem (2.24) [9] Every left (resp.right) fuzzy p-ideal of X is a left (resp.right) fuzzy KS-ideal of X .

Definition (2.25) [9]Let A and p be the fuzzy subsets in a set X The cartesian product
Axp: XX —> [0, 1] is defined by (Axw)(x, y) = min{A(x), u(y)} forallx,ye X .

Definition (2.26) [9]Let V' be a fuzzy subset in X the strong fuzzy relation on X that is a fuzzy relation on v
is py, givenby p, (x,y) =min{v(x),v(y)}

3. KS-H-Ideal
Definition (3.1)
A non-empty subset | of a KS-semigroups X is said to be left KS-H-ideal of X if it satisfies :
1) If x*(y*z)el and yel then x*zel
2) xael (resp. axel) whenever xeX and ael.

A non-empty subset | is said to be right KS-H-ideal of X if it satisfies (1) and (3) :
axel whenever xeX and ael.

If I is both left and right KS-H- ideal then I is called two-sided KS-H- ideal or simply KS-H- ideal .
Example(3. 2)
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Let X = {0, 1, 2, 3} be defined by the following tables:

m 5 I 5 3 0 1 2 3
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 ) 0 )
5 5 5 5 5 2 0 0 2 2
3 3 3 3 0 5 5 1 5 3

Then by usual calculations we can prove that X is a KS-semigroup. If A ={0,1} then A is a KS-H- ideal of a
KS-semigroup X .

Proposition (3. 3)

Let X be a KS-semigroup and let A be left (resp. right ) KS-H-ideal of X then A is a left (resp. right ) KS-ideal
of X.
Proof:
Let A be a left KS-H-ideal of X then A is a stable. Now, let x,y € X such that x*ye A and ye A then
x*y=x*(y*0)e A and yeA then xeA and since Ais a left KS-H-ideal then .Hence A is a left KS-H-
ideal

Proposition (3.4)
Let I and J are left (resp. right ) KS-H-ideal of KS-Semigroups X then 11 J is a left (resp. right ) KS-H-ideal

of X.
Proof: it is clear
Proposition (3.5)
Let I and J are left (resp. right ) KS-H-ideal of KS-Semigroups X then 1 UJ is a left (resp. right ) KS-H-ideal
iflcJorJdcl .
Proof: it is clear
Proposition (3. 6)
Let I and J are left (resp. right ) KS-H-ideal of KS-Semigroups X then 1 xJ is a left (resp. right ) KS-H-ideal
of XxX.
Proof:
Let I and J are left KS-H-ideal of KS-Semigroups X
Forany xq,X5,a1,8p € X and (x1,Xy) € XxX ,(a,a5) €1 xJ then

(x1,x2).(a1,a2) =(xqaq, xpa2), since I,J are left KS—H —ideal so xja; €l and xpap eJ

then (xap,xap) el xJ therefore (xq,x2).(ag,a2) el xJ

let x*(y*z)elxJ and yelxJ ,where x=(xq,Xo) , y=(y1,y9) and z=(z7,z5) e XxX

if (x1,%x2)*[(y1,y2)*(z1.22)] €lxJ and (y1,yp)elxJthen (xq,x2)*(y1*z1.y2*z2)elxJ and (y1,yp)elx]
then (x1*(y1*z1), xo*(yo*z9)elxJ and (yp,y2)elxJthen (xq*(y1*z1))el , (xo*(y2*z2))eld

, y1el and yoeJ then xq*zyel and xp*zoed [since |,J are left KS—H —ideal ]so (x1*z9,Xx2*z2)elxJ

o) (X1,X2)*(z1,22)elxJthen x*z elxJ

hence |xJ isaleft KS-H-ideal .

Proposition (3. 7)
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Let f:X—Y bea KS-semigroup epimorphism if Ais a left (resp. right ) KS-H-ideal in X then f (A) is a left
(resp. right ) KS-H-ideal in Y .

Proof:

Let Abealeft KS-H-idealof X .let a= = f(a)e f(A) and yeY where ac A

Since f onto thenthere exists xe X  suchthat f(X)=y

since xaeA V xeXand acAso f(xa)e f(A) but f(xa)=f(x)f(a)=ya™ [sincef is epimorphism

]

therefore  f(A) is stable . Now , Suppose that f(x), f(y), f(z) e f(A) forsome Xx,y,ze A Such that
f)*[f(y)*f(2)] e f(A) and f(y)e f(A) ,since f isa homomorphism then

FOO*[f(y)*f(2)]= f(x*(y*2)) e f(A) and since f(y)ef(A),
thus x*(y*z)e A, ye A—>x*ze A [since A is KS-H-ideal] therefore f(x*z)e f(A) but
f(X)*f(2)=f(x*z) e f(A) so hence f(A) isaleft KS-H-ideal .
Proposition (3. 8)

Let f:X —Y bea KS-semigroup homomorphism then ker f isa KS-H-ideal of X .

Proof:
Let f:X —Y bea KS-semigroup homomorphism , since ker f isan ideal of X [ 3] it follows that

ker f isa stable, now, let x,y,ze X suchthat x*(y*z)eker f and yekerf ,

so f(x*(y*z))=0 and f(y)=0so f(X)*[f(y)*f(z)]=0 and f(y)=0 so f(x)*[0*f(2)]=0
so f(x)=0so xe ker f ,now, f(x*z)="f(x)*f(z)=0*f(z)=0

therefore x*ze ker f hence ker T isa KS-H-ideal .

Proposition (2.1.9)
Let I be a KS-ideal of KS-semigroup X such that x*y=y*x forall x=0and y=0 and x*y=0 just

when x=0 .Then | isa KS-H-ideal of X .

Proof:
Firstsince | isa KS-ideal so xael VvYxeX and ael , Now

let x,y,zeX and x*(y*z),yel toprove x*zel.There are several cases:
DIf x,y,z#0 and x=y=#z S0

X*(y*2)=x*(z*y) [since x*y=y*x V X,y =0]
=(z*y)*x [since x*y=y*x V x,y#0 and x*y = 0]
=(z*x)*y [since (x*y)*z=(x*z)*yin BCK]

=(x*2)*yel [since x*y=y*x Vx,y=0 and x*y=0]
and yel then x*zel [since |isa KS-ideal].

2) If x=0 and y,z=0 so
0*(y*2)el and yel then
Oel and yel , I is a KS—ideal so
X*z=0%zel.

) If x=y=0 and z=0 then
0*(0*2)el and zel so x*z=0*zel.

4) If x=0,2=0 then x*zel [by the same way of (3)].
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5 1If x-0, and y=0 then
x*(0*2)el 0el then xel,0el.

solf z=0 then x*z=xel and
If zz0 then (x*z)*x=0 and xel so x*zel [lisaKS—ideal].

6) If x=0,y=0,2=0 then 0*(0*0)=0el so X~ Z€l

7 If x20,y#0,z=0 so
x*(y*0)el and yel then x*yel and yel [since | isa KS—ideal]
so x*z=x*0el

8)If x=0,y#0,z=0 then 0*(y*0)el so x*zel .
9 If x=0,,z20,y=0 then 0*(y*z)el so x*zel .
10)If z=0,x=0,y=0 x*(y*2)=x*0el and z=0el > x*z=x*0el , [ since I is a KS-ideal ] .

Then 1is a KS-H-ideal .

4. fuzzyKS-H-Ideal
In this section , we define the notion of the fuzzy KS-H-ideal of KS-semigroup X and and prove some results
and examples.

Definition (4..1)
A fuzzy subset g of KS-semigroup X is called a left fuzzy KS-H-ideal if the following conditions hold :

KSH1  £(0) > 1(x),
KSH2  u(x*2) > min{u(x*(y*2)), u(y)},
KSH3  u(xa) > min{u(x), (@)}, forall xy,z,aeX.

A fuzzy subset g is called a right fuzzy KS-H-ideal if it satisfies KSH1 , KSH2 and
KSH4: u(ax) > min{u(x), u(a)}, forall x,y,a eX.
A fuzzy subset 4 is called a fuzzy KS-H-ideal it if is both left and right fuzzy KS -H-ideal of X .
Example (4.2)

Let X = {0, 1, 2, 3} be a KS-semigroup defined by the following tables:

0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
1 1 0 0 0 2 0 0 2 2
2 3 2 0 0 3 0 1 2 3
3 3 3 3 0

Define a fuzzy subset 1:X —[01] by x(0)=0.4 , x(x)=0.2 Vx=0e X. by usual calculations, we can
prove that /{ is a left fuzzy KS-H-ideal of X .

Remark(4.3)
Every fuzzy KS-H-ideal is a fuzzy KS- ideal .

Proof:
let 1 be afuzzy KS-H-ideal of X since x*0=x V xe X [by Remark (2.2)]
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#(x) = p(x*0) = min{u(x*(y*0)), u(y)}
=min{u(x*y), u(y)}
thus  z(x) = mindu(x*y), p(y)}
and since w(0)> u(x) YxeX and p(xa) = minf{u(x), ()}, u(ax) = minf{u(a), u(x)} vx,aeX
Hence u isafuzzy KS- ideal .

Proposition (4.4)
Let x and A are left (resp. right ) fuzzy KS-H-ideal of KS-semigroup X then x4 is a left (resp. right)

fuzzy KS-H-ideal .
Proof:Let ¢ and A are left fuzzy KS-H-ideal of X then

(N A)(0) = min{u(0), A(0)} = min{u(x), A(X)}= (N A)X) Vxe X [since u, Aare left fuzzy KS—H —ideal]
,now, (2N A)(xa) = minfu(xa), A(xa)}=> min{min{u(x), x(a)}, min{A(x), 2(a) }= min{min{x(x), A(x), min{u(a), A(a)}
=min{(zN2)(x), (uNA)(@)} Vx,aeX

50, (1N A)(x*2) = min{u(x*2), A(x*2)}> min{min{u(x*(y*2), u(y)}, min{A(x*(y*2), A(Y)}}
= min{min{u(x*(y*2), A(x* (y*2)}, min{u(y), A(y) }}
= min{u(x*(y*2)), A(x*(y*2))}, min{u(y), A()} V xy.z€ X
hence ©NA is a left fuzzy KS-H-ideal .

Proposition(4.5)
Let  and v be two fuzzy KS-H-ideal of KS-semigroup X if v or vc u then uUv isafuzzy KS-

H-ideal .
Proof:
Let 4 and v are fuzzy KS-H-ideal of X, without loss of generality we may assume that let zcv

since u and v are fuzzy KS-H-ideal and X, y,a€ X so x(0) = u(x) and v(0)2v(x) ,V xe X therefore,
(1 Uv)(0) = max{u(0), v(0)} = max{w(x), v(x)} = («Uv)(x) ,now ,since u and v are fuzzy KS-H-ideal so
u(xa) = min{u(x), u(a)}and v(xa) =min{v(x), v(a)}
max { u(xa),v(xa) }=max{min{u(x), u(a)}, min{v(x),v(a)}}since pxcv  therefore
(1Uv)(xa) = min{max{(x), ()}, max{v(x), v(a)}} = min{max{s(x), v(x)} max{z(a), v(a)}}=min{(x Uv)(x). («Uv)(a)}
and so, since u(x*z) >min{u(x*(y*2)), u(y)} and v(x*z)2min{v(x*(y*2)),v(y)} so
max{u(X*z), v(x*z)} > max{min{u(x*(y*2)), u(y)}, min{v(x*(y*z)), v(y)}} since ucv  therefore
(uUv)(x*z) = min{max{u(x*(y *2)), u(y)}, max{v(x*(y*2)), v(y)}}
= min{max{u(x*(y*2)), v(x*(y*2))}, max{u(y), v(y)}}=min{ (u Uv)(x*(y*2)), ( Uv)(¥)}
hence uUv isafuzzy KS-H-ideal .
Proposition (4.6 )
Let I and J are left (resp. right ) fuzzy KS-H-ideal of KS-semigroup X then | x J is a left (resp. right) fuzzy
KS-H-ideal of X x X
Proof:
Let I and J are left fuzzy KS-H-ideal of X then
(1xJ)(0,0) =min{I(0), J(0)} > min{l (x), I(y)} = (1 x I)(x, y) V(X y)eXxX. [since ] are left fuzzy KS-H-
ideal of X, let (x,x) e XxX  and (a,85)elxJ so,
(IxJ3)(x,x)(ag,a9) = (1 xJ)(xaq, xap) = min{l (xaq), J(va)} = min{min{l (x), I (a)}, min{J (x), J(a5)}}
= min{min{l (x), J(x)}, min{l (a;), I(a)}} =min{(I xJ)(x, x), (1 xJI)(a;,a5)}

now, let (xq,Xo) , (y1,¥p) and (zq,25) € XxX,
(1 3)((Xg, X9)* (21, 29)) = (1 x I)(Xg *21, X5 *25) = min{l (x *2), I(Xp *25)}

> min{min{l (X *(yg *29). 1 (yl)}, min{J(X2 *(yp*29)),J (yz)}}

= min{min{l (¢ *(y3 *27), 3% * (¥ *2,)} min{l (1), 3(y)}}

= min{(1x )%, Xp)* (1 * 24, Y2 *29)), (1 x 3y, Y5)

= min{(l x J)((x1, X2)* (¥, ¥Y2)* (21, 29)) . (1 x I)(yq, Y2)}
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hence | x J is a left fuzzy KS-H-ideal .

Proposition (4.7 )

If A be a left (resp. right ) KS-H-ideal of KS-semigroup X then v 0 <t <1 their exist a left (resp. right ) fuzzy
KS-H-ideal ¢ suchthat A= 4.

Proof:

Let A be a left KS-H-ideal and /¢ be defined by
(%) = if xe A

B2 i xeA where o<t<1

let xe A then u(x)=t,then Xxe 4,50 Ac pp,and if xepp then p(x)>t,then xe A  so A=y

Since Alis a left KS-H-ideal so 0 e Athen x(0)=t> u(x) Vxe X, now let X,ae X there are several cases :
1. If x,ae Xso so xa e Asince Ais a left H —ideal g(xa) =t > min{u(x), x«(a)}. SO,

2. If xg Aand agA then  u(xa) > min{u(x), u(a)} =0
3.1f at most one of x,a belong to A ,then at most one of x(x) and wu(a)

is equal to O . therefore wu(xa) = min{u(x), u(a)}=0
p(x@) >min{u(x), u(a)} Vv x,aeXlet x*(y*z),ye Xthere are saveral cases:
1LIf x*(y*2z),y € Athen x*z € Asince Ais aleft KS —H —ideal so (x*z) =t >min{u(x*(y*2)), u(y)}

2.1f x*(y*z),y ¢ A then u(x*(y*2))=u(y)=0 so u(x*z)zmin{u(x*(y*2)), u(y)} =0

3. If at most one of x*(y*z),y belong to A, then at mostone of p(x*(y*z)) and wu(y) is equal to 0, therefor

x*zg A pu(x*z) >min{u(x*(y*2)), u(y)} =0 so u(x*2z) >min{u(x*(y*2)), u(y)} for all x,y,z e X.
hence I is a left fuzzy KS-H-ideal .

Proposition (4.8)

Let 4 be a left (resp. right) fuzzy KS-H-ideal in KS-semigroup X then a fuzzy set ﬂ+ defined by
1 = p(X) +1— u(0) is a left (resp. right ) fuzzy KS-H-ideal such that xc u™ .

Proof:

Let u be a left fuzzy KS-H-ideal and y+ is a fuzzy set then
T (0) = p(0)+1- u(0) =12 u*(x) V xeX.now, let x,aeX so

u () = p(xa) +1- (0)
> min{y(x), y(a)}+l—y(0) [since w is a left fuzzy KS —H —ideal]

= min{u(x) +1- 1(0), u(a)+1- u(0)}= min{u+ (x), 4™ (a)},
let X,y,zeX so
w7t (x*2) = u(x*2) +1- p(0)
> min{,u(x*(y*z)), y(y)}+1—,u(0) [since u is a left fuzzy KS —H —ideal]
=min{u(x* (y*2)) +1- (0, u(y)+1- u(0)}
= minfu* (x* (y*2), 1" ()}
hence ,uJr is a left fuzzy KS-H-ideal .
Proposition (4.9)
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Let f:X —Y beahomomorphism if x isa left (resp. right) fuzzy KS-H-ideal of Y then yf isa left (resp.
right) fuzzy KS-H-ideal of X .
Proof :
Let u be a left fuzzy KS-H-ideal of Y then ' (0)= s(F(O) 2 u(FO) =’ () ¥V xeX .
now, let Xx,ae X so

yf (xa)= u(f(xa)) = u(f(x)f(a)) [ f isahomomorphism]
> min{u( f(x)), u(f(a)} [since uisa left fuzzyKS —H —ideal]
=min{u’ (9, 4" (@)}

let xy,z e X, ﬂf(X*Z)=u(f(X*Z))=u(f(><)*f(2))
>min{u( fX)*[F(Y* f(2)]), u(f(y)) [sinceuisa left H —ideal]
=min{u( f(x*(y*z)), u(f(y))}
= mindu " (s (y*2) " ()}

hence x ' isa left fuzzy KS-H-ideal of X .
Proposition (4.10)

f

Let f: X —Y be an epimorphism if yf

right) fuzzy KS-H-ideal of Y.
Proof :

is a left (resp. right) fuzzy KS-H-ideal of X then u is a left (resp.

Let u f is a fuzzy KS-H-ideal of X and
let yeVY then IxeX suchthat f(x) =y

w) = u(F ) =u' () <u’(© [since u isaleft fuzzy KS - H — ideal]
= pu(f(0)) = x(0) . [by remark 2.13]
now, let x,aeY then Jt,me X such that
f(t)=x, f(m)=a then p(xa)=pu(f(t)f(m)) = u(f(m))
= " em)= mingu T @), 2 ()F= mingu(F ©), u(F (M)} = mingu(x), u2)}
so, let x,y,z€Y then 3 a,b,ce X suchthat f(a)=x , f(b)=y , f(c)=z then
u(x*z) = u(f(@)* f(c))=wu(f(a*c)) =#f (a*c)

>min{u " @*(b*c) " (b)) =minfu(f (a*(0*c)), u(F (6))}= minfu( f (@) *[F (B)* £ (©) ], a(f (b)}
= min{u(x*(y*2)), u(y)}

hence u is a fuzzy KS-H-ideal of Y.

Proposition (4.13)
Let I be a non-empty subset of a strong KS-semigroup X then 1 is a left (resp. right ) KS-H-ideal of X if and
only if Z) is a left (resp. right ) fuzzy KS-H-ideal where x| : X —[01] define as follows :

1 if xel
llz -

0 if xel

Proof:
Itis clear that y | is a fuzzy set .

suppose that | is a left KS-H-ideal of X and x,y,aeX
since 0eX so 0a=0el Vael then X (0):12;(| (X) V xeX.

there are several cases : let x,ae X
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1-If xel,ael soxael [since lisaleft fuzzyKS—H—ideaI!
2 (0)=1,7,(@=1 and y (xa)=1then », (xa)=miny (x). 7, (a)}

2—-1If xel,agl soxagl thus ) (x)=1 X (a)=0 and X (xa)=0

then Z (xa)2min{;(| (x),;(I (a)}

3—-If xgl,ael soxael thus x| (x)=0 P X (a)=1 and X (xa)=1
then x| (xa)Zmin{;(I (X)'Zl (a)}

4—1f xgl,agl soxagl thus Z) x)=0 e (a)=0 and X (xa)=0
then », (xa)Zmin{;(I 2, (@)

S (xa)2min{;(| ) x| (a)}
In similar way we can prove that X, (x”‘z)Zmin{;(I (x”‘(y*z)),;(I Y} vxvyzeX.

Hence X is a left KS-H-ideal .

Conversely, assume that X is a strong KS-semigroup and let y | is a fuzzy KS-H-ideal of X

let xeX and ael since Xis a strong KS—semigroupso xa*a=0 and since Ol so
xa*ael and ael then Z) (xa) = min{;(I ((xa*a), 2 (@)} = min{;(I (0),;(I (a)}:;(I (a)=1
so xael

now, let x*(y*z)el and yel so

X (x*(y*z))z;(I (y)=1 since X is fuzzy KS—H —ideal we have

2 x*F2)zmin{y | (x*(y*2)), 7| (V)}=1s0 x*zel
therefore | is a left KS-H-ideal
Proposition (4.14)
If u bearight fuzzy KS-H-ideal of KS-semigroup X with left identity e and satisfying the condition
(x)z=(2)y V X,¥,zeX then u is a left fuzzy H- ideal of X.
Proof:
Let 44 be aright fuzzy KS-H-ideal of KS-semigroup X with left identity
and let x,a e X
u(xa) = u((ex)a) = u((ea)x) = p(ax) = min{u(a), u(x)}  [by hypothesis]
p(xa) = minfu(x), 4(a)}
since  wu(0)>u(x) VvxeX and
p(x*2) > min{u(x*(y*2)), u(y)} [ isa right fuzzy KS —H ideal ]
therefore (4 is a left fuzzy KS- H- ideal.

Corollary (4.15
Every right fuzzy KS-H-ideal of KS-semigroup X with left identity e satisfying the condition is a fuzzy KS-
H- ideal of X..
Proof:
Let /¢ be aright fuzzy KS-H- ideal with left identity then £/ is a left fuzzy KS -H- ideal therefore (/ isa

fuzzy KS-H-ideal .

Proposition (4.16)
Let LI be afuzzy set of strong KS-semigroup X if u is a left fuzzy KS-H-ideal then 4 left KS-H-ideal

where tG[O, ,U(O)].
Proof:
Let /I be a left fuzzy KS-H-ideal of X ,and t €[0, (0)] . let x € 14
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since u(0) >t then Oe g thenut = ¢,
now, let xeX and aegz4 so w(a)=t since X isastrongso xa*a=0 and
since A4 is a left fuzzy KS-H-ideal so
u(xa) = min{u(xa*(a*0)), x(a)} = min{u(xa*a), (@)} =min{u(0), u(@)} = u(a)=t
= Xa e g
let x*(y*z)eqy and yegq then p(x*(y*z))>t and u(y)=>t,since U isa left fuzzy KS-H-ideal so

u(x*z)=t  so  x*ze g . Therefore L4 isaleft KS-H-ideal .

Theorem (4.17)
Let X be a KS-semigroup and x A be two fuzzy sets in X such that xxv is a fuzzy KS-H-ideal of X then:

1 either z(x) < p(0) or A(x)<A(0) for all xeX.

2. If u(X)<u(0) for all xeX theneither u(x)<A(0) or A(x)<A(0) .
3. If A(x)<A(0) for all xeX theneither u(x)<u(0) or A(x) < u(0)

4 either 4 or A is afuzzy KS-H-ideal of X.

Proof:
since uxv isafuzzy KS-H-ideal of X then it is fuzzy sub KS semigroup by [ ], so (1),(2) and (3) satisfied by

[12 ]. Now, to prove 4, Since by (1) either x(x) < u(0) or A(x)<A(0) for all x e Xwithout loss of
generality we may assume that A(x) < A(0) it follows from (3) that either z(x) < £(0) or A(X) < u(0) if
A(X) < 1(0) V x e Xthen
A(x. @) = min{u(0), A(x. @)} = (ux A)(0, x. &)= (ux A)(0.0, x. &) = (1x 2)((0, X).(0, @)) > min{(zx 2)(0, x), (zx A)(0, a)}
= min{min{x(0), A(x)}, min{x(0), A(a)[}= min{A(x), A(a) | .
Now,
A(x*z) = min{u(0), A(x*2)} = (ux A)(0,x*2) = (x 2)(0*0,x*2) = (1 x )((0, %) *(0, 2))
> min{(x )0, %) * (0, y) * (0, 2))], (1> A)(0, y)} = min{(xx A)[(0, ) * (0, y* 2)]I, (1x 2)(0, )}

= min(ux A)(0, x*(y*2)), (1> A)(0, y)} = min{min{u(0), A(x*(y*2))}, min{x(0), A(y)}}
=min{A(x*(y*2z)), A(y)} .

so A isafuzzy KS-H-ideal in X .

If A(x) < u(0) is not satisfied then A(y) > x(0) for some ye X and by our assumption ,

#(x)<p(0) for all xeX we have A(0) = A(y) > 1(0) = p(x) ie A(0) = u(x) VxeX.
therefore (zx 2)(x,0) = min{z(x), 2(0)} = u(x) and
u(x.a) = (ux1)(x.a,0)

= (ux A)(x.2,0.0) = (x )(x,0).(a,0)) = min{(zx A)(x,0), (2 x 1)(,0)} = min{u(x), z2(a)} .
SO,

p(x*2) = (ux A)(x*2,0) = (ux A)(x*2)(0*0) = (> A)((x,0)*(2,0)) = min{ (x> A)[(x,0)* ((y.0) *(z,0))], (zx A)(y.0)}
= min{(ux A)[(x,0*(y*z,0)], (&> A)(y,0)} = min{(zx 1)(x*(y *2)),0), (x A)(y,0)}
= min{min{u(x*(y*2)), 2(0)}, min{x(y), A(0)}}= min{u(x*(y*2)), u(y)} .

therefore u is a fuzzy KS-H-ideal in X .
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