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 Abstract−The Max-Flow Min-Cut Theorem is the most efficient result which can be used to 

determine the maximum value of flow by minimum value of capacities of all the cut sets in 

the network flows. In this paper we show that this theorem implies the some important results 

for bipartite graphs to obtain maximum flow in graph theory. 
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1. Introduction to Network Flows 

The maximum flow problem in network flows implies that there is wide range of applications 

such as power transmissions, telecommunications, road networking, circuits, transportations, 

pipelines, traffics etc Graph theory [1] provides a framework for discussing systems in which 

it is possible to travel between discrete vertices. [2]If we extend a directed graph to a network 

flow by assigning a capacity and a flow value to every edge, then this flow can be used to 

model any number of systems in which a resource travels from one point to another. Our goal 

is to push as much flow as possible from 𝑆 to 𝑇 in the graph.The rules are that no edge can 

have flow exceeding its capacity, and for any vertex except for 𝑆 and 𝑇, the flow in to the 

vertex must equal the flow out from the vertex. That is, 

Capacity constraint: On any edge 𝑒 we have 

𝑓 (𝑒)  ≤  𝑐(𝑒) 

Flow conservation: For any vertex    𝑣 ∉  {𝑆, 𝑇}, flow in equals flow out:   

∑ 𝑓 (𝑢, 𝑣)

𝑢

  =  ∑ 𝑓 (𝑣, 𝑢)

𝑢

 

Subject to these constraints, we want to maximize the total flow into T. For instance, imagine 

we want to route message traffic from the source to the sink, and the capacities tell us how 

much bandwidth we are allowed on each edge, this disconnects the source from the sink. 

Thepoint is that any unit of flow going from s to t must take up at least 1 unit of capacity in 

these pipes. So, in general, an important property of flow is that the maximum 𝑆 − 𝑇 flow 

≤the capacity of the minimum 𝑆 − 𝑇 cut.This is called the Max-flow Min-Cut Theorem. 
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2. Preliminaries 

 In this section, we will introduce some basic concepts and results on maximum flow 

minimum cut problems which we need in this paper. 

Definition 2.1: The capacity of a cut (𝑆, 𝑇) is the sum of capacities of edges in the cutor in 

the formal viewpoint, it is the sum of capacities of all edges going from S to T. (Don’t include 

the edges from 𝑇 to 𝑆). 

Definition 2.2: A cut of a network with vertex set 𝑉 is a partition of 𝑉 into two disjoint sets 

{𝑆, 𝑇}such that the source is in one and the sink is in the other. The capacity 𝑐(𝑆, 𝑇) of the cut 

{𝑆, 𝑇}is the sum of the capacities of all edges directed from a vertex in 𝑆 to a vertex in 𝑇 

Definition (Flow Augmenting Paths) 2.3: Consider a path connecting s and t in a network. 

(Don’t worry about the directions of the edges.) In traversing the path from s to t we will 

sometimes be going with the direction of edges, these are forward edges, and will sometimes 

be going against the direction of edges, these are reverse edges. A path from s to t is a flow 

augmenting path if  

 𝑓(𝑒)  <  𝑐(𝑒) if 𝑒 is a forward edge, and 

 𝑓(𝑒)  >  0 if 𝑒 is a reverse edge. 

The worth w of a flow augmenting path is given by 

𝑤 =  𝑚𝑖𝑛{𝑐(𝑒𝑖)  − 𝑓(𝑒𝑖) ∶  𝑒𝑖 𝑖𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑;   𝑓(𝑒𝑖) ∶  𝑒𝑖 𝑖𝑠 𝑟𝑒𝑣𝑒𝑟𝑠𝑒} 

In other words, the worth of a flow augmenting path is found by looking at the difference 

between flow and capacity in each forward edge, looking at the flow in each reverse edge, and 

taking the minimum of these numbers. 

Theorem 2.4: Let {𝑆, 𝑇}be a cut and f be a flow in a network with value  𝐹. Then, 

𝐹 =  ∑ 𝑓(𝑥, 𝑦) − ∑ 𝑓(𝑦, 𝑥)
(𝑦,𝑥)∈𝐸:𝑥∈𝑆,𝑦∈𝑇(𝑥,𝑦)∈𝐸:𝑥∈𝑆,𝑦∈𝑇

 

This just says. Take any cut {𝑆, 𝑇}. Then the value of the flow is the amount flowing from 𝑆 to 

𝑇 minus the amount flowing from 𝑇 to  𝑆. [3] 

Theorem 2.5: For every flow with value 𝐹 , and every cut {𝑆, 𝑇}  of the network,                                                            

𝐹 ≤ 𝑐(𝑆, 𝑇). 

    Theorem tells us that in a network, values of flows are always less than or equal to 

capacities of cuts. This is a mini-max situation. If we can find a flow and a cut such that the 

value of the flow is equal to the capacity of the cut then we know that the flow has maximum 

value. [4] 

Theorem 2.6: Consider a network with a flow of value  𝐹, and a flow augmenting path 𝑃 of 

worth w. Add w to the flow in each forward edge of 𝑃, and subtract 𝑤 from the flow in each 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.12, 2014 

 

172 

reverse edge of 𝑃. The result is a new flow whose worth is 𝐹 +  𝑤.This means that whenever 

we can find a flow augmenting path we can increase the flow. [5] 

Theorem 2.7 (Max-flow Min-cut): In a network, the maxi-mum value of a flow from 𝑠 to 𝑡 

is equal to the minimum value of a cut. [6] 

 

3. MAIN RESULTS: 

The Max-Flow Min-Cut Theorem is a fundamental result within the field of network flows, 

but it can also be used to show some profound results in graph theory. First given any graph 

with at least two vertices, designate some vertex x the source and vertex y the sink and let all 

arcs have unit capacity then a flow on this network counts (via its value) a number of arc 

disjoint directed x, y- paths and a cut counts (via its capacity) a number of arcs whose deletion 

destroys all x, y- paths. 

 

Theorem 3.1: For any finite undirected graph 𝐺 =  (𝑉, 𝐸)  with vertices x and y, the 

minimum vertex cut of x and y is equal to the number of pair-wise internally-disjoint paths 

(i.e. the number of paths that pair-wise share no edges) from x to y. 

Proof: The maximal set of pair-wise internally-disjoint paths from x to y as P, with |P | = n. 

The flow f in the network N is defined as: 

(a)  Let x be the source and y be the sink. 

(b) Extend G to a network N by the capacity function c (u, v) = 1 for each edge 𝑢𝑣̅̅̅̅ ∈ E. 

(c) The flow along an edge e in 𝐸 is 1 if 𝑒 ∈  𝑝 for some path p ∈ P and e is forward-oriented 

from x to y and 0 otherwise. 

(d) If a vertex v is not x or y and it is part of a path p in P, erase all edges entering and leaving 

v that are not in p. 

First, we must show that this flow must satisfy the capacity restraint and the Conversion of 

flow restraint. The capacity restraint is trivially satisfied, as every edge has capacity 1 and 

flow 0 or 1. The conversion of flow restraint is also satisfied: pick any v in V such that v is 

not x or y. If v is not a member of any path in P, then no flow passes through it. If v is in at 

least one member of P, then it is in exactly one, as the paths in P are pair-wise internally-

disjoint. Denote the path containing v as p. Within p, for every edge 𝑢𝑣̅̅̅̅  entering v there is 

another path 𝑣𝑤̅̅ ̅̅  leaving v, with  𝑓(𝑢, 𝑣)  =  𝑓(𝑣, 𝑤)  =  1. Thus, for any vertex that is not a 

source or sink, the flow entering that vertex is equal to the flow leaving that vertex, satisfying 

the conversion-of-flow restraint. 

   Now we have a flow from s to t. Our next step will be to show that this flow is maximal. 

Suppose there is an augmenting path q from s to t. All edges are at full capacity, so any 
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augmenting path cannot share any edge with any of the existing paths. Furthermore, q cannot 

pass through a non-source non-sink vertex belonging to a path in 𝑃, as we erased these edges 

in our construction of f. Therefore q is a path from s to t with no internal vertices in common 

with any member of P, and q is not in 𝑃. However, 𝑃 was constructed to be a maximal set of 

internally-disjoint paths from s to t, a contradiction. Therefore f is maximal. Since f was 

constructed to have flow 1 along each of its n pair-wise internally-disjoint paths from x to y, 

the net flow of F is simply n. By the Max-Flow Min-Cut Theorem, the maximum flow from x 

to y is equal to the size of the minimal vertex cut of x and y, so the minimal vertex cut of x 

and y must be of size n. Thus the number of pair-wise-internally disjoint paths is equal to the 

size of the minimum vertex cut, proving the result. 

Theorem 3.2: For any finite bipartite graph 𝐺, the number of edges in a maximal matching 

equals the number of vertices in a minimal vertex cover. 

Proof: We will first extend 𝐺 to a network, adding a source and a sink. We will then see that, 

in our new network, a maximal flow corresponds to a maximal matching and a minimum cut 

corresponds to a minimum cover. From here, the min-cut max-flow theorem implies the 

desired result. 

Let 𝑋 and 𝑌 be a bipartite separation of the vertices of 𝐺. Starting with this graph, construct a 

digraph 𝐺0 = (𝑉0, 𝐸0) where 𝑉0 has all the vertices of V as well as a source s and a sink t. 𝐸0 

consists of all the edges in E, as well as new edges leading from s to every vertex in X, and 

also edges leading from each vertex in Y into t. Assign capacity values to edges as follows: 

give infinite capacity to each edge in 𝐸0 that was originally in E (i.e., each edge from 𝑋 to  ). 

To each of the newly added edges, give capacity 1. 

Given a matching of cardinality k, it is easy to find a flow of value k. Simply push a flow of 

value 1 along the paths𝑠𝑥̅̅ ̅, 𝑥𝑦̅̅ ̅,𝑦𝑡̅̅̅ where (x, y) is one of the matched pairs. Likewise, any flow 

f must have a corresponding matching with cardinality equal to the flow's value. Thus, a 

maximal flow in 𝐺0 corresponds to a maximal cardinality matching in G. 

  Let W be a covering in G with r vertices, and let 𝑊(𝑋)  and 𝑊(𝑌 )  be subsets of W 

consisting of the vertices of 𝑊 in 𝑋 and 𝑌 , respectively. Next, let 𝑋0 be 𝑋 −  𝑊(𝑋) and 𝑌0 be 

𝑌 −  𝑊(𝑌). The fact that W covers G implies that there is no edge from 𝑋0 to 𝑌0 Let S be the 

union of s, 𝑊(𝑌), and 𝑌0 and let 𝑇 be the union of 𝑡, 𝑊(𝑋), and YO. Consider the cut (𝑆, 𝑇) of 

G0; its cardinality is r, the cardinality of 𝑊. Thus, any vertex covering defines a vertex cut 

with equal value. Likewise, consider any vertex cut (𝑆, 𝑇) in G0 with finite value r. Edges 

from X to Y have  infinite capacity, so each edge from S to T must either go from s to 𝑋 or 

from 𝑌 to t, which have capacity 1. Since the cut had value r, (𝑆, 𝑇) have r arcs. 

Let W be the union of the set of vertices x in X such that 𝑠𝑥̅̅ ̅ is in (S, T) and the set of vertices 

y in Y such that 𝑦𝑡̅̅̅ is in (S, T); clearly, W has r vertices. For every covering in G there is a 

corresponding cut in G0. So a minimum cut corresponds to a minimum covering in G. 

Thus far, we have shown that a maximal flow corresponds to a maximum-cardinality 

matching, and a minimum cut corresponds to a minimum vertex cover. By the max-flow min-
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cut theorem, a minimum cut is equal in value to a maximal flow. Therefore, by transitivity, 

the cardinality of a maximal matching in G is equal in value to that of a minimum covering. 

Theorem 3.3: Suppose that G is a bipartite graph (𝑉1, 𝑉2, 𝐸), with│𝑉1 │ =  │𝑉2│Then G has 

a perfect matching if the following condition holds: 

                                                               ∀  𝑆 ⊆  𝑉1, │𝑆│ ≤  │𝑁(𝑆)│. 

Proof: We first notice that the condition above is trivially necessary for a perfect matching to 

exist; indeed, if we had a subset S⊆V1 with │𝑆 │ > │𝑁(𝑆)│, then there is no way to match 

up all of the │𝑆│elements of 𝑆 along edges with elements in 𝑉2without using some elements 

more than once. 

     We now prove that our condition is sufficient, via the Max-Flow Min-Cut theorem. Take 

our graph G, orient all of its edges so that they go from 𝑉1 to 𝑉2 add a source vertex s, a sink 

vertex t, edges from s to all of 𝑉1 from all of 𝑉2 to t, and let c be a capacity function that's 

identically 1 on all of the edges 𝑠 →  𝑉1 , 𝑡 → 𝑉2, and ∞ on all of the original edges in G. By 

Ford-Fulkerson, [6] there is a minimal cut on this graph: call it 𝑆.  We trivially know 

that 𝑐(𝑆, 𝑆̅)  ≤ 𝑛, as there is a 𝑛 −cut given by simply setting 𝑆 =  {𝑠}, we seek to show that 

𝑐(𝑆, 𝑆̅) is in fact equal to   n. 

   Let 𝑋 =  𝑆 ∩ 𝑉1  because the capacity of all of the edges originally in G is infinite, we know 

that any minimal cut cannot contain half of any such edges; therefore, we have  𝑁(𝑋)  ⊆  𝑆 ∩

𝑉2 

But this means that  

 𝑐(𝑆, 𝑆̅)  =   ∑  𝑐(𝑥, 𝑦)

𝑥∈𝑆,𝑦∈�̅�

 =   ∑   𝑐(𝑥, 𝑦)
𝑥∈(𝑆∩{𝑠},𝑦∈(𝑆 ̅ ∩ 𝑉1 )

 +  ∑   𝑐(𝑥, 𝑦)
𝑥∈(𝑆∩𝑉2),𝑦∈(𝑆 ̅ ∩ {𝑡}

 

      ≤   𝑛 −  │𝑋│ + │𝑁(𝑋)│ 

 ≤   𝑛 −  │𝑋│ + │𝑋│ 

                                                             =  𝑛 

 

4. Conclusion: 

In this paper we have shown that the maximum flow from x to y is equal to the size of the 

minimal vertex cut of x and y, so the minimal vertex cut of x and y must be of size n. Thus the 

number of pair-wise-internally disjoint paths is equal to the size of the minimum vertex cut. 

So any minimal cut has capacity n, therefore, there is a flow with value n. Such a flow sends 

one unit to each vertex in 𝑉1 and sends one unit from each vertex in 𝑉2 to t such a flow form a 

perfect matching of 𝐺′𝑠 vertices. Thus the maximal flow corresponds to a maximum-

cardinality matching, and a minimum cut corresponds to a minimum vertex cover. 
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