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Abstract 

In this paper, a coupling method of Laplace transform and Homotopy analysis method is applied for solving 

various inhomogeneous fractional partial differential equations.The proposed algorithm presents a procedure of 

construct the base function and gives a high order deformation equation in simple form. The purpose of using the 

Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in the other 

analytical techniques. The scheme is tested for some examples to demonstrate the capability of LHAM for 

fractional partial differential equations. 
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1.  Introduction 

In last two decades, fractional differential equations has been given much interest due to exact description of 

nonlinear phenomena in fluid flow,viscoelasticity,  seismology, biology, chemistry,economic, probability and 

statistics, acoustics, material science, engineering electrical 

network, optics and signal processing, electrochemistry, continuum mechanics and so on. However, fractional 

calculus is three centuries old as the conventional calculus [1].The most recent works on the subject of fractional 

calculus is the book of Podlubny [2].  

The importance of obtaining the exact and approximate solutions offractional linear or nonlinear differential 

equations is still significant problem that need snew methods to discover the exact and approximate solutions. 

But these nonlineardifferential equations are difficult to get their exact solutions so numerical methods havebeen 

used to handle these equations, a wide class of analytical methods have been proposed, suchas Laplace transform 

method [2,3], differential transform method[4-6], Adomian’s decomposition method [7-11], variational iteration 

method [12-14], homotopy perturbation method [15-16], homotopy perturbation transform method [17]. Another 

analytical approach that can be applied to solve linear or nonlinear equations ishomotopy analysis method [18-

20]. A systematic and clear exposition on HAM is given in [19]. The objective of the paper is to apply the 

Laplace homotopy analysis method [21], to provide analytic approximate solutions to inhomogeneous fractional 

partial differential equations. 

2.  Preliminaries and Notations 

We give some basic definitions, notations and properties of the fractional calculus theory which are used further 

in this paper: 

Definition 2.1 

Assume  xfxRRf  ,:  denote a continuous (but not necessarily differentiable) function and let the 

partition 0h in the interval  1,0 . Jumarie’s derivative is defined through the fractional difference  

        kxf
k

xfFW
k

k









 








0

11             (1) 

Where    hxfxFWf  . Then the fractional derivative is defined as the following limit. 
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This definition is close to the standard definition of derivative, and as a direct result, the th derivative of a 

constant 10  ; is zero. 

Definition 2.2  

The Riemann–Liouville fractional integral operator of order 0 for a function 1 Cf is defined as 
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Definition 2.3 
The Jumarie’s modified Riemann–Liouville derivative is defined as 
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Where,  1,0x ,  1,1  mmm  . 

The proposed modified Riemann–Liouville derivative as shown in Eq. (4) is strictly equivalent to Equation. (2). 
 

Definition 2.4  

Fractional derivative of compounded functions is defined as 

    10,1   dfxfd
              (5) 

 

Definition 2.5 

The integral with respect to  d is defined as the solution of fractional differential equation given by eq. 
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For example   xxf   in eq (2), we have 
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Definition 2.6 

If ,,1 Nmmm   then the Laplace transform of the fractional derivative  tfD
*  is  
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3.  Analysis of Laplace Homotopy Analysis Method 

In order to elucidate the solution procedure of the LHAM, we consider the following fractional differential 

equation: 

    ,,0,21,,,, RxtuuuftxuD xxxt  

                                                          
(10) 

Subject to the initial conditions 

       xfxuxfxu T 21 0,,0,                                                                                         (11)  

Where f a linear or nonlinear is function, and 

tD is a fractional differential operator. The operator form of 

equation (10) is 

       txCuuuBuuuAtxuD xxxxxxt ,,,,,, 
                                          (12)  

Where A and B are linear and nonlinear operators respectively, which might include other fractional derivatives 

of order less than ∝ and C is the known analytic function. 

Now Taking the Laplace transform of both sides of eq. (10) and using (11), we have 

         txCuuuBuuuALtxuDL xxxxxxt ,,,,,, 
                                           (13)  
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The so-called zero-order deformation equation of equation (14) is given by 
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Where  1,0p  is an embedding parameter, when p =0 and p=1, we have    sxusx ,0;, 0 and 

   sxusx ,1;,   respectively. Thus, as p increasing from 0 to 1  psx ;, varies from  sxu ,0  to 

 ., sxu

 Expanding  psx ;, in Taylor series with respect to p, we have 
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We define the vector 
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Differentiating Equation (15) m times with respect to the embedding parameter p, and then Setting p =0, h= -1 

and finally dividing them by !m , we have the so-called mth-order deformation equation 
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Where
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Applying the inverse Laplace transform of both sides of (19), then we have a power 

series    





0

,,
n

n txutxu of equation (10). 

4.  Numerical Examples 

Example 1.We consider the following one-dimensional linear inhomogeneous fractional wave  

equation 
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with the initial condition 

  .00, xu                                                             (23) 

Taking the Laplace transform of both sides of equation (22) and using (23), we have 
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In view of equations (19) and (20), we have 
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It is easily observed that the self canceling “noise” terms appear in the components  sxu ,0 and  sxu ,1 . 

Canceling the noise terms, we have 
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(26) 

Taking the inverse Laplace transform of equation (26), we have 

  .sin, xttxu   

Which is the exact solution of equation (22) for .1  

Example 2.We consider the one-dimensional linear inhomogeneous fractional Burger’s  

equation given by 
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(27) 

with the initial condition 

  .0, 2xxu                                                   (28) 

Taking the Laplace transform of both sides of equation (27) and using (28), we have 
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In view of equations (19) and (20), we have 
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It is easily observed that the self canceling “noise” terms appear in the components  sxu ,0 and  sxu ,1 . 

Canceling the noise terms, we have 

 
3

2 2
,

ss

x
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(31) 

Taking the inverse Laplace transform of equation (31), we have 

  ., 22 txtxu   
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Which is the exact solution of equation (27) for 1 . 

Example 3. Finally, we consider the one-dimensional linear inhomogeneous fractional Klein-Gorden 

                    Equation 

  ,21,,0,66 333   RxttxxtxuuuD xxt                    
(32) 

with the initial conditions 
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Taking the Laplace transform of both sides of equation (27) and using (28), we have 
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In view of equations (19) and (20), we have 
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It is easily observed that the self canceling “noise” terms appear in the components  sxu ,0 and  sxu ,1 . 

Canceling the noise terms, we have 
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x
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(36) 

Taking the inverse Laplace transform of equation (36), and setting 2 , we have 

  ., 33 txtxu   

This is the exact solution of equation (32). 

5.  Conclusion 
In this paper, the main objective is to apply the Laplace homotopy analysis method (LHAM) to construct 

solutions for inhomogeneous partial differential equations of fractional order with constant coefficients. A 

general analysis of the LHAM for the analytical treatment of fractional partial differential equations is presented. 

Also its small size of computation in comparison with the computational size required in other numerical 

methods and its rapid convergence shows that the LHAM is reliable and introduces a significant improvement in 

solving partial differential equations over existing methods. 
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