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Abstract  

A total edge dominating set of a graph G  is a set D  of edges of G  such that the sub graph D  has no isolated 

edges. The total edge domination number of G  denoted by
'
( )t Gγ , is the minimum cardinality of a total edge 

dominating set ofG . Further, the set D  is said to be double edge dominating set of graphG . If every edge of G  is 

dominated by at least two edges ofD . The double edge domination number ofG , denoted by, 
' ( )d Gγ , is the 

minimum cardinality of a double edge dominating set of G . In this paper, we provide a constructive 

characterization of trees with equal total edge domination and double edge domination numbers.  

 

Key words: Trees, Total edge domination number, Double edge domination number. 

1. Introduction: 

 In this paper, we follow the notations of [2]. All the graphs considered here are simple, finite, non-trivial, 

undirected and connected graph. As usual Vp=  and Eq=  denote the number of vertices and edges of a 

graphG , respectively. 

 In general, we use X  to denote the sub graph induced by the set of vertices X  and ( )N v  and 

[ ]N v denote the open and closed neighborhoods of a vertex v , respectively. 

 The degree of an edge e uv=  of G  is defined bydeg deg deg 2e u v= + − , is the number of edges 

adjacent to it. An edge e  of degree one is called end edge and neighbor is called support edge ofG . 

 A strong support edge is adjacent to at least two end edges. A star is a tree with exactly one vertex of degree 

greater than one. A double star is a tree with exactly one support edge. 



Mathematical Theory and Modeling                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.5, 2012 
 

76 

 For an edge e  is a rooted treeT , let ( )C e  and ( )S e  denote the set of childrens and descendants of e  

respectively. Further we define [ ] ( ) { }S e S e e= U . The maximal sub tree at e  is the sub tree of T  induced 

by [ ]S e , and is denoted by eT . 

 A set D E⊆ is said to be total edge dominating set ofG , if the sub graph D  has no isolated edges. The 

total edge domination number ofG , denoted by
' ( )t Gγ , is the minimum cardinality of a total edge dominating set 

ofG . Total edge domination in graphs was introduced by S.Arumugam and S.Velammal [1]. 

 A set S V⊆ is said to be double dominating set ofG , if every vertex ofG is dominated by at least two 

vertices of S . The double domination number ofG , denoted by ( )d Gγ , is the minimum cardinality of a double 

dominating set ofG . Double domination is a graph was introduced by F. Harary and T. W. Haynes [3]. The concept 

of domination parameters is now well studied in graph theory (see [4] and [5]). 

 Analogously, a set D E⊆ is said to be double edge dominating set ofG , if every edge of G  is dominated 

by at least two edges of D . The double edge domination number ofG , denoted by
' ( )d Gγ , is the minimum 

cardinality of a double edge dominating set ofG . 

 In this paper, we provide a constructive characterization of trees with equal total edge domination and 

double edge domination numbers. 

 

2. Results: 

Initially we obtain the following Observations which are straight forward. 

 

Observation 2.1: Every support edge of a graph G  is in every 
' ( )t Gγ set. 

 

Observation 2.2: Suppose every non end edge is adjacent to exactly two end edge, then every end edge of a graph 

G  is in every 
' ( )d Gγ  set. 

 

Observation 2.3: Suppose the support edges of a graph G  are at distance at least three in G , then every support 

edge of a graph G  is in every 
' ( )d Gγ .  



Mathematical Theory and Modeling                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.5, 2012 
 

77 

 

3. Main Results: 

 

Theorem 3.1: For any treeT , 
' '( ) ( )d tT Tγ γ≥  . 

Proof: Let q  be the number of edges in treeT . We proceed by induction on q . If ( ) 3diam T ≤ . Then T  is either 

a star or a double star and ( ) ( )' '2d tT Tγ γ= = . Now assume that ( ) 4diam T ≥  and the Theorem is true for 

every tree 
'T  with

'q q< . First assume that some support edge of T , say xe  is strong. Let ye  and ze  be the end 

edges adjacent to xe  and
'T T e= − . Let 

'D  be any 
' '( )d Tγ - set. Clearly

'

xe D∈ , where 
'D  is a total edge 

dominating set of treeT .  Therefore 
' ' '( ) ( )t tT Tγ γ≤ . Now let S  be any 

' ( )d Tγ - set. By observations 2 and 3, we 

have Seee zxy ∈,, . Clearly,    { }yS e−  is a double edge dominating set of tree 
'T . Therefore 

' ' '( ) ( ) 1.d dT Tγ γ≤ −  Clearly,  
' ' '( ) ( ) 1d dT Tγ γ≥ +  

' ' ' '( ) 1 ( ) 1 ( )t t tT T Tγ γ γ≥ + ≥ + ≥ ,  a contradiction. 

Therefore every support edge of T  is weak. 

 Let T  be a rooted tree at vertex r  which is incident with edge re  of the ( )diam T . Let te  be the end 

edge at maximum distance from re , e  be parent of te , ue  be the parent of e  and we  be the parent of ue  in the 

rooted tree. Let 
xe

T  denotes the sub tree induced by an edge xe  and its descendents in the rooted tree. 

 Assume that deg ( ) 3T ue ≥  and ue  is adjacent to an end edge xe . Let 
'T T e= −  and 

'D  be the 

' '
( )t Tγ - set. By Observation 1, we have

'

ue D∈ . Clearly, { }'D eU  is a total edge dominating set of treeT . Thus 

' ' '
( ) ( ) 1t tT Tγ γ≤ + . Now let S  be any 

'
( )d Tγ - set. By Observations 2 and 3, Seeee uxt ∈,,, . Clearly, 

{ , }tS e e− is a double edge dominating set of tree
'T .  Therefore 

' ' '( ) ( ) 2d dT Tγ γ≤ − . It follows that 

' ' '
( ) ( ) 2d dT Tγ γ≥ + ' '

( ) 2t Tγ≥ + '
( )t Tγ≥ '

1 ( )t Tγ+ ≥ . 
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 Now assume that among the decedents of ue there is a support edge say xe , which is different from e . Let 

'T T e= −  and 
'D  be the 

' '( )t Tγ - set containing no end edges. Since xe  must have a neighbor in 
'D , thus 

'

ue D∈ . Clearly { }'D eU  is a total edge dominating set of tree T  and hence
' ' '( ) ( ) 1t tT Tγ γ≤ + . Now let S  be 

any 
' ( )d Tγ - set. By Observations 2 and 3, we have Seee xt ∈,, . If 

ue S∈ , then },{ teeS − is the double edge 

dominating set of tree
'T . Further assume that

ue S∉ . Then { } { , }u tS e e e−U is a double edge dominating set of 

tree T . Therefore 
' ' '( ) ( ) 1d dT Tγ γ≤ − . Clearly, it follows that, 

' ' ' ' ' '( ) ( ) 1 ( ) 1 ( )d d t tT T T Tγ γ γ γ≥ + ≥ + ≥ . 

Therefore, we obtain 
' '( ) ( )d tT Tγ γ≥ . 

  

To obtain the characterization, we introduce six types of operations that we use to construct trees with equal total 

edge domination and double edge domination numbers. 

Type 1: Attach a path 1P  to two vertices u and w  which are incident with ue and we  respectively of T  where 

,u we e  located at the component of x yT e e−  such that either xe  is in 
'

dγ  set of T  or ye  is in  
'

dγ - set ofT . 

Type 2: Attach a path 2P  to a vertex v  incident with e  of treeT , where e  is an edge such that T e−  has a 

component
3P . 

Type 3: Attach 1k ≥  number of paths 
3P  to the vertex v  which is incident with an edge e of T  where e is an 

edge such that either T e− has a component 
2P  or T e−  has two components 

2P  and 
4P , and one end of 

4P  is 

adjacent to e  isT . 

Type 4: Attach a path 
3P  to a vertex v  which is incident with e  of tree T  by joining its support vertex to v , such 

that e  is not contained is any '

tγ - set ofT . 

Type 5: Attach a path ( )4 , 1P n n ≥  to a vertex v  which is incident with an edgee , where e is in a '

dγ - set of T  

if 1n = . 
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Type 6: Attach a path 5P  to a vertex v  incident with e  of tree T  by joining one of its support to v  such that 

T e− has a component 3 4 6{ , , }.H P P P∈  

  

Now we define the following families of trees         

  

 Let ℑ  be the family of trees with equal total edge domination number and double edge domination number. That is  

{ /T Tℑ= is a tree satisfying ( ) ( )' ' }t dT Tγ γ= . 

 

 

We also define one more family as  

{ /T Tℜ= is obtained from
3P by a finite sequence of type - i operations where        

 1 5}i≤ ≤ . 

 

We prove the following Lemmas to provide our main characterization. 

 

Lemma 3.2: If 
'T ∈ℑ  and T  is obtained from 

'T by Type-1 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , we only need to prove that 

' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 
'T by attaching the path 1P  to two vertices u  and w  which are 

incident with ue and we  as 
'

ue and 
'

we respectively. Then there is a path x ye e in 
'T such that either xe  is in 

'

dγ - 

set of T  and 
'

x yT e e−  has a component 
5 u w xP e ee e=  or ye  is in 

'

dγ - set of 
'T  and 

'

x yT e e−  has a 

component
'

6 u w x xP e ee e e= . Clearly, 
' ' '( ) ( ) 1t tT Tγ γ= − . 

Suppose 
'

x yT e e−  contains a path 
5 u w xP e ee e= then 

'S be the 
'

dγ - set of 
'T  containing

xe . From Observation 2 

and by the definition of 
'

dγ - set, we have 
' { , , , } { , }u w x u wS e e e e e e=I or { },ue e . Therefore 
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' ' '( { , , }) { , , }u w u wS S e e e e e e= − U is a double edge dominating set of T  with
' ' '1 ( ) 1dS S Tγ= + = + . 

Clearly,  
' ' '( ) ( ) 1t tT Tγ γ= + ' ' '( ) 1 ( )d dT S Tγ γ= + = > . 

Now, if 
'

x yT e e− contains a path
'

6 u w x xP e ee e e= . Then 
'S  be the 

'

dγ  - set of 
'T  containing ye . By Observation 2 

and by definition of 
'

dγ  - set, we have
' ' '{ , , , , } { , , }u w x x u w xS e e e e e e e e=I . Therefore 

' ' '( { , }) { , , }u w u wS S e e e e e= − U is a double edge dominating set of T  with 
' ' '1 ( ) 1dS S Tγ= + = + . 

Clearly, 
' ' '( ) ( )t tT Tγ γ= 1+ = ' '( )d Tγ 1+  = ' ( )dS Tγ≥ . 

 

Lemma 3.3: If 
'T ∈ℑ  and T  is obtained from 

'T by Type-2 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , we only need to prove that 

' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 
'T  by attaching a path 

2P  to a vertex v  which is incident with 

e  of 
'T  where 

'T e−  has a component
3 w xP e e= . We can easily show that

' ' '( ) ( ) 1t tT Tγ γ= + . Now by 

definition of 
'

dγ - set, there exists a 
'

dγ - set, 
'D  of 

'T  containing the edge e . Then ' '{ }uD eU forms a double 

edge dominating set of T . Therefore 
' ' ' ' ' ' ' '( ) ( ) 1 ( ) 1 { } ( )t t d u dT T T D e Tγ γ γ γ= + = + = ≥U . 

 

Lemma 3.4: If 
'T ∈ℑ  and T  is obtained from 

'T by Type - 3 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , hence we only need to prove 

that 
' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 

'T  by attaching 1≥m number of paths 3P  to a vertex v  

which is incident with an edge e  of 'T such that 
'T e−  has a component 3P  or two components 2P  and 4P . By 

definition of 
'

tγ - set and 
'

dγ - set, we can easily show that
' ' '( ) ( ) 2t tT T mγ γ≥ +  and 

' ' '( ) 2 ( )d dT m Tγ γ+ ≥ . 

Since
' ' ' '( ) ( )t dT Tγ γ= , it follows that 

' ' ' ' ' '( ) ( ) 2 ( ) 2 ( )t t d dT T m T m Tγ γ γ γ≥ + = + ≥ . 
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Lemma 3.5: If 
'T ∈ℑ  and T  is obtained from 

'T by Type - 4 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , hence we only need to prove 

that 
' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 

'T  by attaching path 
3P  to a vertex v  incident with e  in 

'T such that e is not contained in any '

tγ -set of 
'T  and 

'T e−  has a component 4P . For any   
'

dγ - set, 
'S of 

'T , 

' { , }x zS e eU  is a double edge dominating set of T . Hence 
' ' '( ) 2 ( )d dT Tγ γ+ ≥ . Let D be any 

'

tγ - set of 

T containing the edge ue , which implies  ye D∈  and { , , } 1
x z

D e e e =I . 

 If e D∉ , then  
' ' ' '( ) 2 ( ) 2 ( )t tD E T D T Tγ γ= − = − ≥I , since 

'( )D E TI  is a total edge 

dominating set of 
'T . Further since

' ' ' '( ) ( )t dT Tγ γ= , it follows that
' ' '( ) ( ) 2t tT Tγ γ≥ +  

' ' '( ) 2 ( )d dT Tγ γ= + ≥ . 

 If De∈ , then { , , } { }x zD e e e e=I and
' ' ' '( ) 1 ( ) 1 ( )t tD E T D T Tγ γ= − = − ≥I , since 

'( )D E TI  is a total edge dominating set of 
'T . Suppose 

' '( ) ( ) 1t dT Tγ γ≤ − , then by 
' ' ' '( ) ( )d tT Tγ γ= , it 

follows that 
' ' ' ' ' ' ' '( ) ( ) 1 ( ) 2 ( ) 2 ( )d t t d dT T T T Tγ γ γ γ γ≥ + ≥ + = + ≥ . Clearly, 

' ' ' '( ) ( ) 1 ( )t tD E T T Tγ γ= − =I  and 
'( )D E TI  is a total edge dominating set of 

'T  containing e . 

Therefore, it gives a contradiction to the fact that e  is not in any total edge dominating set of 
'T  and 

hence
' '( ) ( )t dT Tγ γ≥ . 

 

Lemma 3.6: If 
'T ∈ℑ  and T  is obtained from 

'T by Type - 5 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , hence we only need to prove 

that 
' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 

'T  by attaching path ( )4 , 1P n n ≥  to a vertex v  incident 
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with e  in 
'T such that e is in 

'

dγ - set for 1n = .  Clearly, 
' ' '( ) ( ) 2t tT T nγ γ≥ + . If 2n ≥ , then by 

' ' ' '( ) ( )t dT Tγ γ= , it is obvious that 
' ' '( ) ( ) 2t tT T nγ γ≥ + ' ' '( ) 2 ( )d dT n Tγ γ= + ≥ . If 1n = , then 

'D be a 

'

dγ  - set of 
'T containing e . Thus 

' { , }z xD e eU is a double edge dominating set of T . Hence 

' ' ' ' '( ) ( ) 2 ( )t t dT T Tγ γ γ≥ + = ' '2 { , } ( ).z x dS e e Tγ+ = ≥U  

 

Lemma 3.7: If 
'T ∈ℑ  and T  is obtained from 

'T by Type - 6 operation, thenT ∈ℑ . 

Proof: Since
'T ∈ℑ , we have

' ' ' '( ) ( )t dT Tγ γ= . By Theorem 1, 
' '( ) ( )t dT Tγ γ≤ , hence we only need to prove 

that 
' '( ) ( )t dT Tγ γ≥ . Assume that T  is obtained from 

'T  by attaching path a path 5P to a vertex v  which is 

incident with e . Then there exists a subsetD  of ( )E T  as 
'

tγ - set of T such that ' ( )
T

D N e φ≠I for 1n = . 

Therefore 
'( )D E TI is a total edge dominating set of 

'T and
' ' '( ) ( )tD E T Tγ≥I . By the definition of double 

edge dominating set, we have 
' ' '( ) 3 ( )d dT Tγ γ+ ≥ . Clearly, it follows that  

' ( )t T Dγ = 6( )D E P= I + ' ' ' ' ' '( ) 3 ( ) 3 ( ) ( )t d dD E T T T Tγ γ γ> + = + ≥I .  

  

Now we define one more family as 

Let T  be the rooted tree. For any edge )(TEe∈ , let ( )C e  and ( )F e denote the set of children edges and 

descendent edges of e  respectively. Now we define   

 
' ( ) { ( )uC e e C e= ∈  every edge of [ ]uF e has a distance at most two from e in }T . 

 Further partition 
'( )C e into

'

1 ( )C e , 
'

2 ( )C e  and 
'

3 ( )C e  such that every edge of 
' ( )iC e  has edge 

degree i  in T , 1,2i =  and3 . 
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Lemma 3.8: Let T  be a rooted tree satisfying 
' '( ) ( )t dT Tγ γ=  and ( )we E T∈ . We have the                   following 

conditions: 

1. If ' ( )wC e φ≠ , then 
' '

1 3( ) ( )w wC e C e φ= = . 

2. If '

3 ( )wC e φ≠ , then 
' '

1 2( ) ( )w wC e C e φ= =  and 
'

3 ( ) 1wC e = . 

3. If ' '

1( ) ( ) ( )w w wC e C e C e= ≠ , then  
' '

1 3( ) ( )w wC e C e φ= = . 

Proof: Let 
1 2

'

1 ( ) { , ,........... }
lw x x xC e e e e= , 

1 2

'

2 ( ) { , ,........... }
mw y y yC e e e e=  and 

'

3 ( )wC e =  

1 2
{ , ,........... }

nz z ze e e  such that 
' '

1 2( ) , ( )w wC e l C e m= =  and 
'

3 ( )wC e n= . For every 1,2,...,i n= , let 

iu
e be the end edge adjacent to 

iz
e inT  and 

1 2

' { , ,...,
lx x xT T e e e= − ,

1 2
, ,u ue e  ..., }

nu
e . 

For (1):  We prove that if 1≥m , then 0l n+ = .  Assume 1l n+ ≥ . Since 1≥m , we can have a 
'

dγ  - set S   of T   

such that Sew∈  and a 
'

tγ  - set
'D  of 

'T such that
'

we D∈ . Clearly S −
1 2

{ , ,..., ,
lx x xe e e

1 2
, ,u ue e  ..., }

nu
e is a 

double edge dominating set of 
'T  and 

'D is a total edge dominating set of T . Hence 

' ' ' ' '( ) ( ) ( )t t dT D T T Sγ γ γ= ≥ = = > S −
1 2

{ , ,..., ,
lx x xe e e

1 2
, ,u ue e …, }

nu
e ( )' '

d Tγ≥ , it gives a contradiction 

with Theorem 1. 

For (2) and (3): Either if 
'

3 ( )wC e φ≠  or if 
' '

1( ) ( ) ( )w w wC e C e C e= ≠ . Then for both cases, 1m n+ ≥ . Now 

select a 
'

tγ - set 
'D  of 

'T such that
'

we D∈ . Then 
'D  is also a total edge dominating set of T . Hence 

' ' ' '( ) ( )t tT D Tγ γ= ≥ . Further by definition of 
'

dγ - set and by Observation 2, there exists a 
'

dγ -set S  of T  

which satisfies S I  
1 2 1 2

{ , ,..., , , ,..., }
m ny y y z z ze e e e e e φ= . Then 

'( ( )) { }wS E T eI U is a 
'

dγ -set of 
'T . Hence 

( )' '

d Tγ '( ( )) { }wS E T e≤ I U
'( ) 1 ( )dS l n Tγ≤ − + + = ( ) 1l n− + + ' ( )t Tγ=  ( ) 1l n− + + .  

If 1n ≥ , then 
' ' ' ' ' ' '( ) ( ) ( ) ( )d t t dT T T Tγ γ γ γ≤ ≤ ≤ , the last inequality is by Theorem 1. It follows that 1l n+ =  

and Sew∉  . Therefore 0l = and 1n = . From Condition 1, we have 0m = . Hence 2 follows. 
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If
' '

1( ) ( ) ( )w w wC e C e C e= ≠ , then 1m n+ ≥ . By conditions 1 and 2, 0l = . Now we show that 0n = .  

Otherwise, similar to the proof of 2, we have Sew∉ , 1n = and 0m = . Since 
'( ) ( )w wC e C e=  

anddeg ( ) 2we = , for double edge domination, ,
w z
e e S∈  , a contradiction to the selection of S . 

 

Lemma 3.9: If T ∈ℑ  with at least three edges, then T∈ℜ. 

Proof: Let )(TEq= . SinceT ∈ℑ , we have
' '( ) ( )t dT Tγ γ= . If ( ) 3diam T ≤ , then T is either a star or a 

double star and
' '( ) 2 ( )t dT Tγ γ= = . Therefore T ∈ℜ . If ( ) 4diam T ≥ , assume that the result is true for all 

trees
'T  with 

' '( )E T q q= < . 

   

We prove the following Claim to prove above Lemma. 

Claim 3.9.1: If there is an edge )(TEea∈  such that 
aT e−  contains at least two components

3P , thenT ∈ℜ . 

Proof: Assume that
'

3 b bP e e= and 
'

c ce e  are two components of 
aT e− . If 

' '{ , }b bT T e e= − , then use
'D and S to 

denote the 
'

tγ -set of 
'T containing 

ae and 
'

dγ  - set of T , respectively. Since 
' ', { }a be D D e∈ U is a total edge 

dominating set ofT  and hence
' ' '( ) ( ) 1t tT Tγ γ≥ − . Further since S  is a 

'

dγ  - set of T , 
' '{ , , } { , }a b b a bS e e e e e=I  

by the definition of 
'

dγ  - set. Clearly,
'( )S E TI  is a double edge dominating set of 

'T  and hence
' '( )t Tγ ≥   

' ' ' ' '( ) 1 ( ) 1 ( ) ( )t d dT T S E T Tγ γ γ− = − = ≥I . By using Theorem 1, we get 
' ' ' '( ) ( )t dT Tγ γ=  and so 

'T ∈ℑ . 

By induction on 
'T , 

'T ∈ℜ . Now, since T  is obtained from 
'T  by type - 2 operation, T ∈ℜ . 

By above claim, we only need to consider the case that, for the edge
ae , 

aT e−  has exactly one component
3P . Let 

...u w x y z rP e ee e e e e=  be a longest path in T  having root at vertex r  which is incident with re . 

Clearly, 
' '

1( ) ( ) ( )w w wC e C e C e= ≠ .By 3 of Lemma 6, 
' '

1 3( ) ( )w wC e C e φ= = .  Hence 
4 u wP e ee=  is a 

component of xT e− . Let n  be the number of components of 4P  of ( )xS e  in T  such that an end edge of every 
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4P  is adjacent to xe . Suppose ( )xS e  in T  has a component 4P  with its support edge is adjacent to xe . Then it 

consists of j  number of 3P  and k  number of 2P  components. By Lemma 6, { }, 0,1m j∈  and { }0,1,2k∈ .   

Denoting the n  components 4P  of the sub graph ( )xS e  in T  with one of its end edges is adjacent to an edge 

xe  in T  by 4 i iu i wP e e e= , 1 i n≤ ≤ . We prove that result according to the values of { }, ,m j k . 

Case 1: Suppose 0m j k= = = . Then ( ) ( )4 , 1xS e P n n= ≥  in T . Further assume that                     

[ ]'

xT T S e= − , then ( )'2 E T q≤ < . Clearly, 
' ' '( ) ( ) 2t tT T nγ γ≥ − . Let S be a 

'

dγ - set of T such that S  

contains as minimum number of edges of the sub graph ( )xS e  as possible. Then 
xe S∉  and [ ] 2xS S e n=I  

by the definition of 
'

dγ - set. Clearly  
'( )S E TI  is a double edge dominating set of 

'T  and 

hence
' ' '( ) ( ) 2t tT T nγ γ≥ − ' ( )d Tγ= 2n− =  

' '( ) ( )dS E T Tγ≥I . By Theorem 1, 
' ' ' '( ) ( )t dT Tγ γ= and 

'( )S E TI is a double edge dominating set of 
'T . Hence 

'T ∈ℑ . By applying the inductive hypothesis to
'T , 

'T ∈ℜ . 

If 2n≥ , then it is obvious that T  is obtained from 
'T  
by type - 5 operation and hence

 T ∈ℜ . 

If 1n= . Then ( ) 4x u wS e P e ee= =  in T   which is incident with x  of an edge xe  and 

{ , , , } { , }u w x u wS e e e e e e=I . To double edge dominate, See yx ∈,  and so 
'( )ye S E T∈ I , which implies 

that ye is in some 
'

dγ - set of 
'T . Hence T  is obtained from 

'T by type-5 operation and T ∈ℜ . 

 

Case 2: Suppose 0m ≠ and by the proof of Lemma 6, 1m = and 0j k= = . Denote the component 4P  of 

( )xS e  in T  whose support edge is adjacent to xe  in T  by 4 a b cP e e e=   and if { }' , ,a b cT T e e e= − . Then, 

clearly ( )'3 E T q≤ ≤ . Let S  be a 
'

dγ - set of T  which does not contain be . 
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Now we claim that xe  is not in any 
'

tγ - set of
'T . Suppose that 

'T  
has a

 
 

'

tγ - set containing xe which is denoted 

by
'D , then 

' { }bD eU is a total edge dominating set of T . Clearly, 
' ' '( ) ( ) 1t tT Tγ γ≥ − . Since Seb ∉  then 

'( )S E TI is a double edge dominating set of 
'T . Hence 

' ' ' ' ' ' '( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1t t d dT T T S E T Tγ γ γ γ≥ − = − = + ≥ +I , which gives a contradiction to the fact that 

' ' ' '( ) ( )t dT Tγ γ≤ . This holds the claim and therefore T  can be obtained from 
'T  by type-4 operation. 

Now we prove that
'T ∈ℜ . Let

'D be any
'

tγ - set of 
'T . By above claim, 

'

xe D∉ . Since
' { , }x bD e eU is a total 

edge dominating set of T , ( ) ( )' ' ' 2t tT Tγ γ≥ − . Further since 
', ( )be S S E T∉ I is a double edge dominating 

set of
'T , 

' ' '( ) ( ) 2t tT Tγ γ≥ − ' ( ) 2d Tγ= − ' ' '( ) ( )dS E T Tγ= ≥I . Therefore by Theorem 1, we get 

' ' ' '( ) ( )t dT Tγ γ= , which implies that 
'T ∈ℑ . Applying the inductive hypothesis on 

'T , 
'T ∈ℜ  and hence 

T∈ℜ . 

Case 3: Suppose 0≠j  and by the proof of Lemma 6, 0m k= = . Let { }'

1 , ,
i i

n

i u wi
eT T e e== −U . Clearly, 

'3 ( )E T q≤ <  and T  is obtained from 
'T  by type - 3 operation. 

 We only need to prove that
'T ∈ℜ . Suppose ( )' 'D E T⊂  be a 

'

tγ - set of 
'T . Then 

{ }( )'

1 ,
i

n

i wi
eD e=U U is a total edge dominating set of T  and hence. 

' ' '( ) ( ) 2t tT T nγ γ≥ − .  Since 
xT e−  has a 

component 3 a bP e e= , we can choose )(TES⊆   as a 
'

dγ - set of T  containing xe . Then 
'( )S E TI  is a 

'

dγ - 

set of 
'T  and hence 

' ( )d T Sγ = 2n= +  
' ' '( ) 2 ( )dS E T n Tγ≥ +I . Clearly, it follows that, 

' ' ' '( ) ( )t dT Tγ γ≥ . Therefore, by Theorem 1, we get, 
' ' ' '( ) ( )t dT Tγ γ= and hence

'T ∈ℑ . Applying the inductive 

hypothesis on 
'T , we get 

'T ∈ℜ . 
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Case 4: Suppose 0≠k . Then by Lemma 6, }2,1{∈k and so 0m j= = . We claim 1k = . If not, then 2k = . We 

denote the two components 2P  of ( )xS e by 
'

xe  and 
''

xe  inT . Let
' ' '

xT T e= − . Clearly, 
' ' '( ) ( )t tT Tγ γ= . Let S  

be a 
'

dγ - set of T  containing{ }
1 2
, ,...,

nw w we e e . By Observation 2, { }' ' ',x xe e S⊆ . Since 
'( )S E TI  is a double 

edge dominating set of 
'T  with

' '( ) ( ) 1dS E T Tγ= −I , we have 

' ' ' ' ' ' '( ) ( ) ( ) ( ) 1 ( )t t d d dT T T T Tγ γ γ γ γ= = > − ≥ , which is a contradiction to the fact that 
' ' ' '( ) ( )t dT Tγ γ≤ . 

Sub case 4.1: For 2n ≥ . Suppose { }'

1 , ,
i i

n

i u wi
eT T e e== −U . Then T  is obtained from 

'T  by type - 3 operation. 

Now by definition of 
'

tγ - set and 
'

dγ - set, it is easy to observe that
' ' '( ) 2 ( 1) ( )t tT n Tγ γ+ − = and 

' ' '( ) 2( 1) ( )d dT n Tγ γ+ − = . Hence 
' ' ' '( ) ( )t dT Tγ γ= and 

'T ∈ℑ .     Applying the inductive hypothesis on 
'T , 

'T ∈ℜ  and hence T ∈ℜ . 

 

Sub case 4.2: For 1n = . Denote the component 2P   of ( )xS e  by 
'

xe  in T . Suppose ( ) [ ]y xS e S e−  has a 

component { }3 4 6, ,H P P P∈  in T , then [ ]'

xT T S e= − . Therefore we can easily check that T  is obtained from 

'T by type-6 operation. Now by definition of  
'

dγ - set, 
' ' '( ) 3 ( )d dT Tγ γ+ = . For any 

'

tγ - set
'D of 

'T , 

{ }'
, ,w xeD e eU  is a total edge dominating set of T . Clearly, 

' ' ' ' ' '( ) ( ) 3 ( ) 3 ( )t t d dT T T Tγ γ γ γ≥ − = − = . By 

Theorem 1, we get 
' ' ' '( ) ( )t dT Tγ γ= and

'T ∈ℑ . Applying inductive hypothesis on 
'T , 

'T ∈ℜ  and hence 

T ∈ℜ . 

 Now if the sub graph ( ) [ ]y xS e S e− has no components 3 4,P P  or 6P . Then we consider the structure 

of ( )yS e  in T . By above discussion, ( )yS e consists of a component 
'

6 u w x xP e ee e e=  and g  number of 

components of 2P , denoted by{ }1 2, ,..., ge e e  . Assume 2l = . Then, let 
'

yT T S e = −   . It can be easily checked 

that 
' '( ) 4t Tγ +  

' ' '( ) ( ) 5d dT Tγ γ≥ = + ,  which is a contradiction to the fact that 
' ' ' '( ) ( )t dT Tγ γ≤ . Hence 

1g ≤ . 
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 Suppose 
' '{ , }u xT T e e= − . Here we can easily check that

' ' '( ) 1 ( )t tT Tγ γ+ = . Let S  be a 
'

dγ - set of 

T  such that S  contains as minimum edges of 
yS e    as possible and 

'[ ] { , }x u w xS S e e e e=I . Then 

' '( { , }) { , }u w x xS S e e e e e= − U  is a double edge dominating set of 
'T . 

Therefore
' ' ' ' ' ' '( ) ( ) 1 ( ) 1 ( )t t d dT T T S Tγ γ γ γ= − = − = ≥ , which implies that 

' ' ' '( ) ( )t dT Tγ γ=  where 
'S is a 

double edge dominating set of 
'T . Hence 

'T ∈ℑ . Applying inductive hypothesis to 
'T , 

'T ∈ℜ .     

 If 0g = , then ( )deg 2T ye = . Since Sex∉ , to double edge dominate ,y ye e S∈ .       Therefore 

ye is in the double edge dominating set 
'D  of  

'T . Hence T  is obtained from 
'T by type-1 operation. Thus 

T ∈ℜ . 

 If 1g = , then ( )deg 3T ye = . Since Sex∉  to double edge dominate ye , we have Sey∉        and  

Sez∈ ,  by the selection of S . Therefore ze  is in the double edge dominating set 
'S  
of 

'T .
 
Hence T  is obtained 

from
'T  
by type-1operation. Thus T ∈ℜ . 

 

By above all the Lemmas, finally we are now in a position to give the following main characterization. 

Theorem 3.10: { }3Pℑ=ℜU  
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