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Abstract

In this research we introduce the new class P �p (�; �; �) of meromorphic p-valent functions
with negative coe¢ cient. Sharp results concerning coe¢ cient inequalities, growth and dis-
tortion, radii of starlikeness and convexity and the extreme points for the class P �p (�; �; �)
are determined. Furthermore it is shown that the class P �p (�; �; �) is closed under convex
linear combinations.
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1 Introduction

Let Sp (p a �xed integer greater that 0) denote the class of functions of the form f(z) = zp+P1
n=1 ap+nz

p+n that are holomorphic and p-valent in a punctured disc E = f0 < jzj < 1g.
Further let TP denote the subclass of SP consisting of function that can be expressed in the
form

f(z) = z�p �
1X
n=1

jap+njzp+n: (1)

A function f 2 TP is in P �p (�; �; �) if and only if

����� (f 0)1�p � p
2�
�
(f 0)1�p � �

�
�
�
(f 0)1�p � p

������ < �;
where jzj < 1; 0 � � < p

2� , 0 < � � 1 1
2 < � � 1.

Such type of study was carried out by Aouf (1) for P �p (�; �). We note that P �1 (�) =
P �1 (0; �; 1) is precisely the class of function in E studied by Caplinger (2). The class
P �1 (�; 1; �) = P

�
1 (�; �) is the class of holomorphic function discussed by Juneja-Mogra (4).

Gupta-Jain (3) studied the family of holomorphic univalent functions that have the form
f(z) = z �

P1
n=2 janjzn and satisfy the condition����� f 0(z)� 1
f 0(z) + (1� 2�)

����� < �; (0 � � < 1; 0 < � � 1):

Kulkarni (5) has studied above mentioned properties for the functions having Taylor series
expansion of the type f(z) = z +

P1
n=2 anz

n:
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For a functions f 2 TP given by (1.1) and g 2 TP given by

f(z) = z�p �
1X
n=1

jbp+njzp+n: (2)

We de�ned the Hadamard product (convolution) of f and g by

h(z) = (f � g)(z) = z�p �
1X
n=1

jap+njjbp+njzp+n = (g � f)(z): (3)

Many important properties and characteristics of various interesting subclasses of the class
TP of meromorphic p-valent functions, were studied by Srivastava et.al:(7), Aouf et.al.(8),
Mogra(9), Kulkarni et.al.(10), Moa�ath et.al.(11), Saibah and Maslina(12), Ghanim(13),
Kamali(14) and Makinde(15).
A function given by (1.3) is said to be a member of the class P �p (�; �; �) if and only if,����� (f � g)01�p � p

2�
�
(f � g)01�p � �

�
�
�
(f � g)01�p � p

������ � �; (4)

where 0 � � < p
2� , 0 < � � 1; 1

2 < � � 1, for all z 2 D = jzj < 1.

In this paper, sharp results concerning coe¢ cients, distrotion theorem and the radius
of convexity for the class P �p (�; �; �) are determined using Hadamard product. Finally we
prove that the class P �p (�; �; �) is closed under the arithmetic mean and convex linear com-
binations.

2 Coe¢ cient Inequalities

In this section, we provide a su¢ cient condition for a function h, analytic in D to be in
P �p (�; �; �).
Theorem 2.1 A function h(z) de�ned by (1.3) is in the class P �p (�; �; �), if and only if,

1X
n=1

(p+ n)[1 + �(2� � 1)]jap+njjbp+nj � 2��(p� �); (5)

where 0 � � < p
2� , 0 < � � 1 1

2 < � � 1, for all z 2 E.
Proof. )Assume that jzj = 1, and h(z) 2 P �p (�; �; �), then����� (f � g)01�p � p

2�
�
(f � g)01�p � �

�
�
�
(f � g)01�p � p

������
=

����� �
P1

n=1(p+ n)jap+njjbp+njzn
2�(p� �)�

P1
n=1(2� � 1)(p+ n)jap+njjbp+njzn

�����
�

P1
n=1(p+ n)jap+njjbp+nj

2�(p� �)�
P1

n=1(2� � 1)(p+ n)jap+njjbp+nj
� �

that is

1X
n=1

(p+ n)[1 + �(2� � 1)]jap+njjbp+nj � 2��(p� �)
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( Conversely, we assume that

1X
n=1

(p+ n)[1 + �(2� � 1)]jap+njjbp+nj � 2��(p� �):

To show h 2 P �p (�; �; �), we want to show that (1.4) satis�ed.

����� (f � g)01�p � p
2�
�
(f � g)01�p � �

�
�
�
(f � g)01�p � p

������
=

����� �
P1

n=1(p+ n)jap+njjbp+njzn
2�(p� �)�

P1
n=1(2� � 1)(p+ n)jap+njjbp+njzn

����� � �:

Since jRe(z)j � jzj for all z we have

Re

" P1
n=1(p+ n)jap+njjbp+njzn

2�(p� �)�
P1

n=1(2� � 1)(p+ n)jap+njjbp+njzn

#
� �

select the value of z on the real axis so that (f � g)0(z)z1�p is real. By simplifying the
denominator in the above expression we get

1X
n=1

(p+ n)jap+njjbp+njzn � 2��(p� �)�
1X
n=1

�(2� � 1)(p+ n)jap+njjbp+njzn:

Letting z ! 1 through real values, we obtain

1X
n=1

(p+ n)[1 + �(2� � 1)]jap+njjbp+nj � 2��(p� �);

then ����� (f � g)01�p � p
2�
�
(f � g)01�p � �

�
�
�
(f � g)01�p � p

������ � �:

so that h 2 P �p (�; �; �):

the result is sharp for a function h of the form

hp+n(z) = (f � g)(z) = z�p �
2��(p� �)

(p+ n)
h
1 + �(2� � 1)

izp+n (n � 1) (6)
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corollary 2.1 Let the function h(z)be de�ned by (1.3). If (h)(z) 2 P �p (�; �; �), then

jap+njjbp+nj �
2��(p� �)

(p+ n)[1 + �(2� � 1)] (n � 1): (7)

the result is sharp for the function hp+n given by (2.2).

3 Distortion Theorem

A distortion property for functions h in the class P �p (�; �; �), is given as follows:

Theorem 3.1. If the function (h)(z) de�ned by (1.3) is in the class P �p (�; �; �), then
for 0 < jzj = r < 1, we have

rp � 2��(p� �)
(p+ 1)[1 + �(2� � 1)]r

p+1 � j(h)(z)j � rp + 2��(p� �)
(p+ 1)[1 + �(2� � 1)]r

p+1 (8)

with equality for

hp+1(z) = z
p � 2��(p� �)

(p+ 1)[1 + �(2� � 1)]z
p+1 (z = ir; r) (9)

and

prp�1 � 2��(p� �)
[1 + �(2� � 1)]r

p �
���(h)0(z)��� � prp�1 + 2��(p� �)

[1 + �(2� � 1)]r
p (10)

with equality for,

hp+1(z) = z
p � 2��(p� �)

(p+ 1)[1 + �(2� � 1)]z
p+1 (z = �ir;�r)

Proof. Since h 2 P �p (�; �; �), Theorem 2.1 yields the inequality

1X
n=1

jap+njjbp+nj �
2��(p� �)

(p+ n)[1 + �(2� � 1)] : (11)

Thus, for jzj = r < 1, and making use of (2.1) we have

���(h)(z)��� =

�����zp �
1X
n=1

jap+njjbp+njzp+n
�����

� rp +
2��(p� �)

(p+ n)[1 + �(2� � 1)]r
p+1 (substitute in (3.4) when n = 1)

� rp +
2��(p� �)

(p+ 1)[1 + �(2� � 1)]r
p+1:
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And ���(h)(z)��� =

�����zp �
1X
n=1

jap+njjbp+njzp+n
�����;

� rp +
2��(p� �)

(p+ n)[1 + �(2� � 1)]r
p+1 (substitute in (3.4) when n = 1)

� rp � 2��(p� �)
(p+ 1)[1 + �(2� � 1)]r

p+1:

Also from Theorem 2.1, it follows that

1X
n=1

(p+ n)jap+njjbp+njzp+n �
2��(p� �)

[1 + �(2� � 1)] : (12)

thus ���(h)0(z)��� =

�����pzp�1 �
1X
n=1

(p+ n)jap+njjbp+njzp+n�1
�����

� prp�1 +
2��(p� �)

[1 + �(2� � 1)]r
p:

and ���(h)(z)��� =
���pzp�1 � 1X

n=1

(p+ n)jap+njjbp+njzp+n�1
���

� prp�1 � 2��(p� �)
[1 + �(2� � 1)]r

p:

Hence completes the proof of Theorem 3.1.

Theorem 3.2. Let (h)(z) 2 P �p (�; �; �). Then the disc jzj < 1 is mapped on to a do-
main that contains the disc

jwj < (p+ 1) + �[(2� � 1) + 2��]
(p+ 1)[1 + �(2� � 1)] :

proof. The result follows upon letting r ! 1in (3.3). that is

jwj < 1� 2��(p� �)
(p+ 1)[1 + �(2� � 1)]

<
(p+ 1) + (p+ 1)�(2� � 1)� 2��(p� �)

(p+ 1)[1 + �(2� � 1)] ;

<
(p+ 1) + �[(2� � 1) + 2��]
(p+ 1)[1 + �(2� � 1)] :
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4 Radii of Starlikeness and Convexity

The radii of starlikeness and convexity for the class P �p (�; �; �), is given by the following
theorem:
Theorem 4.1. If the function (h)(z) de�ned by (1.3) is in the class P �p (�; �; �), then (h)(z)
is starlike in the disk jzj < r(p; �; �; �), where r(p; �; �; �),is the largest value for which

r = r(p; �; �; �) = inf
n2N

 
p[1 + �(2� � 1)]
2��(p� �)

! 1
n

(n = 1; 2; 3; :::)

The result is sharp for functions hp+n(z) given by (2.2).

Proof. It su¢ ces to show that �����zh0(z)h(z)
� p
����� � p;

for jzj < 1, we have�����zh0(z)h(z)
� p
����� �

����� �
P1

n=1 njap+njjbp+njzp+n
zp �

P1
n=1 jap+njjbp+njzp+n

�����
�

P1
n=1 njap+njjbp+njjzjp+n

jzjp �
P1

n=1 jap+njjbp+njjzjp+n
� p: (13)

The inquality (13) above holds true if

1X
n=1

njap+njjbp+njjzjp+n � pjzjp � p
1X
n=1

jap+njjbp+njjzjp+n

and it follows that

1X
n=1

(p+ n)jap+njjbp+njjzjn �
1X
n=1

2��(p� �)
[1 + �(2� � 1)] jzj

n � p;

thus h(z) is starlike if,

2��(p� �)
[1 + �(2� � 1)] jzj

n � p; n = 1; 2; 3; :::

then we have,

r(p; �; �; �) = inf
n2N

 
p[1 + �(2� � 1)]
2��(p� �)

! 1
n

(n = 1; 2; 3; :::)

as required.

Theorem 4.2. If the function (h)(z) de�ned by (1.3) is in the class P �p (�; �; �), then
(h)(z) is convex in the disk jzj < r(p; �; �; �), where r(p; �; �; �),is the largest value for which

r(p; �; �; �) = inf
n2N

 
p2[1 + �(2� � 1)]
(p+ n)2��(p� �)

! 1
n

(n = 1; 2; 3; :::)
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The result is sharp for functions hp+n(z) given by (2.2).

Proof. It su¢ ces to show that �����
 
1 +

zh00(z)

h0(z)

!
� p
����� � p:

for jzj < 1, we have�����
 
1 +

zh00(z)

h0(z)

!
� p
����� =

�����zh00(z) + (1� p)h0(z)h0(z)

�����
=

�����
P1

n=1 n(p+ n)jap+njjbp+njzn
p�

P1
n=1(p+ n)jap+njjbp+njzn

�����
�

P1
n=1 n(p+ n)jap+njjbp+njjzjn

p�
P1

n=1(p+ n)jap+njjbp+njjzjn
� p: (14)

The inquality (14) above holds true if

1X
n=1

 
p+ n

p

!2
jap+njjbp+njjzjn � 1:;

and it follows that

1X
n=1

 
p+ n

p

!2
2��(p� �)

[1 + �(2� � 1)] jzj
n � 1:

then (h)(z) is convex if,  
p+ n

p

!2
jzjn � (p+ n)[1 + �(2� � 1)]

2��(p� �) ;

then we have,

r(p; �; �; �) = inf
n2N

 
p2[1 + �(2� � 1)]
(p+ n)2��(p� �)

! 1
n

(n = 1; 2; 3; :::)

as required.

5 Convex Linear Combination

Our next result involves a linear combination of function h of the type (1.3).

Theorem 5.1. Let

hp(z) = z
p; (15)
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and

hp+n(z) = z
p � 2��(p� �)

(p+ n)[1 + �(2� � 1)]z
p+n; (n � 1) (16)

then h 2 P �p (�; �; �) if and only if it can be expressed in the form

h(z) =
1X
n=1

�p+nhp+n(z); (17)

where �p+n � 0 and
1X
n=1

�p+n = 1:

Proof.( From (6.1),(6.12) and (6.13), it is easily seen that

h(z) =
1X
n=0

�p+nhp+n(z);

= zp �
1X
n=1

2��(p� �)�p+n
(p+ n)[1 + �(2� � 1)]z

p+n

then it follows that
1X
n=1

(p+ n)[1 + �(2� � 1)]
2��(p� �)

2��(p� �)�p+n
(p+ n)[1 + �(2� � 1)] =

1X
n=1

�p+n = 1� �p � 1

it follows from Theorem 2.1 that the function h 2 P �p (�; �; �).

( Conversely, let us suppose that h 2 P �p (�; �; �). Then

���ap+n������bp+n��� � 2��(p� �)
(p+ n)[1 + �(2� � 1)] (n � 0).

Setting

�p+n =
(p+ n)[1 + �(2� � 1)]

2��(p� �)

���ap+n������bp+n��� (n � 0),

It follows that

h(z) =
1X
n=0

�p+nhp+n(z)

this complete the proof of theorem.

Corollary 5.1 The extreme points of P �p (�; �; �) are the function

hp(z) = z
p; (18)

and

hp+n(z) = z
p � 2��(p� �)

(p+ n)[1 + �(2� � 1)]z
p+n: n � 1 (19)
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Theorem 5.2. The class P �p (�; �; �) is closed under convex linear combinations.
Proof. Suppose that the functions h1 and h2 de�ned by,

hi(z) = z
p �

1X
n=1

jap+n;ijjbp+n;ijzp+n (i = 1; 2; z 2 E) (20)

are in the class P �p (�; �; �).

Setting h(z) = �h1(z) + (1 � �)h2(z) we want to show that h 2 P �p (�; �; �). For
(0 � � � 1), we can write

h(z) = zp �
1X
n=1

n
�jap+n;1jjbp+n;1j+ (1� �)jap+n;2jjbp+n;2j

o
zp+n; (z 2 D)

In view of theorem 2.1, we have

1X
n=1

( p+ n)[(1 + �(2� � 1)]
n
�jap+n;1jjbp+n;1j+ (1� �)jap+n;2jjbp+n;2j

o
zp+n;

= �
1X
n=1

(p+ n)[(1 + �(2� � 1)]jap+n;1jjbp+n;1j+ (1� �)
1X
n=1

jap+n;2jjbp+n;2j;

� �
n
2��(p� �)

o
+ (1� �)

n
2��(p� �)

o
= 2��(p� �);

which show that h 2 P �p (�; �; �): Hence the theorem.
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