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Normal Form for Local Dynamical Systems 
 

𝐶ℎ𝑎𝑟𝑙𝑒𝑠 𝑊𝑎ℎ𝑜𝑔𝑜 
𝑆𝑐ℎ𝑜𝑜𝑙 𝑜𝑓 𝑝𝑢𝑟𝑒 𝑎𝑛𝑑 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠 , 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 & 𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 

𝐾𝑎𝑟𝑎𝑡𝑖𝑛𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, 𝐾𝑒𝑛𝑦𝑎 
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ABSTRACT 

Normal Form is a theory that applies in the neighbourhood of an orbit of a vector field map. The theory provides 

an algorithmic way to generate a sequence of non-linear coordinate changes that eliminate as much non-linearity 

as possible at each order (where order refers to terms in Taylors series about an orbit).The normal form is 

intended to be the simplest form into which any system of the intended type can be transformed by changing the 

coordinates in a prescribed manner. Interestingly the form of non-linear that cannot be eliminated by such 

coordinate changes is determined by the structure of the linear part of the vector field map. 

 This section consists of some background knowledge, theorems and definitions necessary for understanding the 

concept of normal form for local dynamical systems. We briefly discuss the concept of ring of invariants and 

module of equivariants, and use the Groebner basis methods to compute a Groebner basis for the ideal of 

relations among the basic invariants. 

1. INTRODUCTION 

Here we collect together material needed for later chapters for easy reference. 

1.1 Introduction to normal form theory 

The basis for normal form theory is the observation that the vector field. 

    ......2 


xaxaAxx j        (1.1.1) 

is transformed into 

  ...)(... 12 jj byayaAyy  



        (1.1.2) 

By a change for co-ordinates 

 ,ysyx j  

Where js  is homogenous of degree 𝑗, and 

jjjA baSL   

with 

)()()( xAvAxxvxvLA          (1.1.3) 

A normal form is computed by repeating such calculations for 𝑗 =  1 …  𝑘 up to some desired finite 𝑘, reverting 

to the original notation after each calculation. At each stage it is necessary to choose jb  so that 

;Ajj Limba   then js  exists. In order to proceed systematically, it is best to select a complement to ALim  

in each degree, and determine the jb by projecting ja into that complement. The problem, then, comes down to 

selecting a complement to ALim . This is called the choice of a normal form style. 
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1.2 Literature review 

The method of finding Stanley decomposition for equivariants of N222….2 was first solved by Richard Cushman, 

Sanders and Neil White [1] using the method called “covariants of special equivariants.” Their method involved 

creating a scalar problem that is larger than the vector problem. Our method begins by studying a scalar problem 

(of equivariants). 

Mudrocks [6] used the method of S1(2) and inner product to find the Stanley decomposition of N4. 

Malonza [4] used also the method of SI(2) to find the SD for N222…2. In our work we have used the inner product 

method to find the SD for N333 with the hope that it will generalize to N33…3, 

1.3 Invariants and Equivariants 

Let  mn

jp  , denote the vector space for homogenous polynomials of degree 𝑗 on 
n  with coefficients in

m . Let P(Rn,Rm be the vector space of all such polynomials of any degree and let  mnp  ,  be the space of 

normal power series. If 𝑚 =  1,  mnp  ,*  becomes a ring of (scalar) formal power series on
n , where 

 denotes the set of real numbers. From the viewpoint of smooth vector fields, it is most natural to work with 

formal power series (Taylor series), but since in practice these must be truncated at some degree, it is sufficient 

to work with polynomials. Now, for any matrix 𝐴, let the Lie operator 

),(),(: nn

j

n

jA PPL   

be as defined in equation (1.1.3) and the differential operator 

),(),(:  n

j

n

jAx PPD  

be defined by 

)()).(()()())(( xfxNxAxfxfDAx        (1.3.1) 

In addition, notice that 

vfLvfDfvL AAA  )()( .        (1.3.2) 

Therefore, AL is not a module homomorphism of ),( nnP  into itself but is a linear mapping. Recall that with 

every vector field ))()...(),(),(()( 321 xaxaxaxaxa n there is an associated differential operator given by 

n

nxa
x

xa
x

xaD








 )(...)(

1

1)(        (1.3.3) 

Acting on the space ),( n

jP  of smooth (scalar) functions. Furthermore if 𝑣 is a vector field and f is a scalar 

field, then fD xv )(  is a scalar field called the derivation of 𝑓 long (the flow of) 𝑣(𝑥). We will write AD  for 

)(xAD , the derivation along the linear vector field 𝐴𝑥. 

Observe that 

    ,,: nn

A pPD  

A function 𝑓 is called an invariant of (the flow of) Ax  if 0)( 0 



t

At xef
t

 or equivalently 0fDA  or 

.ker ADf  Since 

  gDfDgfD AAA          (1.3.4) 
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,)( fgDgfDfgD AAA          (1.3.5) 

It follows that, if 𝑓 and g are invariants, then so are gf   and fg ; that is 
ADker  is both a vector space over

 , and also a subring of  ),( np ,known as the ring of invariants. Similarly a vector field 𝑣 is called an 

equivariant of (the flow of) 𝐴𝑥, if 0)( 0 



t

At xef
t

, that is 0vLA
 or ALv ker It turns out that the set 

of differential equations that have linear part and are in normal form to all orders possesses the structure of a 

module over a ring as the following lemma shows. 

Lemma 1.3.1.For any matrix 𝐴, the space of equivariants ALker  is a module over the ring of invariants 

ADker . 

Theorem 1.3.1.Suppose that 𝑉 is a finite dimensional vector space and {𝑋, 𝑌, 𝑍} is a triad of linear operators on 

𝑉 satisfying 

[𝑋, 𝑌]  =  𝑍, [𝑍, 𝑋]  =  2𝑋, [𝑍, 𝑌]  =  −2𝑌. 

Then the following properties hold: 

P1. 𝑋 and 𝑌 are nilpotent. 

P2. 𝑍 is diagonalizable and has integer eigenvalues (called weights). 

P3. 𝐾𝑒𝑟 𝑋 has basis consisting of weight vectors (eigenvectors of 𝑍). 

P4. Any basis  svvv ,..., 21 of 𝑘𝑒𝑟 𝑋 consisting of weight vectors can be taken as a set of tops for Jordan chains 

for 𝑌: that is, each sequence vj,Y vj, Y
2
 vj,…. ,...,, 2

jjj vYYvv terminates with 0 and constitutes (an independent) 

Jordan chain for 𝑌, so that the nonzero vectors of the form j

ivY  form a basis for V in particular, it follows that 

𝑉 =  𝑘𝑒𝑟 𝑋  𝑖𝑚 𝑌 

(the term chain tops suggests that 𝑌 be viewed as mapping down the chains.) 

P5. The vectors j

ivY  are also weight vectors, with weights given by  

 .2)( ivwtvYWt jj

i   

P6. The length of the chain headed by jv  is 1)( jvwt , implying that the bottom vector of each chain is

j

vwt
vY j )(

and has weight ).( jvwt  

P7. The action of 𝑋 on the basis vectors is given by 

))(()( 1

j

i

j

i

j

i vYvYprvYX 
. 

Where )( j

ivYpr   is the non zero constant 

)(...)()()( 1

j

i

jjj

i vYwtYvwtvwtvYpr  . 

The constant )( j

ivYpr will be called the pressure on )( j

ivY  because it is the sum of the weights of the vectors 

above )( j

ivY  in its Jordan chain. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.13, 2014 

 

131 

P8. The number of chain tops of weight 0w  equals) )2()(  wmwm ,where 𝑚(𝑤) is the multiplicity of 𝑤 

as an eigenvalue. 

1.4 Term orders 

The set of power product is defined by Tn = {x
βn

,…,x
βn|βiЄ N,i=1,…,n}  nixxT in

n nn ,...1,,...1  


 

We denote
nn

nxx


,...1  by
x where 

n

n  ),...( 1   

 Power product will refer to a product of the ix variables and “term” will always refer to a coefficient times a 

power product. So every power product is a term (with coefficient 1) but a term is not necessarily a power 

product. We will also always assume that the different terms in a polynomial have different power products.  

The ordering must extend the divisibility relations. That is if 
x  divides

x  then we should have 
 xx  or 

equivalently if ii   αi for all ni ,...1  then 
 xx   

The ordering of terms must be total, that is, given by 
nTxx  , , exactly one of the following three relations 

must hold  

x
α 

< x
β
,  x

α 
 = x

β
  or  x

α 
> x

β
. 

Term ordering must satisfy 

I. The reduction → must stop after a finite number of steps. 

II. Whenever 𝑓 → +𝑟, the polynomial 𝑟 must be such that the leading power product must be less than 

the leading power product of ‘g’. 

The following definitions will help to capture these conditions. 

Definitions 1.4.1By a term order on T
n
 we mean 𝒢 total order < on T

n
 satisfying the following two conditions. 

I. 
x1 for all 1,   xTx n

 

II. 
 xx 

 then
 xxxx  for all 

nTx 
 

Definition 1.4.2We define the lexicographical order on T
n
 with nxxx ,...21  as follows: 

 for
n

nn  ),...(),,...( 11   

We define 

x < ,x  the first coordinate 1 and  1 in   and   from left , which are different, satisfies 1 < 1  

So in the case of two variables x 1 and x 2, we have 

1< 2x < 1x <
2

2x <
3

2x <…< x 1< x 2 x 1<
2

2x x 1<…<
2

2x <… 

If the lexicographical order with yx   then we have 

1< x < x 2
< x 3

<…<y< x y< x 2
y<…<y

2
<… 

We will always denote the lexicography order by”lex” 

Definitions 1.4.3We define the degree lexicographical order on T
n
 with  

1x > 2x > … > nx  as follows for 
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 = ( 1  ,…, n ), 1(  ,…, n )
n  

We define  













 

 

 

 

n

i

n

i ii

n

i

n

i ii

xx

1 1

1 1






 

And 
 xx  with respect to lex with 1x > 2x > ,…, > nx  

So with this order we first order by total degree and break ties by the lex order. In the case of two variables 1x

and 2x  we have  

1< x 2< x 1<
2

2x < x 1 x 2< x 1
2
< x 2

3
< x 1

2

2x <
2

1x x 2< x 1
3
< …  

Or using the degree lexicographical ordering in 𝑘 [𝑥, 𝑦] with 𝑥 <  𝑦 we have 

1< x < y < x 2 
< x y < y

2
< x 3

< x 2
 y < x y

2
< y 

3
< … 

We will always denote this order by “deglex”. 

Definition 1.4.4 We define the degree reverse lexicographical order on T
n 
with  

x 1> x 2> … > x n  as follows : for  ( 1 ,…,  n ),  ( 1,…,  n)N
n
  

We define x < x 

ii

ii

i

n

i

n

i

n

i

n



















11

11
 

  

And the first coordinates  I and  I  in   and    from right , which are different, satisfy    I>  I 

We will denote this order by “deglex”. 

We define  

 1)(


xfL  , the leading power product of f; 

 ,)( `1afLc   the leading coefficient of f; 

 1

1)(


xafLt  ,the leading termof f. 

We define 0)0()0(  lclp  

Note that LcLp,  and Lt  are commutative that is )()()(),()( gLcfLcfgLcfLpfgLp  and 

)()()( gLtfLtfgLt  . Also when we change the term order then )(),( fLcfLp  and )( fLt  may change. 
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1.5 Division algorithm 

In this section a division algorithm in ),...,( 1 nxxk  k ( x 1 ,…, x n) will be referred to as reduction process. 

When dividing f by f1 ,…, fs we want to cancel terms using the leading terms of the sf1 (so that the new terms 

that are introduced are smaller than the cancelled terms) and continue this process until it cannot be done any 

more. 

Let us first look at the special case of the division of f and 𝑔, where ),...,( 1 nxxkf  . We fix a term order 

),...,( 1 nxxk . 

Definition 1.5.1If rFf   and r  is reduced with respect to 𝐹, then we call 𝑟 a remainder for 𝑓 with 

respect to 𝐹. 

Theorem 1.5.1  Given a set of non zero polynomials  sffF ,...,1  and f in ),...,( 1 nxxk the division 

algorithm produces polynomials  ns xxkrUU ,...,,,..., 11   such that  

rfUfUf ss  ...11  

With 𝑟reduced with respect to 𝐹 and  

)()),()(max()( rLpfLpULpfLp ii  

1.6     Groebner basis 

In this section we lay the theoretical foundation for computing Greobner basis. 

Let  nxxkgf ,...,,0 1 0.  Let ))(),(( gLpfLpLCML  then the polynomial

g
gLt

L
f

fLt

L
gfS

)()(
),(   is called the S-polynomial of f and g . 

Example 1. Let xygyxyf  23,2  with deglex term ordering with y > x  

Then xyL 2   and 
22

2

22

3

1

2

1

3

1

2

1

32
),( xyxgyfg

y

xy
f

yx

xy
gfS   

If we reduce f using fi , we get the polynomial i

i

f
fLt

x
fh

)(
2   and if we reduce f using if we get 

j

j

f
flt

x
fh

)(
1  . The ambiguity that is introduced is  ),(

)()(
12 ji

j

i

i

ffS
L

x

flt

x
f

flt

x
fhh   

Now that we have introduced S-Polynomial as a way to “cancel” leading terms and to account for the ambiguity 

in the division algorithm we can go ahead with a strategy for computing bases. 

Theorem 1.6.1 Let  tggG ,...,1 be a set of non zero polynomials in ),...,( 1 nxxk . Then G  

Is a Greobner basis for the ideal  tggI ,...,1 if and only if for all ji   

 

Let  nxxk ,...,1 denote a polynomial ring over the field 𝑘. 

We now state one of the main theorems of the Greobner basis method. 

0)( GggS ji
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Theorem 1.6.2 ( Buchberger’s theorem )A basis  tggG ,...,1  for an ideal 1 is a Groebner basis if and 

only if 0),( GggS ji  for all i ≠ j , that is if and only if for all pairs i ≠ j the remainder on division of

),( ji ggS by G is zero. 

Corollary 1.6.1 (Buchberger’s first criterion)Given a finite set G 𝑘[ 1x ,…, nx ], suppose that we have𝑓, g 

G such that  GCD 1)(),( gLmfLm (lm(f),  then 0),( GggS ji . 

With this criterion S-polynomials are guaranteed to reduced to zero without doing any calculations [9] 

Corollary 1.6.2 (Buchberger’s second criterion) Given a finite set  nxxkG ,...,1 , suppose that we have

Gfff kji ,,   such that i < j < k. If 

 ),(),(),( kikiji ffSxffSxffS    

 0),( GffS ki  

 0),( GffS kj  

Then 0),( GffS ji  

Definition 1.6.1 Let: 𝑘 [ myy ,...,1 ] → 𝑘[ 1x ,…, nx ] be a ring homomorphism defined by  

ii fy :  

Where jf k [ 1x  ,…, nx ],1 ≤ i ≤ m 

Let  myykh ,...,,1 ,say   m

mmm NkCyyCyyh m  ),...,(,,,...,,..., 111
1 



 and only 

finitely many sC ' are non zero, then we have 

(h) =  nm xxkffh ,...,),...( 11  . 

Recall that the kernel of  is the ideal  

ker  =   myxkh ,...,1  : (h) = 0 }that is kerh h  if and only if 0),...( 1 mffh . The ker if 

often called the ideal of relations among the polynomials fl ,…, fm . This ideal will play an important role in later 

chapters. 

The following theorem provides an algorithm for computing the kernel of or more precisely the Groebner 

basis for the kernel of. 

Theorem 1.6.3   Let  mmmm xxyykfyfyK ,...,,...,..., 1111  x n]then                        ker  =

 .,...1 myykK   

1.7 The full ring of invariants – an example 

Let    [ 1x ,…, nx ] be a subring fo the ring of polynomials. Let 21,..., RR  be subrings of  𝑅 and let

 ns xxff ,...,,... 11    If  

 = ss fRfRfR  ...2211  1.7.1 
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Then (1.7.1) is called a Stanley decomposition of 𝑅 and every element of 𝑅 can be written as 




s

Ii

ii fg ,
1.7.2

 

for siRg ii ,...,1,   . One major application of theorem (1.3.1) is the calculation of xker , the ring of 

invariants. Four steps are required to complete the calculation in any example. 

 Compute a finite set of invariants sII ,...,1  called the basic invariants, which suffice to generate all 

invariants up to some given degree 𝑗. 

 Compute a Groebner basis for the ideal of relations among the basic invariants. 

 From the Groebner basis, determine a Stanley decomposition for the ring 𝑅 of polynomials in the basic 

invariants. 

 From the Stanley decompositions, set up a two variable generation function called the table function ( 

Hilbert function ) , and use it to test that R is in fact all of ker 𝑋. if it is not, then not all of the basic 

invariants have been found. In that case, return back to the first step and increase the value of 𝑗. 

We observe that the operators {𝑋, 𝑌, 𝑍} map each ),( n

jP  for 𝑖 =  1, … , 𝑗 to itself. So that ),( n

jP can 

be taken to be the vector space in theorem (1.3.1). Since 𝑍 is diagonal and zDZ  , the monomials in ( 1x  ,.., 

nx ) are in eigenvectors of Z, that is the weight vectors. As an examples we will find the ring of invariants ker 𝑋 

for the triad [𝑋, 𝑌, 𝑍} with X = N4. The associated differential operators are as defined in equation (1.3.4) for step 

one, the basic invariants can be shown to be 

1x  

2

12x  - x3 1 3x
 

y = 4
3

2x
- 9

x
1
x

2
x

3 + 9
2

1x x
4  

2

19x 2

4x - 3
2

2x
2

3x  – 18 x 1 x 2 x 3 x 4 + 6 x 1
3

3x  + 8
2

2x x 4 

For step two, the relation satisfied by this invariant is 

y
2
 = 2  3

 + 9 2  

and there are no other relations as demonstrated by the table of functions. Thus,                     y
2 

- 2  3
 + 9 2  

is the Groebner basis for the ideal of relations. Now consider the ring  =R[ , ,y, ] Pj(
n
,  n

 ) of 

polynomials in the known basic invariants. The representation of an element of  as a polynomial is not unique 

because of the relation above, but this equation itself can be used to restore the uniqueness by excluding y
2
 (or 

any high power of y). Thus, a Stanley decomposition of  is: 

 =𝑅 [ ,  , ] 𝑅[ ,  , ] y.                                                                                        1.73 

Another way to say this is that any polynomial in   can be written uniquely as  

f ( ),,(),,  g y           1.7.4 

Where f and g are polynomials in three variables  ,  and  . The Stanley decomposition (1.7.4) can be 

abbreviated as ,.. ygIf  f ad g  will be referred to as coefficient functions, and I  and y  as Stanley basis 

elements. 
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To generate the table function of the Stanley decomposition, we replace each term in (1.7.3) by a rational 

function 𝑃/𝑄 in d and w (for “d= degree in x ” and “w= weight “) constructed as follows: for each basic invariant 

( ,  and  ) appearing in a coefficient function (f and g), the denominator will contain a factor 
qpwd1 , 

where 𝑝 and 𝑞 are the degree and weight of the invariant; the numerator will 
qpwd , where 𝑝 and 𝑞 are the 

degree and weight of the Stanley basis element of that term. When the rational functions 𝑃/𝑄 from each term of 

the Stanley decomposition are summed up we obtain the table function 𝑇 given by  i
QPT . Thus, for this 

example, the table function is: 

)1)(1)(1(

1
4223

33

dwddw

wd
T




          

1.7.5 

The following lemma gives a method to check that enough basic invariants have been found. 

Lemma 1.7.1Let { X, Y, Z} be a triad of  nn  matrices, let { X, Y, Z} be the induced triad, and suppose that Il 

,…,Itis a finite set of polynomials in ker X, let 𝑅 be a subring of  tIIR ,...1 ; suppose that the relations among 

the tII ,...1  have been found, and that the Stanley decomposition and its associated table function 𝑇(𝑑, 𝑤) have 

been determined. 

Then ),(ker nn

jPXR  if and only if 

n
w

d
wT

w )1(

1
1









                 

1.7.6

 

In the above example of N4,  = ker 𝑋, since 

4
1

)1(

1

d
wT

w
w









                

1.7.7

 

1.8  The basic isomorphism and Stanley decomposition of ker 𝑿 

The goal of this is to describe a procedure for obtaining a Stanley decomposition for ker 𝑋 given a Stanley 

decomposition for ker x where X and x are defined as in equations 1.3.3. 

Let 
krrrN ,...,, 21

be an nn  block diagonal nilpotent matrix with upper Jordan blocks of sizes krrr ,..., 21 ,with

krrr ,..., 21 =n.Let ii rrrR  ...21 , 𝑖 =  1,2, … , 𝑘, so that kRRR ,...,, 21 R1, R2 ,…, Rk are the row 

numbers of the bottom of the Jordan blocks. Define a map  

: P ( n
,  n

) → P ( n
,  n

) 

by  

  nvv ,...1 = ),...,(
1 kRR vv  

Clearly   is a homomorphism of modules over P( n
,  ). Let be the restriction of  to ker  , hence  we 

have the following theorem. 

Theorem 1.8.1 The image of  is ker krr
xx ker,...,1   and the mapping: ker X → 

krr
xxX ker...kerker 1   is an isomorphism of modules over the ring ker 𝑋. 
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Proof. Observe that if fker 𝑋 and g   P ( n
,  ), then 

x (fg) = fxg . 

It follows that if g ker 
rx  (for any 𝑟) then, 

rxfg ker :that is ker 
rx is a module over ker x . The rest of the 

proof will be cleared after considering the example  below. 

 





























00

10

00

10

00

10

222N  

In this case if follows that  ( 1 ,…, 6 ) = ( 1 , 2 ,  6), and if v ker x then 1v
x = 0, 2v

x =
 v

1 , 
3v

x  = 0, 4v
x  

= 0, 5v
x = 0, 6v

x = 
v
5 . These conditions imply that; 22v

x  = 0, 42v
x = 0, 

62v
x = 0, so that, 

642

642 kerkerker),,()( xxxvvv  
 

and shows that 
xv ker

 can be constructed from 642 ,, vvv  by the reconstruction. 





























6

4
6,4,2

1

6

4

2

2

)(

v

x

v

x

v

x

vvvmap

v

v

v

 

Thus   is invertible. Since it is a module homomorphism, it is an isomorphism. 

Lemma 1.8.1 If ),(  nph belong to the ker
sr

ND , then the vector polynomial  hsv ,  defined by

1

1

0

},{ )( 





 s

s

R

r

i

i

hs eNhDv  

Belong to ker LN. For instance if  

























000

100

010

00

10

3,2N     Then   5,3,2,2,2,1 2211  RrRrs  
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,

0

0

0},1{

























h

hD

hv

n

  for 
2ker NDh And ,

0

0

2

},2{

























h

hD

hDv

N

Nh for
2ker NDh   

Definition 1.8.1If J is a monomial ideal, the monomials belonging to J are called nonstandard monomials. The 

standard monomials with respect to this ideal are the monomials that do not belong to it. 

The following Lemma forms the basis for obtaining the Stanley decomposition for ker X. 

Lemma 1.8.2 Let R be any subring fo ker X generated by homogenous polynomials I1 ,… Is in 

mxxxX ,..., 21
 which are weight vectors for the triad {X, Y, Z},and let ik

be the vector subspace of 


 

consisting of polynomials homogenous in  
x

degree I and weight k. Let a Groebner basis for the relations of II 

,…, Is , be selected. Then: 

1. The standard monomials in II ,…, Is (with respect to the given Groebner basis ) having degree i(
xin

) 

and weight k form a basis for ik
 

2. If 
Xker

, the standard monomials of degree i form a set of chain tops for the chains in 

).,(  n

ip
 

According to this lemma , the chain tops of P( n
, ) under the triad {X, Y, Z} may be taken to be the 

standard monomials in the basic invariants II ,…, Is , with respect to the given Stanley decomposition of  ker X. 

The chains under the chain tops can be obtained by repeated applications of Y, and a vector space basis for ker 
rX can be obtained by computing the iterates down to depth r.  

Let 𝑓 be a standard monomial of degree 𝑗 (in x ) and let  i
f be a non zero entry in the chain under f, we define g 

Pi (
n
, ) to be a replacement of  i

f  if 
ii gx  is an non zero multiple of  f. 

Lemma 1.8.3 If a vector subspace 
rXV ker  contains a replacement for every chain element to depth r, 

then
rXV ker  

Lemma 1.8.4 Let f be a standard monomial. A replacement for fy r
 can be found by placing r copies of y 

arbitrary in front of the various factors of f as long as the result is not zero. 

Recall that the maximum power of y  that can be applied to an invariant equals the weight (length-1) of the 

invariant. By the above lemma, think of each standard monomial as being written without powers, so that
2

3

3

2 II   

appears as 33222 ,,,, IIIII  . Apply 𝑦 to the last factor until the power of 𝑦 equals its weight , then to the factor 

before that, and so on, stopping when the total number of factors of 𝑦 reaches 𝑟 − 1 (for the construction of 

replacement for the chain elements under a standard monomial to depth 𝑟.) Each replacement constructed in this 

manner contain two pats , a prefix which is itself a standard monomial and contains no 𝑦 and a suffix, which 

begins with the first occurrence of 𝑦.It is clear that no basic invariant of weight zero(length one) can appear in a 

suffix ; we call such invariant trivial. 

The next step is to describe the set of prefixes that can occur with any given suffix. Let 𝑆 be a suffix and let g  

be the standard monomial that results from deleting all occurrences of 𝑦 in  

𝑆; we call g a stripped suffix. Let 𝑓 be any other standard monomial. Then f 𝑆 occurs as a replacement (that is, f 

is a prefix for 𝑆) precisely when the following two conditions are satisfied: 

1. f, g is a standard monomial (so that f, g occurs as a chain top); 
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2. The factors f, g are correctly ordered, equivalently, the final factor of f either precedes or equals the first 

factor of g.  

Let pmmm ,...,, 21  be the leading monomials of the Greobner basis for the basic invariants I1,…,Is given g, the 

condition (1) for fg to be standard is that f not be divisible by any of the monomials ),gcd( gmmm iii  . Let 

the first basic invariant appearing in g be Ii(g). Then the condition (2) of f  g to be correctly ordered, is that 𝑓 not 

divisible by Ii(g) – 1 ,… I1 (ordering the basic invariants by( Ii<Ij  if  j<i ). Therefore the prefix monomials 𝑓 

associated with the given stripped suffix g are the standard monomials with respect to the (new) ideal

11)(1 ,...,,..., IImm gip 
 . Now let 𝑓 be the prefix monomial associated with a given suffix 𝑆, then the 

collection of polynomials which are linear combination of such prefix monomials for a given suffix 𝑆 is a ring, 

called the prefix ring for 𝑆, which has a Stanley decomposition (defined by its standard prefix monomials). This 

Stanley decomposition will ba denoted by 𝑃(𝑆), the Stanley decomposition of the prefix ring for the suffix 𝑆. We 

conclude this section by the following theorem. 

Theorem 1.8.5 A Stanley decomposition for ker 
rX is given by  

))(()(kerker SSPXSDX
s

r  , 

Where: 

1. 𝑆𝐷 (ker X) is the Stanley decomposition of the invariant ring by a particular Groebner basis for the 

relations among the invariants; 

2. The sum ranges over all suffices 𝑆 of depth ≤ 𝑟, suffices being defined as in 1.8.4 using a selected 

ordering of the basic invariants; and P(S) is the Stanley decomposition of the prefix ring for 𝑆 defined 

above, using as standard monomials those determined by the same Groebner basis used to obtain 

𝑆𝐷 (𝑘𝑒𝑟 𝑋) . 

2.RING OF INVARIANTS 

2.1 Introduction 

A single Takens- Bogdanov system has the form 



























y

x

y

x

00

10
   + quadratic terms + cubic terms +    .Let 



















000

100

010

3N  

Our goal is to describe the equivariants (normal form) for the system  

x = 33N x + h.o.t 

Where x  6
 and 










3

3

N

N
N  

2.2 Creating the triads of operators 

Given the nilpotent matrix 𝑁 in the upper Jordan form, the first step is to create 𝑀 and 𝐻, such that 𝑀 is a 

nilpotent matrix with the same block structure as 𝑁 but is modified into a lower Jordan form, 𝐻 is diagonal and 

[𝑁, 𝑀]  =  𝐻, [𝐻, 𝑁]  =  2𝑁, [𝐻, 𝑀]  =  −2𝑁, where [𝐴, 𝐵] is a lie bracket of matrices (and of linear operators in 

genera) should agree with the usual commutator brackets so that [𝐴, 𝐵]  =  𝐴𝐵 –  𝐵𝐴 rather than the negative of 

this. 

“Modified lower Jordan form “means that the only non zero entries of 𝑀 lie in the subdiagonal(just as for a 

nilpotent matrix in lower Jordan form, but the entries are not necessarily equal to one. Here we shall see N3 and 

N33. 
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

















000

100

010

3
N



















020

002

000

3
M





















200

000

002

H  

  In order to give the procedure for obtaining 𝑀 and 𝐻, it is only necessary to tell how to obtain numbers in the 

diagonal of 𝐻 and sub diagonal of 𝑀. 

The construction is done block wise and the entries of 𝐻 are the built first. 

The procedure is as follows [3]: 

1. For a block of size 𝑟 in 𝑁, the diagonal entries in the corresponding block of 𝐻 begin with 𝑟 − 1 and 

decrease by 2 at each step until 1 − 𝑟 is reached at the bottom of the block. 

2. The entries in the sub diagonal of the corresponding block of 𝑀 is partial sums of entries in 𝐻 the first 

entry in M is the first entry in 𝐻, the second is the sum of the first two entries in 𝐻 and so forth until the 

block is completed. Having obtained the triad {𝑁 𝑀 𝐻} in this way, we create two additional triads 

{𝑋, 𝑌, 𝑍} and {𝑥, 𝑦, 𝑧} as follows 

X = M
* 
= M

T
,Y = N

*
 = N

T
,Z = H

T
 = H,x = Dy,  y=D x and  z=Dz 

For N3 



















000

200

020

X         ,          



















010

001

000

Y            ,       





















200

000

002

Z  

 

ZYXXYYX 

























































200

000

002

200

020

000

000

020

002

],[  

 

[Z,X]=ZX-XZ= X2

000

400

040

000

400

000

000

000

040























































 

[Z,Y]=ZY-YZ= Y2

020

002

000

000

002

000

020

000

000



























































 

The second is a triad of differential operators, which also satisfy  

[X, Y] =Z  ,[Z, X] = 2X ,[Z,Y] =  -2Y 

For N3 

x = DY = x1

2X


 +x2

3X


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y = DX= 2x2 2
1






X
x3

2X


 

2
Z

Dz x1 2
1






X
x3

3X


 

The different operator { },, zyx map each vector space of homogenous scalar polynomials
n

jF 1   into itself with 

x and y being nilpotent and z semi simple, the eigen vectors of Z (called weight vectors, but are actually scalar 

functions) are monomials 
mx and the associated eigenvalues (called weights) are ,m , where 

 n 2,1  are the eigenvalues (diagonal elements) of Z, that is Z (
mx ) = ,m mx  

For the case of N3 

)xxx)(22()xxx( 321321 m

3

m

2

m

131

m

3

m

2

m

1 mmZ   

2.3 Generating Jordan chain of y  

The procedure for generating the Jordan chains of y on any given vector space
n

jF 1 ., under the assumption 

that 𝐴 =  𝑁, breaks into the following steps 

1. Construct a weight table for z on
n

jF 1 . 

2. Construct the top weight list derived from the weight table. 

3. Determine the weight vector that fills each position on the top weight list. 

4. The vectors found in the previous steps will be the tops of a set of Jordan chains for the nilpotent 

operator y .Apply y to these top weight vectors to generate the Jordan chains of y . Make a table 

of these chains, in which y  is represented as mapping downwards. 

5. The vectors in the table just describes will be notified Jordan chains for nilpotent operator x =

DNDY  3
, regarded as a mapping downward.  

The steps described above will be discussed at greater length below using the example of N3, later on N33 will be 

discussed. 

Step 1 is to construct a weight table of Z on
n

jF 1 . This is done by making a list of all the multi indices ‘𝑚’ with 

.1 jm (so that x
m

n

jF 1 ) computing ,m for each 𝑚 and the corresponding multiplicity with which 

each eigen value of z occurs. It is only necessary to record only the positive weight because the set of weights is 

symmetrical around zero. 

For the case of N3, with j = 0, we have .22,3 31321 wmmmmm 
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Weight 6 4 2 0 

Multiplication 1 1 2 2 

wmm

mmm





31

321

22

21 = jFor 

1 = jFor 

 

 

m1 
 m2 m3 m4 

0 2 0 0 

2 0 0 4 

0 0 2 -4 

1 1 0 2 

1 0 1 0 

0 1 1 -2 

 

Weight  4 2 0 

Multiplication 1 1 2 

 

wmm

mmm





31

321

22

1

2 = jFor 

 

m1 m2 m3 w 

1 0 0 2 

0 1 0 0 

0 0 1 -2 

 

Weight 2 0 

Multiplication 1 1 

m1 m2 m3 M4 

3 0 0 6 

2 1 0 4 

2 0 1 2 

1 1 1 0 

0 3 0 0 

0 2 1 -2 

1 2 0 2 

1 0 2 -2 

0 0 3 -6 
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Step 2 is to construct top weights list from the weight table as follows. 

For each non negative weight ‘𝑤’ occurring in the weight table, compute the multiplicity of 𝑤 minus multiplicity 

of 𝑤 = 2 (if 𝑤 = 2 does not occur in the weight table its multiplicity is zero). The result is the number of times 

𝑤 occurs in the top weight list. 

The complete result for N3 with 𝑗 =  0 …  3 degree 1 through 3 with vertical line separating the degrees is found 

to be 2| 4 0| 6 2| 

Step 3 is to find weight vector ( or weight polynomial, that is a scalar polynomial that is an eigen vector of Z) 

that fills each position in the top weight list, meaning that it has the required degree and eigen value (weight). 

There are several techniques available to find polynomials that fill the required positions. Two of these 

techniques which we call kernel principle and the multiplication principle are especially important and are 

sufficient to handle every problem. So we limit ourselves to these methods. Other methods are cross – section 

method and the method of tran-vectants. 

2.4 The kernel principle 

To find the weight vectors of a given weight and degree. It suffices to take any basis for the kernel of operator x , 

regarded as an operator on the space spanned by the monomial of the specified weight and degree. 

2.5 Multiplication principle 
Any product of weight polynomial is a weight polynomial; the degree and weight of the product is the sum of 

degree and weight of the factors. 

So we have 



26042
32

 

Where 212
2

1 2, xxxx    

 and  are referred to as basic invarints for N3 obtained by the kernel principle . 

Using the same procedure we can now find the basic invariants for N33. 
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For j=0, 
6

1fh  

1654321  mmmmmm  

wmmmm  6431 2222
 

 

m1 m2 m3 m4 m5 m6 w 

1 0 0 0 0 0 2 

0 1 0 0 0 0 0 

0 0 1 0 0 0 -2 

0 0 0 1 0 0 2 

0 0 0 0 1 0 0 

0 0 0 0 0 1 -2 

 

Weight 2 0 

Multiplication 2 2 

Top weight list 2 2 

wmmmm

mmmmmm





6431

654321

2222

2

1 = jFor 
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m1 
m2 m3 m4 m5 m6 w 

2 0 0 0 0 0 4 

0 2 0 0 0 0 0 

0 0 2 0 0 0 -4 

0 0 0 2 0 0 4 

0 0 0 0 2 0 0 

0 0 0 0 0 2 -4 

1 1 0 0 0 0 2 

1 0 1 0 0 0 0 

1 0 0 1 0 0 4 

1 0 0 0 1 0 2 

1 0 0 0 0 1 0 

 

Weight 4 2 0 

Multiplicity 3 4 7 

Top weight list 4 2 0 

Multiplicity 3 1 3 

 

The following lemma helps us to know that no term has been omitted. 

Lemma 2.1 The dimesions of vector spaces 
n

jf and 
n

jV  are given by the binomial coefficients: 

dim  
n

jf = 






 

j

jn 1
and dim 

n

jV  = 












1

)(

j

jnn
 

Using the kernel and multiplication principle we have the following basic invariants. 

1f =  ,1x
2f =

2
x

, 4f =
2

1y -2
11

zx
, 5f =

2

1y -2
22

zx
, 1221216 zxzxyyf   

2.6 Groebner basis for the invariants 
In this sections, we find the Groebner basis for the basic invariants, associated with the ring of invariants ker x 

for the inner product normal form for the system. 

tohNx ..
33
  

Elimination  

Consider two sets of variables(x1...,xn) and (y1,…, yn). Assume that the power product in the x variable and 

power product in the y variables are ordered by term order Lx, Ly respectively. We define a term order L on the 

power products in the x, y variables as follows. 

Definition 2.1 Eor x1 and x2 power products in x variables and y1 and y2 power products in the y variables we 

define 


2211

YXYX

2121

21

YYandXX

or

XX

Y

x





 

This term order is called an elimination order with the x variables larger than the y variables. 

We will use the theory of elimination to determine. 

I. The kernel  or more precisely basis for the kernel of . 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.13, 2014 

 

146 

II. The image of  or more precisely an algorithm to decide whether a polynomial f is in the image of 
and an algorithm to decide whether  is onto. 

We now have an algorithm for computing a Groebner basis for the Kernel of . We first compute a Greobner 

basis G. 

Let    zyxQfedcbaQ ,,,,,,,:  be the map defined by  

1
xa 

, 2
xb 

, 2121
xyyxc 

,
d

2

1y -2
11

zx
,
e

2

2y -2
22zx
,

f 
12211 2 zxzxyy 
 

We compute the Groebner basis G for the ideal 

122121212121
,2,2  22

2

211

2

1,,, zxzxyyfzxyezxydxyyxcxbxak 
 

with respect to deglex term ordering on x, y, z with 
222111 zyxzyx  and the deglex term ordering 

on fedcba ,,,,, variables with .fedcba   with an elimination order between them with 

zyx ,, variables larger than the fedcba ,,,,, variables. 

1f = 1x - a  , 2f = 
2

x - b , 3f = cxyyx 
221 1 , 4f =

2

1y -2
11

zx - d , 5f =
2

2y  -2
22zx - e

, 

1221216 zxzxyyf  f
 

By collorary 1.6.2 (Buchbergers’ first criterion) 
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By theorem 1.6.2(Buchbergers theorem) 
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                              211
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1222112221222222222165
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112),( eyfyczybz
f
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f

eyfyyzxyzxyzxffS 

Note now that in the last polynomial namely
12221

eyfyczybz   no term is divisible by the leading 

power of the given polynomials and so this procedure cannot continue. 

In the same way we obtain the following remainders. 

223
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1221210121219

2

112

2

81

2
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,2

,

cdbeaf

eyfyczzbyffyczdybyzayf

bdafcyabzzafbfeazbcyabzf




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By Theorem 1.5.1 

We get G= 
1175421

,,,,,,,,, 109863, fffffffffff  

Is a Groebner basis. Therefore the Grobner basis for the ker  is  

G   afedcbak {,,,,,  2 be 2 cd  2
} 

3.0 RECOMMENDATIONS  

It is recommended that more research work be directed to finding the Stanley decomposition for the normal 

form module xker   and the Stanley decomposition of 
rxker given xker . 

4.0CONCLUSION 

The Groebner basis has been found and we observe that: 

1. The method is Local in the sense that the coordinate transformations are generated in the 

neighbourhood of a known solution. 

2. In general the coordinate transformations will be on non linear functions of the dependent 

variable.However the important point is that these coordinate transformation are found by solving a 

sequence of linear problems. 
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