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Abstract 

In this paper, we present the finite element method for the time-space fractional Perona-Malik equation on a finite 

domain    0, 0,T X  . Here the fractional derivative indicates the Caputo derivative for the first-order 

time and space derivatives of orders  0 1  and  0 1  , respectively. The fully discrete scheme is 

considered by using a finite element method and error estimate in 
2L   norm is proved of 

    2 3
O t x

  
   . 

Key words: Perona-Malik equation, finite element methods, fractional time-space derivatives, the left Caputo 
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1. Introduction 

Perona-Malik equation is a technique aiming at reducing the noise in the corrupted images. In the process of 

imaging and transmission, images are often been polluted by a lot of noise, which not only influences the vision 

effect heavily, but also takes some difficulties into image analyzing and understanding. Therefore, image 

smoothing plays an important role in image preprocessing (Feng et al. 2014). The existence and uniqueness are 

proved of solutions of Perona-Malik equation for  initial data in (Greer & Bertozzi  2004) . In (Handlovicova 

& Kriva  2005) are derived and proved the error estimates in the 
2L  norm for the explicit fully discrete 

numerical finite volume scheme for Perona-Malik equation. Since, we see in (Zhao et al. (2013) there exist two 

kinds of the fractional derivatives, left(right) Caputo derivative and left(right) Riemann-Liouville derivative for 

both the time and space derivatives with order  1n n   , for any positive integer n . In this paper, we 

paid attention to study of  Perona-Malik equation by the concept of the Caputo derivative for the first-order time 

and space derivatives of orders  0 1   and  0 1  , respectively on a finite domain. Therefore we 

named the left Caputo time-space fractional Perona-Malik equation on a finite domain. The new equation can be 

analyzed by using the finite element method and we show that the order of the error estimate in 
2L   norm . This 

paper is organized as follows. In section 2 we present the fractional Perona-Malik equation with assumptions, 

properties of this equation and the important lemma of the Gauss function
 
G . The discretization of time-space 

fractional meshes in a finite domain is shown in section 3. In section 4 we present the weak form of a new equation. 

The linear finite element approximation scheme of a new equation is shown in section 5. In section 6 we present 

the error estimate. The conclusions are shown in section 7.       
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2. The Fractional Perona-Malik Equation 

 First, we shall present the Perona-Malik equation has the following form as In (Handlovicova & Kriva  2005): 

       , , , 0, in ,u x t g G u x t u x t
t




     


                                 (1) 

     , 0 , 0, for 0, ,u t u t X t T  
                          

                      (2) 

   00, , for 0, ,u x u x X 
                        

                  (3)                                                  

Where    0, 0,T X  is a finite domain. The functions g and G  are a Lipchitz continuous 

decreasing functions and  G C

   is a smoothing kernel (e.g., Gauss function). In this paper, we paid 

attention to study of  Perona-Malik equation by the concept of the Caputo derivative for the first-order time and 

space derivatives of orders
 
 0 1   and  0 1  , respectively on a finite domain. Therefore we will 

define the left Caputo time-space  fractional Perona-Malik equation on a finite domain with the following new 

form : 
 

       0 0, , , 0, in , 1,..., ,C n n C n

t xD u x t g G u x t D u x t n j 

     
   

          (4) 

     , 0 , 0, for 0, ,n n nu t u t X t T  
                                   

    (5) 

   00, , for 0, .n nu x u x X 
                                     

 (6)                   

Hence, Gauss function  G C

   can be presented as in (Handlovicova et al. 2002):

 

       

     
1

, , for 1,..., ,
n

n

x

n n

n

x

G u x t G x u t d n j    



                      (7) 

Where
 

 0 ,C n

tD u x t
and  0 ,C n

xD u x t
 refer to the left Caputo fractional derivatives, For any positive 

integer m and real numbers  1m m    and  1m m   . We consider the definition of the left 

Caputo fractional derivatives in general case as in (Zhao et al. (2013),           

 

 

              

 
   

 0 1

0

1 1
, , ,

t m
C

t m m

m

d
D y x t y x s ds

m dst s



  

  


                      

and                                    

     

              

 
   

 0 1

0

1 1
, , ,

x m
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x m m

m

d
D y x t y s t ds

m dsx s



  

  

  



Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.13, 2014 

 

105 

 Where , 0    are the orders of Caputo fractional derivatives for the time and the space, respectively. ( )   

is the gamma function. But in this paper we take 1m  , then the orders of Caputo fractional derivatives for the 

time and the space it's become  0 1   and  0 1  , respectively.                                              

2.1 Assumptions                                                                        

 (a) By  we denote a generic constant independent of , , ,...t x n   which attains in general different  

       values in different places.                                                                                                                         

(b) Assume           2, . , , ,n n x n n xx n nu x t L u x t u x t L L      and  , ,t n nu x t   

        2,tt n nu x t L L  .                                                                           

 (c) For simplicity we shall write  , n

n nu x t u .                                                       

2.1  Basic Properties                                                                                          

(1) Since the functions ,g G are locally Lipschitz –continuous with respect ,y z for any constants 

,g GL L


respectively such that 

  
 

(2) We shall denote by ( , ) 
 
is the scalar product in

 
2 ( )L   as in (Debnath & Mikus ski 1990 ) i.e.  

   2, , , ( )u v uv dx u v L


   , 

The norm  
1

2

2

2

( )
, , ( )

L
u u u u L


   and the seminorm  

                                          

1
2

1
0

2

( )
( )

H
u u dx





 
  
 


. 

Next, in the following lemma we sketch how bounds of the functions g and G  on a finite domain.   Lemma 

2.1.  Since the functions , ( )g G C

   are satisfy the property (1) and (7) on a finite domain, for 

1, ,n j   and 1, ,r n  , gives   

(1)     n

g G ng G u CL L x
    ,        

(2)     
1 1

n n
r

h g G r

r r

g G u CL L x


 

     . 

Proof. First, from (5), this observation immediately yields  

                                                                                                    (                               (8)  
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By using (8) and the property (1) then 

(1)    ( , ) (0, ) ( , ) (0, )n n n g n n ng G u x t g G u t L G u x t G u t             

                                                             ( , )g n nL G u x t    

                                                                

   
1

,
n

n

x

g n n

x

L G x u t d   



   ,                                                                 

From (7), assumption (a) and property (1), then 

                                                       
1( )

,
n

n

x

g n n nL x
L u x t G x 




                 

                                                    
   1g n n n nL G x x G x x                 

                                                     
1g G n n n nL L x x x x


                 

                                          g G nL L x


  . 

(2) Similar for the proof of part (1).                          

  

 

3.  Discretization of Time-Space Fractional Meshes in a Finite Domain 

     Define the time and space meshes, respectively as follows:  

(A)    Let       1 1

1

0, , , , for 1,..., ,
n

n n k k

k

T t t t t n j 



       

1, 1,...,n n nt t t n j     , 1, 1,...,k k kt t t k n     and  
1
max n

n j
t t

 
   .     

 (B)  Let      1 1

1

0, , , , for 1,..., ,
n

n n r r

r

X x x t t n j 



    
      

1, 1,...,n n nx x x n j     ,  1, 1,...,r r rx x x r n   
 
and

1
max n

n j
x x

 
   .            

 

4. The Weak Form
 

we shall introduce a weak form of the linear finite element approximation for  the left Caputo time-space 

fractional Perona-Malik equation on a finite domain. By multiplying the equations (4)-(6) in both sides by an 

arbitrary
 

1

0 ( )nv H  and using the integral by part to find regular exact solution
 

1

0 ( )nu H  such that:  

   0 0, , 0, for 1,..., ,C n n C n n

t g G n xD u v L L x D u v n j


     
  

1

0 ( )nv H               (9) 

   0 , ( ),n n

nu v x v                                                                                (10)        
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5. The Linear Finite Element Approximation Scheme 

We say that , 1,...,n n

h hu V n j  is the piecewise linear finite element approximate solution of the left 

Caputo time-space fractional Perona-Malik equation on a finite domain (4)-(6) such that 

   1 1

1 1

1 1
( , ) ( , ) 0,

(1 ) (1 )

n n
n k k n n r r n

k h h h g G r r h h h

k r

b u u v L L x b u u v



 

 

 

     
   

  n n

h hv V   (11)
 

 

   0 , ( ),n n

h h n hu v x v  ,                                                                        (12)    

Where                                      
             

                    

rP  denote the set of piecewise polynomials of degree not exceeding r and   

   

        
 

1

1
, 1,...,

k

k

t

n

k

k t n

ds
b k n

t t s




 
 

   and  

 
1

1
, 1,...,

r

r

x

n

r

r x n

ds
b r n

x x s




 
 

 . 

Now, we present the error estimation of the finite element method.  

 

6. The Error Estimate 

First, we introduce the two definitions which will be used frequently in the following  theorem.     Definition 6.1 

(Debnath & Mikus ski 1990 ). In a Hilbert space , 1,..., ,nV n j then Cauchy-Schwartz inequality is holds 

                                           (13)                                                                    

 Definition 6.2 (Quarteroni & Valli 1997). The two norms and on nv  are equivalent if there exist 

two positive constants 1 2and   such that    

               
1 2

n n nv v v  
     

for each , , 1,...,n nu v n j .                (14) 

Lemma 6.1 (Jun & Tang 2013).  Suppose that positives 0,1,..., ,n n j  satisfy                   

                    1 1 1

2

( ) , 1,..., ,
n

n n n n

n n k k k

k

b b b b n j    



                       

Where ,   are positives. Then                                     

                           1 , 1,...,n

n b n j     . 

Theorem 6.1 . Let  
nu  be the exact solution satisfy (9)-(10) and 

n

hu  be the piecewise linear finite element 

approximate satisfy (11)-(12). For  0 1  ,  0 1 
 
and  by using assumption (a),  the error 
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estimation is given by,  

                                    2

2 3

( )
, 1,..., .n n

h L
u u t x n j

 


 


        

Proof.  First, by subtracting Equation (9) from (11). setting ,n n n

h hv v V   we get          

 1

0

1

1
( , )

(1 )

n
n k k C n n

k h h t h

k

b u u D u v







  
 


                                

         

 1

0

1

1
( , ) 0.

(1 )

n
n r r C n n

g G r r h h n x h

r

L L x b u u x D u v









    
 

                 (15) 

By adding and subtracting the following terms 

 1

1

1
( , )

(1 )

n
n k k n

k h

k

b u u v







 

   and    1

1

1
( , )

(1 )

n
n r r n

g G r r h

r

L L x b u u v









  
 

  

We set 
n n n

he u u 
 

then the Equation (15) become 

 1

1

1
( , )

(1 )

n
n k k n

k h

k

b e e v







 

  1

0

1

1
( , )

(1 )

n
n k k C n n

k t h

k

b u u D u v







  
 

  

                     

 1

1

1
( , )

(1 )

n
n r r n

g G r r h

r

L L x b e e v









   
 


          

              

 1

0

1

1
( , ) 0.

(1 )

n
n r r C n n

g G r r n x h

r

L L x b u u x D u v









     
 

            (16)      

 

 Over  1,..., for 0,nk n t T  , by adding and subtracting the term 
1

1

1

n
n k

k

k

b e 





  then we get 

  1 1 1 0 1

1 1 0 1

1 1 1 1 2

n n n n n
n k n k n k n k n n n n n k

k k k k n k k

k k k k k

b e b e b e b e b e b e b b e   

  

    

              

                                                         0 1

1 1

2

n
n n n n n k

n k k

k

b e b e b b e 





   
      

    (17)  

 Now, we substitute (17) in (16) and multiplying the both sides by the quantity (1 )  , then 

    ( , )n n n

n hb e v  1

1

(1 )
( , )

(1 )

n
n r r n

g G r r h

r

L L x b e e v











 
    

 
  

0

1 ( , )n n

hb e v  

   

   1 1

1 0

2 1

1
( , ) (1 )( , )

(1 )

n n
n n k n n k k C n n

k k h k t h

k k

b b e v b u u D u v
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                 1

0

1

1
(1 )( , )

(1 )

n
n r r C n n

g G r r n x h

r

L L x b u u x D u v


 






      
 

 .        (18)                                                        

Choosing  
n n

hv e , by using Cauchy-Schwartz inequality (13), from the property (2) and the definition  6.2 , 

we get 

   
2

2

( )

n n

n L
b e


 

2 2

1

( ) ( )
1

(1 )

(1 )

n
n r r n

g G r r L L
r

L L x b e e e









 


 
   

 
  

                  
2 2

0

1 ( ) ( )

n n

L L
b e e

 


2 2

1

1 ( ) ( )
2

n
n n k n

k k L L
k

b b e e

  


    

                    2

2

1

0 ( )
1 ( )

1
(1 )

(1 )

n
n k k C n n

k t L
k L

b u u D u e





 

   
 

                            

         

  2

2

1

0 ( )
1 ( )

1
(1 )

(1 )

n
n r r C n n

g G r r n x L
r L

L L x b u u x D u e


 





 

     
 

  , 

We divide the last equation by the quantity 
2 ( )

n

L
e


, by using assumption (a) and since the term 

2 2

1

( ) ( )
1

(1 )
0

(1 )

n
n r r n

g G r r L L
r

L L x b e e e









 


 
  

 
 , we obtain  

  
2 ( )

n n

n L
b e




  
2

0

1 ( )

n

L
b e




2

1

1 ( )
2

n
n n k

k k L
k

b b e 

 



  

 

              

 
2

1

0

1 ( )

1
(1 )

(1 )

n
n k k C n

k t

k L

b u u D u




 

   
 

                            

               
2

1

0

1 ( )

1
(1 )

(1 )

n
n r r C n

g G r r n x

r L

L L x b u u x D u


 




 

     
 

  , 

by using lemma 6.1, we have  

2 ( )

n

L
e




2

0

( )L
e


    

2

1

0

11 ( )

1 1
(1 )

(1 )

n
n k k C n

k tn
k L

b u u D u
b






 


   

 
  

        

 
2

1

0

1 ( )

1
(1 )

(1 )

n
n r r C n

g G r r n x

r L

L L x b u u x D u


 




 


      

  
 ,            (19) 

we can solve the quantity 
1

nb , as follows 

    

 

     
1

1

0
0

1 1 1

0 1

1

1 1 1

( 0) 1 1

t
t

n n nn

t n t

t s t t t tds
b

t T Tt s

  

  

  
    

  
   
 , then 
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1 1

1 0 1

1 1
n

n n

T T
b t t t t

 


 


 

  
.  

Then (19) become  

 
2 ( )

n

L
e




2

0

( )L
e


    

2

1

0

1 ( )

1
(1 )

(1 )

n
n k k C n

k t

k L

T b u u D u




 

   
 

  

         

 
2

1

0

1 ( )

1
(1 )

(1 )

n
n r r C n

g G r r n x

r L

T L L x b u u x D u


 




 

     
 

 .          (20) 

First, we will estimate the term
2

0

( )L
e


, by subtracting (10) from (12) and taking  

0n n

hv v e   we get    

                                                        
0 0( , ) 0e e  ,  

by using Cauchy-Schwartz inequality (13), gives                                                                                               

2

2
0

( )
0

L
e


 . 

Equation (20) become  

2 ( )

n

L
e


    

2

1

0

1 ( )

(1)

1
(1 )

(1 )

n
n k k C n

k t

k L

A

T b u u D u




 

   
 




 

        

 
2

1

0

1 ( )

(2)

1
(1 )

(1 )

n
n r r C n

g G r r n x

r L

A

T L L x b u u x D u


 




 

     
 




.           (21) 

To estimate the term (1)A  , we use  assumption (a), (b), we get   

 
        21 1

1

1
( )

1 1 ( ) 1 1
(1) 1

1 1

k n

k n

t tk kn
n

t

k kt tn n L

u u
A T ds u ds

tt s t s
 


 

 







   

     
    

        
        21 1

1
( )

1 1 1 1
1

1 1

k n

k n

t tn
n

t t

k t tn n L

T u ds u ds
t s t s

 


 
 




   
    

            

        
        21 1 ( )

1 1 1 1
1

1 1

n n

n n

t t

n

t t

t tn n L

T u ds u ds
t s t s

 


 
  

   
    

    

       

  2
1 ( )

1n

n

t n

t t
n

nt Ln

u u
T t ds

tt s


 


 


  

              

 
2

1

( )

1n

n

t

n

n tt L
t n

T t ds u
t s






 


  



Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.13, 2014 

 

111 

                  2

1 1

1 ( )

n

n n n n n tt L
T t t t t t u

  

 
       

                 2

2

( )1
max n

n tt Ln j
T t u



 
   

                 2

2

( ( ))

n

tt L L
t u









   

                
2

t





  .                                                                              (22) 

To estimate the term (2)A  , we use assumption (a), (c), we get   

 

 
  21 1

1

1
( )

1 1 1 1
(2) (1 )

(1 ) (1 )

r n

r n

r rx xn
n

g G r n x

r rx xn n L

u u
A T L L x ds x u ds

xx s x s
  

 
 

 







     

     
  

        

    21 1
1

( )

(1 ) 1 1

(1 )

r n

r n

x xn
n

g G r x n x

r x xn n L

T L L x u ds x u ds
x s x s

  





 




 
  

   
    

         

    21 1 ( )

1 1n n

n n

x x

n

n x n x

x xn n L

x u ds x u ds
x s x s

 


  

  
 

     

          
  2

1

2

( )

1n

n

x n

x x
n

nx Ln

u u
x ds

xx s




 


 


  

          
 

2

1

2

( )

1n

n

x

n

n xx L
x n

x ds u
x s







 


     

               2

2 1 1

1 ( )

n

n n n n n xx L
x x x x x u

 


 

 
       

           2

3

( )1
max n

n xx Ln j
x u






 
        

           2

3

( ( ))

n

xx L L
x u









   

          
3

x





      .                                                                               (23) 

Combining (22) and (23) into (21) then the proof is complete.                

 

 

7.  Conclusion   

In this paper, we paid attention to study of  Perona-Malik equation by the concept of the Caputo derivative for the 

first-order time and space derivatives of orders  0 1 
 
and  0 1  , respectively on a finite domain. 

Therefore we defined the left Caputo time-space fractional Perona-Malik equation on a finite domain. The new 

equation can be solved analytically by using the finite element method and we show that the order of the error  
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estimate in 
2L   norm is proved of     2 3

O t x
  

   . 
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