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Abstract 

Ranks and subdegrees can be computed using combinatorial arguments, the Cauchy-Frobenius lemma and use of 

the concept of marks. However the concept of Marks has been given very little attention. In this paper we will 

apply the concept of marks to compute the ranks and subdegrees of the symmetric group 𝑆𝑛(𝑛 = 5,6,7) and 

𝑆𝑛(𝑛 = 6,7,8) acting on ordered pairs and triples respectively. 
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1. Introduction  

Let G be transitive on a set X and let Gx be the stabilizer in G of a point x X .  The orbits of 𝐺𝑥 on X are 

known as suborbits of G.  The number of these suborbits is known as the rank of G on X and the lengths of the 

suborbits is known as the subdegrees of G on X. If G acts on X transitively, then its action is equivalent to the 

action on the cosets of 𝐻 = 𝐺𝑥, while that of H on any suborbit is equivalent to its action on the cosets of some 

subgroup F of H. 

 

2. Notations and Preliminary Results 

 

Notation 2.1 

In this paper, 𝑋[𝑟], [𝑎1, 𝑎2, … , 𝑎𝑛], 𝑅(𝐺)and m(A, B, G) denote the set of all ordered r-element subsets from the 

set X, ordered r-element subset of X the rank of a permutation Group G and the mark of subgroup A in the 

representation of G on the cosets of subgroup B respectively. 

Theorem 2.1(Rose [5]) 

Let G act on the set X, and let x X .  Then 

 |𝑂𝑟𝑏𝐺 (𝑥)| = |𝐺: 𝑆𝑡𝑎𝑏𝐺(𝑥)|. 

 

Definition 2.2(Ivanov [2]) 

If 𝐺𝑗 ≤ 𝐺𝑖 ≤ 𝐺 and (𝐺𝑗1
, 𝐺𝑗2

, … , 𝐺𝑗𝑛
 is a complete set of conjugacy class representatives of subgroups of iG  that 

are conjugate to jG  in G , then 

   𝑚(𝐺𝑗, 𝐺𝑖 , 𝐺) = ∑ |𝑁𝐺(𝐺𝑗𝑘
): 𝑁𝐺𝑖

(𝐺𝑗𝑘
)|𝑛

𝑘=1 . 

Definition 2.3 

Let 𝐻1, 𝐻2, … , 𝐻𝑡  be a set of representatives of all distinct conjugacy classes of subgroups of H in G, ordered 

such that |𝐻1| ≤ |𝐻2| ≤ ⋯ ≤ |𝐻𝑡| = |𝐻| Form a matrix 𝑀 = (𝑚𝑖𝑗), where 

𝑚𝑖𝑗 = 𝑚(𝐻𝑗 , 𝐻𝑖 , 𝐻). We call M the table of marks of H;  

If we denote by Qi the number of suborbits ∆𝑗 on which the action of H is equivalent to its action on the cosets of 

𝐻𝑖(𝑖 = 1,2, … , 𝑡), by computing all Qi we get the subdegrees of G on X. 

Theorem 2.4 (Ivanov [2]) 

The numbers 𝑄𝑖  satisfy the system of linear equations 

∑ 𝑄𝑖𝑚(𝐻𝑗 , 𝐻𝑖 , 𝐻𝑡
𝑖=𝑗 ) = 𝑚(𝐻𝐽, 𝐻, 𝐺), for each 𝑗 = 1,2, … , 𝑡. 

Theorem 2.5 (Rimberia [4]) 
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Let G be the symmetric group 𝑆𝑛, then G acts transitively on 𝑋[𝑟]. 

Theorem 2.6(Rimberia [4]) 

Let 𝐺 = 𝑆𝑛 be the symmetric group on the set 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛}. The stabilizer of an ordered subset 

[𝑎1, 𝑎2, … , 𝑎𝑟] in G is isomorphic to 𝑆𝑛−𝑟 , the symmetric group on the set {𝑎𝑟+1, 𝑎𝑟+2, … , 𝑎𝑛}.  

3. Ranks And Subdegrees Of The Symmetric Group 𝑺𝒏 (N = 5, 6, 7) Acting On 𝑿[𝟐] 

3.1 Rank and Subdegrees of 𝑺𝟓 acting on 𝑿[𝟐] 

We first construct the table of marks of H = 𝑆𝑡𝑎𝑏𝐺{[1,2]}, where 𝐺 = 𝑆5. Then by Theorem 2.6, H is isomorphic 

to 𝑆3, the symmetric group on the set {3,4,5}. We will use GAP software to determine the conjugacy classes of 

subgroups and construct the table of marks by using the algorithims shown on the Appendix 1. The conjugacy 

classes of subgroups of 𝑆3 are as shown below and its table of marks is as shown in Table 1 

i) H1 Identity 

ii) H2 3 conjugate subgroups of order 2 

iii) H3 A normal cyclic group of order 3 

iv) H4 H  

For 𝐹 ≤ 𝐻, with the order they are represented in Table 1, the values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are displayed in 

Table 3.1.1. 

Table 3.1.1: Marks of F in G(/H), where 𝑮 = 𝑺𝟓 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐]} 

F  H1 H2 H3 H4 

m(F)  20 6 2 2 

Let 𝑄 =  (𝑄1, 𝑄2, 𝑄3, 𝑄4) and the matrix obtained from Table 1 be M. By Theorem 2.3 and using Table 1 we 

obtain the following system of linear equations, 

6𝑄1  +  3𝑄2  +  2𝑄3 + 𝑄4  =  20 
              𝑄2                  +    𝑄4   =   6 
                              2𝑄3  +   𝑄4  =   2 

                                                                 𝑄4   =   2…………..(1) 
 

On solving (1), we get Q = (1, 4, 0, 2). 

Therefore the subdegrees of 𝐺 acting on 𝑋[2] are as shown in Table 3.1.2. 

Table 3.1 2: subdegrees of 𝑺𝟓  acting on 𝑿[𝟐] 

Suborbit length  1 3 6 

No. of  suborbits  2 4 1 

From Table 3.1.2 we obtain, the rank of 𝐺, 𝑅(𝐺) =  1 + 4 + 2 = 7. 

We now apply the same procedure for the other actions.  

3.2. Rank and Subdegrees of 𝑮 = 𝑺𝟔 acting on 𝑿[𝟐] 

Let 𝐻 = StabG{[1,2]}, where 𝐺 = 𝑆6.  By Theorem 3.1.1 H is isomorphic to 𝑆4  which has 11 conjugacy classes 

of subgroups. These are; 

i). H1 identity.  

ii). H2  conjugate subgroups of order 2 generated by permutations of the form (ab)(cd).  

iii). H3  conjugate subgroups of order 2 generated by permutations of the form (ab).  

iv). H4 conjugate cyclic subgroups of order 3. 

v). H5  a normal subgroups of order 4 generated by permutations of the form (ab)(cd) and (ac)bd).  

vi). H6  3 conjugate subgroups of order 4 generated by permutations of the form (ab)(cd) and (cd).  

vii). H7 3 conjugate cyclic subgroups of order 4. 

viii). H8  4 conjugate subgroups of order 6 isomorphic to 𝑆3 generated by permutations of the form (abc) 

and (cd). 

ix). H9 3 conjugate subgroups of order 8 generated by permutations of the form (ab)(cd), (ac)(bd) and 

(bd).  
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x). H10  a normal subgroup of order 12 isomorphic to 𝐴4 

xi). H11 𝑆4  

 Its table of marks is as shown Table 2. 

For 𝐹 ≤ 𝐻, the values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are displayed in Table 3. 

Table 3.2.1: Marks of F in G(/H), where 𝑮 = 𝑺𝟔 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐]} 

F H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 

m(F)     30    12    2    6    2    2      2    6    2    2   2 

Let 𝑄 =  (𝑄1, 𝑄2, … , 𝑄11) By Theorem 2.3 and using Table 3 we obtain the following system of linear equations 

in matrix form, 

24  12  12   8   6   6   6   4   3   2   1         Q1              30 

  0   2     0   0   0   0   2   2   1   0   1         Q2              12        

  0   0    4    0   2   6   2   0   3   2   1         Q3               2 

  0   0    0    2   0   0   0   1   0   2   1         Q4               6        

  0   0    0    0   2   0   0   0   1   0   1         Q5               2     …………(2) 

  0   0    0    0   0   6   0   0   3   2   1         Q6        =     2                   

  0   0    0    0   0   0   2   0   1   0   1         Q7               2 

  0   0    0    0   0   0   0   1   0   0   1         Q8               6             

  0   0    0    0   0   0   0   0   1   0   1         Q9                2 

  0   0    0    0   0   0   0   0   0   2   1         Q10              2     

  0   0    0    0   0   0   0   0   0   0   1         Q11              2 

 

On solving (2), we obtain 𝑄 =  (0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2). 

Therefore subdegrees of 𝑆6 acting on 𝑋[2] are as shown in Table 3.2.2. 

Table 3.2.2: Subdegrees of 𝑮 = 𝑺𝟔 acting on 𝑿[𝟐] 

Suborbit length 1 4 12 

No. of  suborbits 2 4 1 

 

From Table 4 we see that, the rank of 𝐺, 𝑅(𝐺)  =  2 + 4 + 1 = 7. 

3.3 Rank and Subdegrees of 𝑮 = 𝑺𝟕 acting on 𝑿[𝟐] 

Let 𝐻 = StabG{[1,2]}, where 𝐺 = 𝑆7. By Theorem 2.6 H is isomorphic to 𝑆5  which has 19 conjugacy classes of 

subgroups (See Appendix 3). Its table of marks is as shown by Table 3. 

For 𝐹 ≤ 𝐻, with the order they are represented in Table 3, the values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are displayed in 

Table 3.3.1. 

Table 3.3.1: Marks of F in G(/H) where 𝑮 = 𝑺𝟕 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐]} 

F H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

𝒎(𝑭) 42 20 6 12 6 6 6 2 12 2 

 

F  H11 H12 H13 H14 H15 H16 H17 H18 H19 

𝒎(𝑭)  2 6 2 6 2 2 6 2 2 

Let 𝑄 =  (𝑄1, 𝑄2, … , 𝑄19). By Theorem 2.3 and using Table 5, we obtain the following system of linear 

equations in matrix form, 
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  120  60  60  40  30  30  30  24  20  20  20  15  12  10  10   6   5   2   1       Q1                       42              

         0    6   0    0    0    0    6    0    6    2    0    3    0    0    4    0   3   0   1            Q2                 20     

         0    0   4    0    2    6    2    0    0    0    4    3    4    2    2    2   1   2   1         .               6 

         0    0   0    4    0    0    0    0    2    2    2    0    0    4    1    0   2   2   1       .         12 

         0    0   0    0    2    0    0    0    0    0    0    1    0    0    0    2   1   0   1          .                          6      

         0    0   0    0    0    6    0    0    0    0    0    3    0    2    0    0   1   2   1               6 

         0    0   0    0    0    0    2    0    0    0    0    1    0    0    2    0   1   0   1               6  ……(3)  

         0    0   0    0    0    0    0    4    0    0    0    0    2    0    0    1   0   2   1               2 

         0    0   0    0    0    0    0    0    2    0    0    0    0    0    1    0   2   0   1       =       12 

         0    0   0    0    0    0    0    0    0    2    0    0    0    0    1    0   0   0   1              2 

         0    0   0    0    0    0    0    0    0    0    2    0    0    0    1    0   0   2   1                2 

         0    0   0    0    0    0    0    0    0    0    0    1    0    0    0    0   1   0   1               6 

         0    0   0    0    0    0    0    0    0    0    0    0    2    0    0    1   0   2   1               2 

         0    0   0    0    0    0    0    0    0    0    0    0    0    2    0    0   1   2   1               6 

         0    0   0    0    0    0    0    0    0    0    0    0    0    0    1    0   0   0   1                2   

         0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    1   0   0   1                 2 

         0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0   1   0   1                6 

         0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0   0   2   1        Q18                2 

         0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0   0   0   1         Q19                2  

 

On solving (3) we obtain 𝑄 =  (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2). 

Therefore, the Subdegrees of 𝐺 acting on 𝑋[2] are as shown in Table 3.3.2. 

Table 3.3.2: Subdegrees of 𝑮 = 𝑺𝟕 acting on 𝑿[𝟐] 

Suborbit length 1 5 20 

No. of  suborbits 2 4 1 

 

From Table 6 we see that the Rank of 𝐺, 𝑅(𝐺)  =  2 + 4 + 1 = 7. 

 

4. Ranks and Subdegrees Of 𝑺𝒏 (𝒏 = 𝟔, 𝟕, 𝟖) Acting On 𝑿[𝟑] 

 

4.1 Rank and Subdegrees of 𝑮 = 𝑺𝟔 acting on 𝑿[𝟑] 

Let H = 𝑆𝑡𝑎𝑏𝐺{[1,2,3]}, where 𝐺 = 𝑆6. By Theorem 2.6, H is isomorphic to 𝑆3,  the symmetric group on the set    

{4, 5, 6}. Its table of marks is as shown by Table 1.   

For 𝐹 ≤ 𝐻, with the order they are represented in Table 1, the values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are displayed in 

Table 4.1.1.  

Table 4.1.1: Marks of F in G(/H), where 𝑮 = 𝑺𝟔 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐, 𝟑]} 

F H1 H2 H3 H4 

m(F) 120 24 6 6 

Let 𝑄 = (𝑄1, 𝑄2, 𝑄3, 𝑄4). By Theorem 2.3 and using Table 4.1.1, we obtain the following system of linear 

equations.  

6𝑄1  +  3𝑄2  +  2𝑄3 + 𝑄4  =  120 
              𝑄2                +  𝑄4     =   24 

                           2𝑄3  +   𝑄4  = 6 
                                                                               𝑄4 =  6………………………(4) 
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On solving (4) we obtain 𝑄 = (10,18,0,6). 

Therefore the subdegrees of 𝐺 acting on 𝑋[3] are as shown in Table 4.1.2. 

Table4.1.2: subdegrees of 𝑮 = 𝑺𝟔 acting on 𝑿[𝟑] 

Suborbit length 1 3 6 

No. of  suborbits 6 18 10 

From Table 8 we see that the rank of 𝐺, 𝑅(𝐺) = 10 + 18 + 6 = 34. 

4.2. Rank and Subdegrees of 𝑮 = 𝑺𝟕 acting on 𝑿[𝟑] 

Let H = 𝑆𝑡𝑎𝑏𝐺{[1,2,3]}, where 𝐺 = 𝑆7.  By Theorem 2.6  H is isomorphic to 𝑆4, the symmetric group on the set 

{4,5,6,7}. Its table of marks is as shown by Table 2.  

For𝐹 ≤ 𝐻, with the order they are represented in Table 2. The values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are displayed in 

Table 4.2.1. 

Table 4.2.1:  Marks of F in G (/H), where 𝑮 = 𝑺𝟕 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐, 𝟑]} 

F H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 

m(F) 210 60 6 24 6 6 6 24 6 6 6 

Let 𝑄 =  (𝑄1, 𝑄2, … , 𝑄11). By Theorem 2.3 and using Table 4.2.1, we obtain the following system of linear 

equations in matrix form. 

 

 

24  12  12   8   6   6   6   4   3   2   1         Q1             210  

  0   2    0    0   0   0   2   2   1   0   1         Q2              60        

  0   0    4    0   2   6   2   0   3   2   1         Q3               6 

  0   0    0    2   0   0   0   1   0   2   1         Q4              24        

  0   0    0    0   2   0   0   0   1   0   1         Q5               6   

  0   0    0    0   0   6   0   0   3   2   1         Q6        =     6      …………(5)             

  0   0    0    0   0   0   2   0   1   0   1         Q7               6 

  0   0    0    0   0   0   0   1   0   0   1         Q8              24                 

  0   0    0    0   0   0   0   0   1   0   1         Q9                6 

  0   0    0    0   0   0   0   0   0   2   1         Q10              6     

  0   0    0    0   0   0   0   0   0   0   1         Q11              6 

 

On solving (5) we obtain 𝑄 = ( 1, 9, 0, 0, 0, 0, 0, 18, 0, 0, 6). 

Therefore the subdegrees of G acting on 𝑋[3] are as shown in Table 4.2.2. 

Table 4.2.2: Subdegrees of 𝑮 = 𝑺𝟕 acting on 𝑿[𝟑] 

Suborbit length 1 4 12 24 

No. of  suborbits 6 18 9 1 

 

From Table 4.2.2 we see that the rank of 𝐺, 𝑅(𝐺)  =  6 + 18 + 9 + 1 = 34. 

4.3 Rank and Subdegrees of 𝑮 = 𝑺𝟖 acting on 𝑿[𝟑] 

Let H = 𝑆𝑡𝑎𝑏𝐺{[1,2,3]}, where 𝐺 = 𝑆8. By Theorem 2.6 H is isomorphic to 𝑆5,  the symmetric group on the 

set {4,5,6,7}. Its table of marks is as shown by Table 3. 

For F≤ 𝐻, with the order they are represented in Table 3, the values of 𝑚(𝐹, 𝐻, 𝐺) = 𝑚(𝐹) are as displayed in 

Table 4.3.1. 

Table 4.3.1: Marks of F in G(/H), where 𝑮 = 𝑺𝟖 and H = 𝑺𝒕𝒂𝒃𝑮{[𝟏, 𝟐, 𝟑]} 
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F H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

𝒎(𝑭) 336 120 24 60 24 24 24 6 60 6 

 

F  H11 H12 H13 H14 H15 H16 H17 H18 H19 

𝒎(𝑭)  6 24 6 24 6 6 24 6 6 

 

Let 𝑄 =  (𝑄1, 𝑄2, … , 𝑄19). By Theorem 2.3 and using Table 4.3.1, we obtain the following system of linear 

equations in matrix form, 

 

  120  60  60  40  30  30  30  24  20  20  20  15  12  10  10   6   5   2   1        Q1                     336          

         0    6   0    0    0    0    6    0    6     2    0    3    0    0    4   0   3   0   1             Q2                120     

         0    0   4    0    2    6    2    0    0     0    4    3    4    2    2   2   1   2   1              24 

         0    0   0    4    0    0    0    0    2     2    2    0    0    4    1   0   2   2   1             60 

         0    0   0    0    2    0    0    0    0     0    0    1    0    0    0   2   1   0   1                 24      

         0    0   0    0    0    6    0    0    0     0    0    3    0    2    0   0   1   2   1                24 

         0    0   0    0    0    0    2    0    0     0    0    1    0    0    2   0   1   0   1                24  

         0    0   0    0    0    0    0    4    0     0    0    0    2    0    0   1   0   2   1                 6  …(6) 

         0    0   0    0    0    0    0    0    2     0    0    0    0    0    1   0   2   0   1       =        60 

         0    0   0    0    0    0    0    0    0     2    0    0    0    0    1   0   0   0   1               6 

         0    0   0    0    0    0    0    0    0     0    2    0    0    0    1   0   0   2   1                 6 

         0    0   0    0    0    0    0    0    0     0    0    1    0    0    0   0   1   0   1              24 

         0    0   0    0    0    0    0    0    0     0    0    0    2    0    0   1   0   2   1                6 

         0    0   0    0    0    0    0    0    0     0    0    0    0    2    0   0   1   2   1              24 

         0    0   0    0    0    0    0    0    0     0    0    0    0    0    1   0   0   0   1                 6   

         0    0   0    0    0    0    0    0    0     0    0    0    0    0    0   1   0   0   1                 6 

         0    0   0    0    0    0    0    0    0     0    0    0    0    0    0   0   1   0   1               24 

         0    0   0    0    0    0    0    0    0     0    0    0    0    0    0   0   0   2   1        Q18                6 

         0    0   0    0    0    0    0    0    0     0    0    0    0    0    0   0   0   0   1         Q19                6  

 

On solving (6) we obtain 𝑄 = (0, 1, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 18, 0, 6) 

Therefore the subdegrees of 𝑆8 acting on 𝑋[3] are as shown in the Table 4.3.2.  

Table 4.3.2: Subdegrees of 𝑮 = 𝑺𝟖 acting on 𝑿[𝟑] 

Suborbit length 1 5 20 60 

No. of  suborbits 6 18 9 1 

From Table 12, we see that rank of 𝐺, 𝑅(𝐺)  =  6 + 18 + 9 + 1 = 34 
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*****APPENDICES*****  

Appendix 1: GAP algorithims used to generate conjugacy classes and table of marks of 𝐻 = 𝑆3 
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To generate 𝐻 = 𝑆3 the symmetric group on the set {3,4,5 }on the GAP, we have used its generators; (3,4,5) 

and(3,4) and the command; 

gap> H:=Group([(3,4,5),(3,4)]); 
Group([ (3,5), (4,5) ]) 
To get the conjugacy classes of subgroups of H. here we use the command; 

gap> ConjugacyClassesSubgroups(H); 
[ Group( () )^G, Group( [ (4,5) ] )^G, Group( [ (3,5,4) ] )^G, Group( [ (3,5,4), 
(4,5) ] )^G ] 
To construct the table of marks of H, we use the command; 
gap> Tom1:=TableOfMarks(H); 
TableOfMarks( Sym( [ 3 .. 5 ] ) ) 
To view it we use the command; 
gap> Display(Tom1); 
1:  6 
2:  3 1 
3:  2 . 2 

4:  1 1 1 1……………Table 1: Table of marks of 𝑺𝟑 

To get the sizes number of conjugate subgroups in each conjugcy class of subgroups we use the following 

command; 
gap> LengthsTom(Tom1); 
[ 1, 3, 1, 1 ] 
To get the orders of the conjugcy classes of subgroups we use the following command; 
gap> OrdersTom(Tom1); 
[ 1, 2, 3, 6 ] 
 

Let the matrix obtained from ex pressing T in matrix form be M. to get M we use the command; 

gap> M:=MatTom(Tom1); 
[ [ 6, 0, 0, 0 ], [ 3, 1, 0, 0 ], [ 2, 0, 2, 0 ], [ 1, 1, 1, 1 ] ] 

To solve the system of linear equation, we use the command;  

gap> SolutionMat(M,[20,6,2,2]);  
[ 1, 4, 0, 2 ] 
For the other cases the similar algorithims were used to generate the other results. 

Appendix 2: GAP algorithims used to generate conjugacy classes and table of marks of 𝐻 = 𝑆4 

𝑆4 can he generated  by (ab) and (abcd). To generate 𝐻 = 𝑆4 the symmetric group on the set {3,4,5,6}on the 

GAP, we have used its generators; (3,4,5,6) and(3,4) and the command; 

gap> H:=Group([(3,4,5,6),(3,4)]); 
Group([ (3,6), (4,6), (5,6) ]) 

We now use a similar procedure as in Apenix 1. 

gap> ConjugacyClassesSubgroups(H); 
gap> ConjugacyClassesSubgroups(H); 
[ Group( () )^G, Group( [ (3,4)(5,6) ] )^G, Group( [ (5,6) ] )^G, Group( [ (4,6,5) 
] )^G, 
  Group( [ (3,5)(4,6), (3,4)(5,6) ] )^G, Group( [ (5,6), (3,4)(5,6) ] )^G, Group( [ 
(3,5,4,6), (3,4)(5,6) ] )^G, 
  Group( [ (5,6), (4,6,5) ] )^G, Group( [ (3,5)(4,6), (3,4)(5,6), (5,6) ] )^G, 
  Group( [ (3,5)(4,6), (3,4)(5,6), (4,6,5) ] )^G, Group( [ (3,5)(4,6), (3,4)(5,6), 
(4,6,5), (5,6) ] )^G ] 
gap> Tom2:=TableOfMarks(H); 
TableOfMarks( Sym( [ 3 .. 6 ] ) ) 
 
 
gap> Display(Tom2); 
 1:  24 
 2:  12 4 
 3:  12 . 2 
 4:   8 . . 2 
 5:   6 6 . . 6 
 6:   6 2 2 . . 2 
 7:   6 2 . . . . 2 
 8:   4 . 2 1 . . . 1 
 9:   3 3 1 . 3 1 1 . 1 
10:   2 2 . 2 2 . . . . 2 

11:   1 1 1 1 1 1 1 1 1 1 1…….Table 2: Table of marks of 𝑺𝟒 
gap> LengthsTom(Tom2); 
[ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ] 
gap> OrdersTom(Tom2); 
[ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ] 
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Appendix 3: GAP algorithims used to generate conjugacy classes and table of marks of 𝑯 = 𝑺𝟓 

𝑆4 can he generated  by (ab) and (abcd,e). To generate 𝐻 = 𝑆5 the symmetric group on the set {3,4,5,6,7}on the 

GAP, we have used its generators; (3,4,5,6,7) and(3,4) using the command; 

gap> H:=Group([(3,4,5,6,7),(3,4)]); 
Group([ (3,7), (4,7), (5,7), (6,7) ]) 

gap> ConjugacyClassesSubgroups(H); 
[ Group( () )^G, Group( [ (6,7) ] )^G, Group( [ (4,5)(6,7) ] )^G, Group( [ (5,6,7) 
] )^G, Group( [ (4,5)(6,7), (4,6)(5,7) ] )^G, 
  Group( [ (4,5)(6,7), (4,6,5,7) ] )^G, Group( [ (6,7), (4,5) ] )^G, Group( [ 
(3,4,5,6,7) ] )^G, Group( [ (5,6,7), (6,7) ] )^G, 
  Group( [ (5,6,7), (3,4)(6,7) ] )^G, Group( [ (6,7), (3,4,5) ] )^G, Group( [ 
(6,7), (4,5), (4,6)(5,7) ] )^G, 
  Group( [ (3,4,5,6,7), (4,7)(5,6) ] )^G, Group( [ (4,5)(6,7), (4,6)(5,7), (5,6,7) 
] )^G, Group( [ (6,7), (3,4,5), (4,5) ] )^G, 
  Group( [ (3,4,5,6,7), (4,7)(5,6), (4,5,7,6) ] )^G, Group( [ (4,7)(5,6), 
(4,5)(6,7), (5,6,7), (6,7) ] )^G, 
  Group( [ (3,4,5,6,7), (5,6,7) ] )^G, SymmetricGroup( [ 3 .. 7 ] )^G ] 
gap> Tom3:=TableOfMarks(H); 
TableOfMarks( Sym( [ 3 .. 7 ] ) ) 
gap> Display(T); 
 1:  120 
 2:   60 6 
 3:   60 . 4 
 4:   40 . . 4 
 5:   30 . 6 . 6 
 6:   30 . 2 . . 2 
 7:   30 6 2 . . . 2 
 8:   24 . . . . . . 4 
 9:   20 6 . 2 . . . . 2 
10:   20 . 4 2 . . . . . 2 
11:   20 2 . 2 . . . . . . 2 
12:   15 3 3 . 3 1 1 . . . . 1 
13:   12 . 4 . . . . 2 . . . . 2 
14:   10 . 2 4 2 . . . . . . . . 2 
15:   10 4 2 1 . . 2 . 1 1 1 . . . 1 
16:    6 . 2 . . 2 . 1 . . . . 1 . . 1 
17:    5 3 1 2 1 1 1 . 2 . . 1 . 1 . . 1 
18:    2 . 2 2 2 . . 2 . 2 . . 2 2 . . . 2 

19:    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ………………Table 3: Table of marks of 𝑺𝟓 

gap> LengthsTom(Tom3); 
[ 1, 10, 15, 10, 5, 15, 15, 6, 10, 10, 10, 15, 6, 5, 10, 6, 5, 1, 1 ] 
gap> OrdersTom(Tom3); 
[ 1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 10, 12, 12, 20, 24, 60, 120  

 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event 

management.  The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting 

platform.   

Prospective authors of journals can find the submission instruction on the 

following page: http://www.iiste.org/journals/  All the journals articles are available 

online to the readers all over the world without financial, legal, or technical barriers 

other than those inseparable from gaining access to the internet itself.  Paper version 

of the journals is also available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/

