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Abstract 

Dependence between risks reduces the benefits of diversification. Modern portfolio theory is based on 

correlation as a measure of dependence while the criterion presented here is based on the copula theory as a 

measure of the intrinsic relatedness of different risks classes. The dependencies are examined by fitting copulas, 

estimating the dependence parameters and lastly using distance matrices to cluster the similar risks together. The 

study derives its data from the general insurance business in Kenya. The motivation of the study was driven by 

the fact that insurance companies had collapsed in the past, one reason being the type of business classes they 

engage in. It is therefore important to understand the dependencies between risks for better risk management. 

Five major clusters stood out each with peculiar characteristics. The first cluster constituted the lines with a high 

probability of a huge claim amount: Engineering, Liability, Fire industrial and Theft. The second contains lines 

with moderate claim amounts as compared to the previous cluster but are rather slightly more frequent: Fire 

domestic, Personal accident, Workman’s compensation, Motor commercial and motor private. In the following 

cluster we have the less popular lines under the umbrella of the miscellaneous class. Marine and Transit which is 

completely erratic clusters singly while the Aviation line whose main business is exported to foreign countries 

forming the last cluster. This will assist the companies seeking diversification of their risk portfolio and also 

entry into re-insurance treaties as a criterion for the determination of forwarding proportions is proposed here. 

Keywords: Copula, Measures of dependence, Cluster, Distances, Lines of business  

 

1. Introduction 

Once a risk is insured, it is reasonable that the standards for classifying that risk can and should be different from 

those of marketing and/or underwriting. The variables comprising a classification system should be chosen so 

that the following guidelines or conditions in addition, of course, to any legal requirements regarding fair 

discrimination, are generally adhered to in keeping with Walter (1981) who writes on risk classification 

standards. The whole modern portfolio theory is based on correlation (see Burgi, Dacorogna, and Iles (2008)) as 

a measure of dependence but the criterion used here is based on the copula theory which is handy when 

correlation assumptions are violated.   

Frees and Valdez (1997) introduces actuaries to the concept of ‘‘copulas’’, as a tool for understanding 

relationships among multivariate outcomes. The work explores some of the practical applications, including 

estimation of joint life mortality and multiple decrement models and showed how to fit copulas and hence 

described their usefulness by pricing a reinsurance contract and estimating expenses for pre-specified losses. 

Motivated by the fact that most of the Economic Capital assessment models encounter difficulties when trying to 

incorporate the dependence of claim costs between different Lines of Business (LOBs), Faivre (2003) suggested 

the use of copula theory as a solution to this problem. Other useful literature include: Embrechts, et al. (2002), 

Frees and Wang (2004), Pettere and Kollo (2006), Wu, Valdez and Sherris (2006), Gatzert, Schmeiser and 

Schuckmann, (2008) and Filler, Odening, Okhrin and Xu (2009). Faivre (2003) use Copulas to model the overall 

distribution of claim costs of four-Lines of Business company. The work utilized different copulas to show that 
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the dependence structure has a substantial impact on the Economic Capital of that firm. Mung’atu, Mwalili and 

Weke (2011) extended to cover lines of business with sub-classes by employing the Hierarchical Archimedean 

Copulas.  This work proposes the use of the copula theory to model the dependence between business classes 

and later clustering them into larger homogeneous clusters. The paper is presented in the various sections: 

introduction; methodology which constitutes: the copula function, distances, clustering, methodology, empirical 

results; conclusion and recommendations. 

1.1.  Measures of dependence 

Measures of dependence summarize a complicated dependence structure in a single value, in the bivariate case. 

The three important concepts in measuring dependence include: the linear correlation, rank correlation and the 

coefficients of tail dependence. The last two provide perhaps the best alternatives to the linear correlation 

coefficient as a measure of dependence for non-elliptical distributions. Copulas capture the properties of the joint 

distributions since they are invariant, that is, they remain unchanged under strictly increasing transformations of 

the random variables. 

 

2. Methodology 

2.1. The copula function 

The term copula was first used in the work of Sklar (1959) and is derived from the Latin word copulare, meaning 

to connect or to join and has recently found an extensive acceptance in risk management, financial and insurance 

applications. The main purpose of copulas is to describe the interrelation of several random variables. A copula is 

a function that joins or couples a multivariate distribution function to univariate marginal distribution functions 

and so a copula is a multivariate distribution function. The operational definition of a copula is a multivariate 

distribution function defined on the unit cube  0,1
n
, with uniformly distributed marginals (see Nelsen, 2006). 

Definition 1: A two-dimensional copula function (or a 2-copula) is defined as a binary function 2:[0,1] [0,1]C  , 

which satisfies the following three properties: 

                 
1 2 1 2

1 1 2 2 2 2 1, 2 2 1 1 1

1.  ( ,0) (0, ) 0 for any [0,1].

2.  ( ,1) (1, )  for any [0,1].

3.  For all 0 1 and 0 1

([ , ] [ , ]) ( , ) ( ) ( , ) ( , ) 0.

C u C u u

C u C u u u

u u v v

C u v u v C u v C u v C u v C u v

  

  

     

     

   (1) 

From the properties 1-3, when the arguments u and v are univariate distribution functions F1 and F2, the copula 

function C(F1; F2) is a legitimate bivariate distribution function with marginals F1 and F2. Conversely, any 

bivariate distribution function H(x; y) with continuous marginals F1 and F2 admits a unique representation as a 

copula function: 

                      1 1

1 2( , ) ( ), ( )C u v H F u F v                 (2) 

In general, an n-dimensional Copula is any function C:    0,1 0,1
n
  such that: 

1. C  is grounded and n-increasing  

2. C  has margins , 1,2,..., ,kC k n  which satisfy ( )kC u u  for all   in 0,1 .u  

It is also important to note that for any n-copula, 3n  , each k-dimensional margin of C is a k-copula.   
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2.1.1.  Archimedean copulas 

Definition 2: Let    : 0,1 0,    be a continuous, strictly decreasing and convex function such that  1 0   

and  0   . The function φ has an inverse    1 : 0, 0,1    with the same properties like φ, except that 

 1 0 1   and  1 0   . 

 

Definition 3: The function    : 0,1 0,1
n

C   defined by  

                        1

1 1, , n nC u u u u                              (3) 

is called n-dimensional Archimedean copula if and only if 1   is completely monotonic on  0, , that is 

                     11 0     for 
k

k

k
u k

u


  


          (4) 

The function   is called the generator of the copula. We assume that the generator   has only one parameter, 

denoted as  . The three often used Archimedean copulas include: Clayton, Gumbel, and Frank. 

 

The Clayton copula: This is an asymmetric Archimedean copula, exhibiting greater dependence in the negative 

tail than in the positive. This copula is given by    
1

, max 1 ,0C u v u v
 




       and its generator is 

   
1

1x x 




   where    1, \ 0    . The relationship between Kendall's tau   and the Clayton copula 

parameter   is given by 2 1    . 

 

The Gumbel copula: also referred to as the Gumbel-Hougard copula, is an asymmetric Archimedean copula, 

exhibiting greater dependence in the positive tail than in the negative. This copula is given by 

    
1

( , ) exp ln lnC u v u v
 


     
 

 and its generator is  ( ) lnx x


   where  1,   . The 

relationship between Kendall's tau  and the Gumbel copula parameter   is given by 1 1   . 

 

The Frank copula: The Frank copula is a symmetric Archimedean copula given by 

 
  1 11

, ln 1
1

u ve e
C u v

e

 

 

 



   
   

  

and its generator is 
exp( ) 1

( ) ln
exp( ) 1

x
x






  
   

  
 where 

   , \ 0    . The relationship between Kendall's tau   and the Frank copula parameter   is given by 

 1 1 1

4

D  



   
 where  1

0

1

1t

t
D dt

e







  is a Debye function of the first kind. Figure 1 shows the tail 

dependencies for the three Archimedean copulas. The Clayton is strong on the lower tail dependence; Frank has 

no tail dependence while the Gumbel is good for modelling the upper tail dependence.  
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(a)                         (b)                        (c) 

Figure 1: Perspective plots for the (a) Clayton, (b) Frank and (c) Gumbel copulas 

 

2.2. Distances 

Distance is a numerical description of how far apart objects are. When distances are calculated between various 

objects, this culminates into a distance matrix. 

Definition 4: A metric on a set X is a function, called the distance function or simply distance,    

:d X X    (where  is the set of real numbers). For all x, y, z in X, this function is required to satisfy the 

following conditions: 

1. d(x, y) ≥ 0   (non-negativity)  

2. d(x, y) = 0   if and only if   x = y   (identity of indiscernible).  

Condition 1 and 2 together produce positive definiteness  

3. d(x, y) = d(y, x)   (symmetry)  

4. d(x, z) ≤ d(x, y) + d(y, z)   (subadditivity/triangle inequality).  

 

2.2.1. Euclidean distances 

The well-known distance is the Euclidean distance which is defined as 

2( , ) , ( ) ( ) ( )x y x y
T

i i

i

d x y x y x y       (with x  being the norm of x, and 
ix  and 

iy  being the 

i-th element of x and y). The Euclidean distances were used as the criterion to cluster the general insurance risk 

classes with respect to the spearman’s rho, Kendall’s tau and the Tail dependence.   

 

2.2.2. Manhattan distances 

This is also known as City Block Distance, boxcar distance, absolute value distance, rectilinear distance, 

Minkowski's L1 distance, or taxi cab metric and it is given by 
n

i i

i

d   x y where n is the number of variables, 

and ix  and iy  are the values of the i-th variable, at points X and Y respectively. 

2.3. Clustering 

Clustering is a technique to group objects based on distance or similarity. It is therefore the assignment, grouping 

or segmenting of a set of observations, individuals, cases, or data rows into subsets, called clusters, so that 

observations in the same cluster are similar in some sense. The cardinal objective of clustering is to measure the 

degree of similarity (or dissimilarity) between the individual objects being clustered. In this work we utilize the 
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agglomerative approach under the Hierarchical clustering. The algorithm of agglomerative approach to compute 

hierarchical clustering is as follows: 

(i) Convert object features to distance matrix, in our case we have the matrix of the rank correlation 

coefficients and the tail dependence. 

(ii) Set each object as a cluster, thus for the twelve general insurance lines of business, we will have twelve 

clusters in the beginning. 

(iii) Iterate until the number of cluster is one, that is, by merging the two closest clusters and continuously 

updating the distance matrix. 

2.3.1. Cophenetic correlation coefficient 

After the formation of the clusters, the question now is how good is the clustering? There is an index called 

Cross Correlation Coefficient or Cophenetic Correlation Coefficient that shows the goodness of fit of our 

clustering similar to the Correlation Coefficient of regression. To compute the Cophenetic Correlation 

Coefficient of hierarchical clustering, we need a distance matrix and a Cophenetic matrix. To obtain Cophenetic 

matrix, we need to fill the distance matrix with the minimum merging distance that we obtain in the previous 

cluster objects. Cophenetic Correlation Coefficient is simply correlation coefficient between distance matrix and 

Cophenetic matrix. 

 

2.4. The Clustering Algorithm 

This is section presents the proposed algorithm for grouping business classes into various lines. For the different 

business classes follow the algorithm below to cluster them into their respective lines (or departments): 

(i) Fit the Copula function (see section 2.1) for each pair of business classes; 

(ii) Estimate the dependence parameter,  ; 

(iii) Calculate the measures of dependence, the rank correlation (Spearman’s rho or the Kendall’s tau) and 

the tail dependence, using the relationships in sub-section 2.1.1;  

(iv) Compare closeness of these measures to each other by calculating appropriate distances culminating to 

a distance matrix (see section 2.2); and 

(v) Cluster the business classes into the various homogeneous lines or departments using the minimum 

distance approach (see section 2.3). 

This resulted in the highly related classes being in one cluster with the less dependent classes being in different 

clusters. The different clusters of business form a diversified portfolio together (with each cluster having 

homogeneous lines within). The investment should not pick only those business classes/lines within one cluster 

as this will reduce the diversification benefits. 

 

3. Empirical Results 

Data that were collected from thirty-five insurance companies who are members of the Insurance Regulatory 

Authority (IRA) of Kenya and participating in some class of general insurance for the period 2006 to 2009 were 

analysed in this section.  
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Figure 2: Densities for the twelve classes of business in general insurance, Kenya 

A general business insurer, in Kenya, can be registered to transact any or all the twelve classes of general 

insurance business namely: aviation, engineering, fire-domestic, fire-industrial, liability, marine, motor-private, 

motor-commercial, personal accident, theft, workman’s compensation and miscellaneous. Their densities are 

shown in Figure 2 which are positively skewed as one would expect with any theoretical loss distribution. 

We now compare the clustering based on the Euclidean distances and the Manhattan distances. We suggest the 

use of the cophenetic correlation coefficient in choosing between the best distances to use. The Euclidean 

distance performs better than the Manhattan distances, as shown in Table 1 as it consistently produced stronger 

correlations than for the Manhattan distances, and so we will base our clustering on the Euclidean distances.  

Table 1: Comparison between the performance of the Euclidean and the Manhattan distance 

 

 Distance   

 Measure   

 Manhattan    Euclidean   

 Cophenetic 

correlation  Significance   

 Cophenetic 

correlation  Significance   

 Kendall’s tau    0.6580    <0.01    0.9029    <0.01   

 Spearman’s Rho    0.7041    <0.01    0.7850   <0.01   

 Tail index    0.6511   <0.01    0.9067    <0.01   

Table 2: The dependence parameter,  , estimated for each pair of general insurance classes 

   Av Eng F D F I Liab M & T M P M C P A Theft W C 

Eng 5.814 

          F D 6.025 6.696 

         F I 6.173 6.906 6.859 

        Liab 5.770 6.508 6.535 7.097 

       M & T 5.574 6.171 6.293 6.654 6.580 

      M P 6.961 7.212 8.219 8.033 7.643 7.085 

     M C 8.068 8.280 8.764 8.945 8.438 8.112 10.102 

    P A 6.153 6.815 7.124 7.079 6.832 6.668 8.210 8.814 

   Theft 6.451 6.957 7.053 7.322 6.911 6.712 7.936 8.536 6.913 

  W C 6.243 6.976 7.265 7.338 7.170 6.727 8.296 9.260 7.408 7.187 

 Misc 5.496 6.398 6.566 6.410 6.664 5.917 7.474 7.864 6.669 6.568 6.681 
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KEY: Av - Aviation, Eng - Engineering, F D - Fire Domestic, F I - Fire Industrial, Liab - Liability, M & T - 

Marine and Transit, M P - Motor Private, M C - Motor Commercial, P A - Personal Accident, W C - Workman’s 

Compensation, Misc - Miscellaneous. 

Table 3: Tail index calculated from the fitted dependence parameter,  , for each pair of general insurance 

classes 

   Av Eng F D F I Liab M & T M P M C P A Theft W C 

Eng 0.873 

          F D 0.878 0.891 

         F I 0.881 0.894 0.894 

        Liab 0.872 0.888 0.888 0.897 

       M & T 0.868 0.881 0.884 0.890 0.889 

      M P 0.895 0.899 0.912 0.910 0.905 0.897 

     M C 0.910 0.913 0.918 0.919 0.914 0.911 0.929 

    P A 0.881 0.893 0.898 0.897 0.893 0.890 0.912 0.918 

   Theft 0.887 0.895 0.897 0.901 0.895 0.891 0.909 0.915 0.895 

  W C 0.883 0.896 0.900 0.901 0.899 0.891 0.913 0.922 0.902 0.899 

 Misc 0.866 0.886 0.873 0.886 0.890 0.876 0.903 0.908 0.890 0.889 0.891 

Table 4: Euclidean distances from Tail index for each pair of general insurance classes 

  Av Eng F D F I Liab M & T Misc M C M P P A Theft 

Eng 0.183 

          F D 0.178 0.156 

         F I 0.178 0.151 0.151 

        Liab 0.187 0.159 0.160 0.146 

       M & T 0.189 0.169 0.167 0.159 0.159 

      Misc 0.192 0.164 0.181 0.166 0.157 0.176 

     M C 0.176 0.151 0.141 0.132 0.145 0.160 0.167 

    M P 0.175 0.153 0.134 0.133 0.144 0.161 0.157 0.105 

   P A 0.178 0.153 0.146 0.146 0.152 0.159 0.160 0.134 0.130 

  Theft 0.171 0.150 0.148 0.141 0.150 0.158 0.163 0.137 0.135 0.149 

 W C 0.179 0.151 0.144 0.141 0.145 0.159 0.161 0.125 0.127 0.139 0.144 

Table 5: Kendall’s tau calculated from the fitted dependence parameter, , for each pair of general insurance 

classes 

   Av Eng F D F I Liab M & T M P M C P A Theft W C 

Eng 0.828 

          F D 0.834 0.851 

         F I 0.838 0.855 0.854 

        Liab 0.827 0.846 0.847 0.859 

       M & T 0.821 0.838 0.841 0.850 0.848 

      M P 0.856 0.861 0.878 0.876 0.869 0.859 

     M C 0.876 0.879 0.886 0.888 0.881 0.877 0.901 

    P A 0.837 0.853 0.860 0.859 0.854 0.850 0.878 0.887 

   Theft 0.845 0.856 0.858 0.863 0.855 0.851 0.874 0.883 0.855 

  W C 0.840 0.857 0.862 0.864 0.861 0.851 0.879 0.892 0.865 0.861 

 Misc 0.818 0.844 0.848 0.844 0.850 0.831 0.866 0.873 0.850 0.848 0.850 
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Table 6: Euclidean distances from the Kendall’s tau for each pair of general insurance classes 

  Av Eng F D F I Liab M & T Misc M C M P P A Theft 

Eng 0.249 

          F D 0.244 0.212 

         F I 0.241 0.207 0.207 

        Liab 0.253 0.218 0.217 0.200 

       M & T 0.256 0.230 0.228 0.217 0.217 

      Misc 0.260 0.222 0.218 0.225 0.214 0.239 

     M C 0.237 0.205 0.189 0.181 0.198 0.217 0.221 

    M P 0.237 0.209 0.181 0.183 0.197 0.219 0.209 0.146 

   P A 0.242 0.210 0.199 0.200 0.208 0.217 0.216 0.183 0.179 

  Theft 0.232 0.205 0.202 0.194 0.206 0.216 0.220 0.187 0.185 0.205 

 W C 0.242 0.206 0.196 0.193 0.200 0.217 0.218 0.171 0.175 0.191 0.197 

Table 7: Spearman’s rho calculated from the fitted dependence parameter,  , for each pair of general insurance 

classes 

   Av Eng F D F I Liab M & T M P M C P A Theft W C 

Eng 0.958 

          F D 0.960 0.968 

         F I 0.963 0.970 0.969 

        Liab 0.957 0.966 0.966 0.971 

       M & T 0.954 0.962 0.964 0.968 0.967 

      M P 0.970 0.972 0.978 0.978 0.975 0.971 

     M C 0.978 0.979 0.981 0.982 0.980 0.978 0.986 

    P A 0.962 0.969 0.971 0.971 0.969 0.968 0.978 0.981 

   Theft 0.965 0.970 0.971 0.973 0.970 0.968 0.977 0.980 0.970 

  W C 0.963 0.970 0.973 0.973 0.972 0.968 0.979 0.983 0.974 0.972 

 Misc 0.953 0.965 0.967 0.965 0.968 0.959 0.974 0.977 0.968 0.967 0.968 

Table 8:  Euclidean distances from the spearman’s rho for each pair of general insurance 

  Av Eng F D F I Liab M & T Misc M C M P P A Theft 

Eng 0.064 

          F D 0.063 0.046 

         F I 0.062 0.044 0.044 

        Liab 0.067 0.048 0.048 0.042 

       M & T 0.067 0.054 0.054 0.049 0.048 

      Misc 0.069 0.051 0.049 0.053 0.047 0.058 

     M C 0.072 0.053 0.046 0.042 0.049 0.060 0.060 

    M P 0.066 0.049 0.038 0.037 0.044 0.055 0.051 0.025 

   P A 0.063 0.045 0.041 0.041 0.044 0.049 0.049 0.042 0.036 

  Theft 0.059 0.044 0.042 0.038 0.044 0.049 0.051 0.043 0.038 0.043 

 W C 0.064 0.045 0.040 0.038 0.042 0.050 0.050 0.037 0.033 0.037 0.040 

 

The estimated dependence parameter,  , in Table 2 was used to calculate Table 3 whose distances were 

calculated and recorded in Table 4. The larger the dependence parameter, , the stronger the dependence 
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between pairs of business lines and this leads to a high dependence measure value. Table 4 produce the clusters 

in Figure 3 which relates to the tail index. A similar approach is done on the Kendall’s tau and the Spearman’s 

rho with Tables 6 and 8 leading to Figures 4 and 5 respectively. The three dependence measures are consistent 

since they produce the same clustering structure as evident from Figures 3, 4 and 5.  

 

This work proposes the use of the upper tail dependence derived from the dependence parameter in determining 

the retention limits for a re-insurance arrangement. Though the dependence is not the only factor to consider for 

such re-insurance treaties (Straub 1997) the forwarding proportions should be somewhere proportional to 1/(1 − 

Tail index). This will ensure that for highly dependent risks in the upper tail will forward higher proportion to the 

re-insurer and vice versa. The behaviour of this proposed quantity is found in Figure 

6.  

Figure 3: The general insurance classes clustered by the Euclidean distances for the Tail index 

 

 

Figure 4: The general insurance classes clustered by the Euclidean distances for the Kendall’s tau 
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Figure 5: The general insurance classes clustered by the Euclidean distances for the Spearman’s rho 

 

 

Figure 6: The proposed re-insurance proportions in relation to the tail index 

The criteria based on the three dependence measures arrived at five major clusters each with peculiar 

characteristics. The first cluster involves the business classes/lines with a high probability of a huge claim 

amount lines: Engineering, Liability, Fire industrial and Theft. The second contain lines with moderate claim 

amounts as compared to the previous cluster but rather slightly more frequent: Fire domestic, Personal accident, 

Workman’s compensation, Motor commercial and motor private. In the following cluster we have the less 

popular lines under the umbrella of the miscellaneous class. Marine and Transit which is completely erratic 

clusters alone while the Aviation line whose main business is exported to foreign countries forming the last 

cluster. When setting up or restructuring a company it is advisable to select the lines of business from different 

clusters.  This results in a diversified portfolio hence the company enjoys diversification benefits. 

4. Conclusion and Recommendations 

4.1. Conclusion 

The choice of distances for clustering is very crucial as they can vary depending on the problem at hand. 

Comparison of the results obtained by different cluster analysis methods result different dendrograms and that 

the cluster analysis should be used. This problem can be surmounted by comparing the cophenetic distances to 

the initial distances computed as suggested in this manuscript. Just as we suggested, an insurance company can 

employ the use of tail dependence index to approximate the proportion of retentions in the case of reinsurance 

arrangements. Finally, it can be observed that with the dendrograms one can choose the number of efficient 

divisions in the company by just moving up or down the dendrogram tree. 
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4.2. Recommendations 

We recommend to all investors establishing general insurance business to first consider the dependence structure 

so as to arrive at a diversified portfolio in order to benefit from diversification benefits. The business classes that 

form their own individual clusters like the Aviation, Miscellaneous, Marine and Transit should be given special 

attention when a company engages in them as they present peculiar characteristics within themselves. We do also 

recommend that the insurance regulator uses the methods outlined in this study in order to understand the 

dependencies between insurance classes for advisory purposes. This is due to the fact that there may be no single 

insurance company that operates all the insurance classes for it to have sufficient data. Finally, the proposed 

algorithm is long and tedious but this can be made easier by having dedicated computer software. 
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