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Abstract 

This paper examines the transmission dynamics of avian influenza. A nonlinear mathematical model for the 

problem is formulated and analysed. For the prevalence of the disease and the ease of analysis, we considered 

the model in proportions of susceptible, infectious, isolated and recovered compartments. The basic reproduction 

number was computed and used to prove the stability of the disease free equilibrium states. It is proved that the 

basic reproduction number is a decreasing function of the culling rate of infected birds. It is further proved that 

the disease free equilibrium state is locally asymptotically stable whenever the basic reproduction number is less 

than unity.  
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1.0:  Introduction 

Avian influenza or “bird-flu” (also called influenza A virus) is a virus that infects wild birds (such as ducks, 

gulls and shore birds) and domestic poultry (such as chickens, turkey, ducks and geese). In recent times the term 

bird-flu has been used to describe the H5N1 avian influenza virus that occurs mainly in birds, and can be deadly 

to them (Alexander, 2000; Arora and Arora, 2008) 

 

Infected birds shed influenza virus in their saliva, nasal secretions and faeces. Susceptible birds become infected 

when they have contact with contaminated secretions or excretions with surfaces that are contaminated by 

infected birds (De Jong and Hien, 2006). Fecal – to - oral transmission is the most common mode of spread 

between birds. 

Highly pathogenic avian influenza can be spread from birds to people as a result of extensive direct contact with 

nasal discharge or fecal droppings in infected birds (The Writing Committee of the World Health Org. (WHO) 

Consultation on Human Influenza A/H5, 2006). Highly pathogenic avian influenza virus subtype H5N1 has 

severely affected poultry populations in Southeast Asia since 2003. Initial outbreaks were confined to Indonesia, 

Vietnam, Thailand, Cambodia and China. However from late July 2005, the highly pathogenic virus spread in a 

north east direction, causing out breaks in wild birds and poultry in eastern, central and western Russia, 

Mongolia and Central Kazakhstan (The Writing Committee of the World Health Org. (WHO) Consultation on 

Human Influenza A/H5, 2006). 

 

In February, 2006, highly pathogenic avian influenza virus of the H5N1 subtype was detected in chickens in 

Kaduna State in Northern Nigeria, the first African country reporting a confirmed highly pathogenic avian 

influenza (H5N1) outbreak (Monne et al, 2008; Fusaro et al, 2009; WHO, 2006). According to Monne et al 

(2008), by the end of February, 2006, local laboratory tests had detected the virus in seven contiguous states in 

the north and central parts of the country (Kaduna, Kano, Plateau, Katsina, Bauchi, Yobe and Nasarawa) and the 

Federal Capital Territory of Abuja.  

 

Since avian influenza virus is highly contagious and easily spread, the most common method of control is the 

culling of the infected flocks. Another method is the quarantine of affected areas until the disease is no longer 

present. While vaccination is possible and has been tested on a small scale, it is not widely considered a viable 

control method. The virus can also be killed by common disinfectants or heat (WHO, 2004; Le Menach et al, 

2006). Persons recovering from natural infection according to Todar (2008) acquire some resistance to re 

infection with the particular antigenic strain. Bodewes et al (2010) also asserted that the induction of antibodies 
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of proper specificity will afford strain – specific protection and this strain specific immunity can be very long 

lasting.  

 

A number of mathematical models both deterministic and stochastic have been used to predict the world wide 

spread of pandemic influenza and for comparing interventions aimed at preventing and controlling avian 

influenza. See for example, Ferguson et al, (2005); Derouich and Boutayeb (2008) and Srinivasa (2008). 

 

Okosun and Yusuf (2007); Iwani et al(2007); Derouich and Bontayeb (2008) presented various mathematical 

models for avian influenza (H5N1). These models does not explicitly take into account any control measures. 

 

Using the data from the avian influenza epidemic in the Netherlands, LeMenach et al (2006) analysed a spartial 

farm-based model, which treats poultry farms as units, and found that an immediate depopulation of infected 

flock following an accurate and quick diagnosis would have a greater impact than simply depopulating 

surrounding flocks. 

 

 Ferguson et al (2005) used a simulation model of influenza transmission in Southeast Asia to evaluate the 

potential effectiveness of targeted mass prophylactic use of antiviral drugs as a containment strategy.  

 

On the same note, Longini et al (2005) used a stochastic influenza simulation model for rural Southeast Asia to 

investigate the effectiveness of targeted antiviral prophylaxis, quarantine and pre – vaccination in containing an 

emerging influenza strain at the source. 

 

Although many of mathematical modelling studies tend to emphasize the use of pharmaceutical interventions, it 

could be useful to carry out modelling studies that focus on non – pharmaceutical intervention such as culling of 

infected birds and isolation of humans with symptoms.  

 

The main aim of this study is to  build on the model by Okosun and Yusuf (2007), by incorporating the dynamics 

of wild and domestic birds, culling of infected birds and the isolation of infected individuals with avian influenza 

strain. The paper is organized as follows, in Section 2, we derive a model consisting of ordinary differential 

equations (ODE) that describes the interaction between birds and human population and the underlying 

assumptions. In Section 3, we compute the basic reproduction number and use it to establish the local stability of 

the disease free equilibrium states. Our conclusions are discussed in Section 4. 

 

 

2.0  Model Formulation 

In describing the new model we subdivide the total avian (birds) population at time t, denoted by 𝑁𝐵(𝑡) into 

susceptible wild birds, 𝑆𝑊(𝑡), susceptible domestic birds, 𝑆𝐷(𝑡),  infected wild birds, 𝐼𝑊(𝑡), and infected 

domestic birds, 𝐼𝐷(𝑡), so that 

𝑁𝐵(𝑡) =  𝑆𝑊(𝑡) +  𝑆𝐷(𝑡) +  𝐼𝑊(𝑡) + 𝐼𝐷(𝑡). 
 

 In the human population, we assume that humans infected with avian influenza cannot infect susceptible 

humans. Thus the total human population at time t, denoted by 𝑁𝐻(𝑡) is sub-divided into susceptible humans, 

𝑆𝐻(𝑡), infected humans, 𝐼𝐻(𝑡),  isolated infected humans, 𝑄𝐻(𝑡), and recovered humans, 𝑅𝐻(𝑡), so that 

 

    𝑁𝐻(𝑡) =  𝑆𝐻(𝑡) + 𝐼𝐻(𝑡) +  𝑄𝐻(𝑡) +  𝑅𝐻(𝑡) 
 

 

The variables and parameters used in the model are defined in Table 1. 
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Table 1: Variables and Parameters used in the model and their description 

Variable/Parameter   Description 

𝑁𝑊(𝑡)     Total number of wild birds at time t 

𝑁𝐷(𝑡)    Total number of domestic birds at time t 

𝑁𝐻(𝑡)     Total number of humans at time t 

𝑆𝑊(𝑡)     Total number of Susceptible wild birds at time t 

𝐼𝑊(𝑡)        Total number of Infected wild birds at time t 

𝑆𝐷(𝑡)      Total number of Susceptible domestic birds at time t 

𝐼𝐷(𝑡)       Total number of Infected domestic birds at time t 

𝑆𝐻(𝑡)     Total number of Susceptible humans at time t 

𝐼𝐷(𝑡)     Total number of Infected humans at time t 

𝑄𝐻(𝑡)         Total number of Isolated humans with avian strain at time t 

𝑅𝐻(𝑡)      Total number of Recovered humans at time t 

𝛽𝑊            Average birth rate in wild birds 

𝛽𝐷            Average birth rate in domestic birds 

𝛼𝑊 , 𝛼𝐷, 𝛼𝐴  Infection transmission rates for birds 

𝜂       Destruction (culling) rate for infected birds 

 𝛿𝐵             Natural death rate in birds 

 𝑑𝑤             Flu induced death rate in wild birds 

 𝑑𝐷            Flu induced death rate in domestic birds 

 𝛽𝐻              Average birth rate in humans 

 𝛿𝐻            Natural death rate in humans                           

 𝑑𝐻             Flu induced death rate in humans 

𝜀𝐻      Isolation rate for humans with avian stain 

𝜗𝐻       Flu induced death rate in Isolated humans (𝜗𝐻 < 𝑑𝐻 ) 
𝑣             Recovery rate without immunity 

 𝛾           Recovery rate with substantial immunity 

   𝜎           Loose of immunity rate in recovered humans 

 
 

A schematic flow diagram of the extended model for the birds’ population and human population is shown in 

Figure 1 below. 

   

Wild Birds 

        𝛿𝐵𝑆𝑊                                   𝛿𝐵𝐼𝑊              

𝛽𝑊𝑁𝑊 𝑆𝑊(𝑡)              𝛼𝑊( 
𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
)𝑆𝑊         𝐼𝑊(𝑡)         (𝑑𝑊 + 𝜂)𝐼𝑊 

                     

Domestic Birds 

    

  𝛽𝐷𝑁𝐷  𝑆𝐷(𝑡)      𝛼𝐷( 
𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
)𝑆𝐷        𝐼𝐷(𝑡)       (𝑑𝐷 + η)𝐼𝐷 

       

                               𝛿𝐵𝑆𝐷                                         𝛿𝐵𝐼𝐷 
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Humans 

    𝜈𝐼𝐻   

                   𝛿𝐻𝑆𝐻                                                  (𝑑𝐻 + 𝛿𝐻)𝐼𝐻 

 

𝛽𝐻𝑁𝐻         𝑆𝐻(𝑡)          𝛼𝐴( 
𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
)𝑆𝐻          𝐼𝐻(𝑡)               

                                                              

                      𝜀𝐻𝐼𝐻    

       𝜈𝑄𝐻                 𝑄𝐻(𝑡)              (𝑑𝐻 + 𝜗𝐻)𝑄𝐻                

                                                                        

             𝛾𝑄𝐻                  𝛾𝐼𝐻           

                               

                                              𝜎𝑅𝐻               𝑅𝐻(𝑡) 

 

                          𝛿𝐻𝑅𝐻 

Figure 1: Schematic diagram of the transmission dynamics of avian influenza (H5N1) in birds and  human 

population.                       

 

2.1 Susceptible and Infected Wild Birds 

 The population of susceptible wild birds is generated by birth of wild birds (at the rate 𝛽𝑊). It is reduced by 

infection, following contact with infected wild birds and infected domestic birds (at the rate 𝛼𝑊), where 𝛼𝑊  is 

the infection transmission rate for wild birds and further reduced by natural death (at the rate 𝛿𝐵). Hence  

  
𝑑𝑆𝑊
𝑑𝑡

 =  𝛽𝑊𝑁𝑊 − 𝛼𝑊
𝐼𝑊
𝑁𝑊

𝑆𝑊 − 𝛼𝑊
𝐼𝐷
𝑁𝐷
𝑆𝑊 − 𝛿𝐵𝑆𝑊 , 

           =  𝛽𝑊𝑁𝑊 − 𝛼𝑊 (
𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝑊 − 𝛿𝐵𝑆𝑊 , 

The population of infected wild birds is increased through the infection of susceptible wild birds 

following contact with infected wild birds and infected domestic birds. It decreased either by natural 

death (at the rate 𝛿𝐵) and avian induced mortality (at the rate 𝑑𝑊) and by culling of infected wild birds 

(at the rate 𝜂). So that 

 

  
𝑑𝐼𝑊
𝑑𝑡
 =  𝛼𝑊 (

𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝑊 − (𝑑𝑊 + 𝛿𝐵 + 𝜂)𝐼𝑊 , 

2.2 Susceptible and Infected Domestic Birds 

 The population of susceptible domestic birds is generated by birth of domestic birds (at the rate 𝛽𝐷). It is 

reduced by infection, following contact with infected wild birds and infected domestic birds (at the rate 𝛼𝐷), 

where 𝛼𝐷  is the infection transmission rate for domestic birds and further reduced by natural death (at the rate 

𝛿𝐵). Thus  
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𝑑𝑆𝐷
𝑑𝑡
 =  𝛽𝐷𝑁𝐷 − 𝛼𝐷

𝐼𝑊
𝑁𝑊

𝑆𝐷 − 𝛼𝐷
𝐼𝐷
𝑁𝐷
𝑆𝐷 − 𝛿𝐵𝑆𝐷 , 

           =  𝛽𝐷𝑁𝐷 − 𝛼𝐷 (
𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝐷 − 𝛿𝐵𝑆𝐷 , 

The population of infected domestic birds is increased through the infection of susceptible domestic birds 

following contact with infected wild birds and infected domestic birds. It decreased either by natural death (at 

the rate 𝛿𝐵) and avian induced mortality (at the rate 𝑑𝐷) and by culling of infected wild birds (at the rate 𝜂). This 

yield 

 
𝑑𝐼𝐷
𝑑𝑡
 =  𝛼𝐷 (

𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝐷 − (𝑑𝐷 + 𝛿𝐷 + 𝜂)𝐼𝐷 , 

2.3 Susceptible, Infected, Isolated and Recovered Humans 

The population of susceptible humans are increased by birth (at the rate 𝛽𝐻), recovered humans who lost 

immunity to return to susceptible humans (at the rate 𝜎), recovered infected and isolated humans without 

immunity (at the rate 𝜈). It decreased by infection of susceptible humans following contact with infected wild 

birds and infected domestic birds (at the rate 𝛼𝐵), where 𝛼𝐵   is the infection transmission rate for humans and 

further reduced by natural death (at the rate 𝛿𝐻). This gives  

 
𝑑𝑆𝐻
𝑑𝑡
 =  𝛽𝐻𝑁𝐻 − 𝛼𝐵 (

𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝐻 − 𝛿𝐻𝑆𝐻 + 𝜈𝐼𝐻 + 𝜈𝑄𝐻 + 𝜎𝑅𝐻 , 

Infected humans are generated through infection of susceptible humans following contact with infected wild 

birds and infected domestic birds (at the rate 𝛼𝐵) and reduced by natural death (at the rate 𝛿𝐻) and avian induced 

mortality (at the rate 𝑑𝐷). It is further reduced by isolation of infected humans (at the rate 𝜀𝐻) recovered infected 

humans without immunity and with substantial immunity (at the rate 𝜈 and 𝛾 respectively). Thus, 

 

𝑑𝐼𝐻
𝑑𝑡
 =   𝛼𝐵 (

𝐼𝑊
𝑁𝑊

+
𝐼𝐷
𝑁𝐷
) 𝑆𝐻 − (𝜀𝐻 + 𝑑𝐻 + 𝛿𝐻 + 𝜈 + 𝛾)𝐼𝐻 , 

Isolated humans are generated by isolation of infected humans (at the rate 𝜀𝐻) and reduced by natural death (at 

the rate 𝛿𝐻) and avian induced mortality (at the rate 𝜗𝐻 where, 𝜗𝐻 < 𝑑𝐻; it is assumed that isolated individuals 

are given some treatment such as Tamiflu). It is further reduced by recovered isolated humans without immunity 

and those with substantial immunity (at the rate 𝜈 and 𝛾 respectively). Hence, 

 

  
𝑑𝑄𝐻
𝑑𝑡

 =  𝜀𝐻𝐼𝐻 − (𝜈 + 𝜗𝐻 + 𝛾 + 𝛿𝐻)𝑄𝐻 , 

The recovered humans are generated by the recovery of infected humans and isolated humans (at the rate 𝛾). 

Decreased by natural death (at the rate 𝛿𝐻) and losing immunity (at the rate 𝜎). So that 

 

  
𝑑𝑅𝐻
𝑑𝑡

 =  𝛾𝐼𝐻 + 𝛾𝑄𝐻 − (𝜎 + 𝛿𝐻)𝑅𝐻 , 

The above assumptions and derivations leads to the following system of ordinary differential equations 

 

    
𝑑𝑆𝑊

𝑑𝑡
 =  𝛽𝑊𝑁𝑊 − 𝛼𝑊 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝑊 − 𝛿𝐵𝑆𝑊 ,           (1) 

    
𝑑𝐼𝑊

𝑑𝑡
 =  𝛼𝑊 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝑊 − (𝑑𝑊 + 𝛿𝐵 + 𝜂)𝐼𝑊 ,     (2) 

    
𝑑𝑆𝐷

𝑑𝑡
 =  𝛽𝐷𝑁𝐷 − 𝛼𝐷 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝐷 − 𝛿𝐵𝑆𝐷 ,                (3) 
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𝑑𝐼𝐷

𝑑𝑡
 =  𝛼𝐷 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝐷 − (𝑑𝐷 + 𝛿𝐷 + 𝜂)𝐼𝐷 ,     (4) 

   
𝑑𝑆𝐻

𝑑𝑡
 =  𝛽𝐻𝑁𝐻 − 𝛼𝐵 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝐻 − 𝛿𝐻𝑆𝐻 + 𝜈𝐼𝐻 + 𝜈𝑄𝐻 + 𝜎𝑅𝐻 ,   (5)    

    
𝑑𝐼𝐻

𝑑𝑡
 =   𝛼𝐵 (

𝐼𝑊

𝑁𝑊
+

𝐼𝐷

𝑁𝐷
) 𝑆𝐻 − (𝜀𝐻 + 𝑑𝐻 + 𝛿𝐻 + 𝜈 + 𝛾)𝐼𝐻 ,    (6) 

   
𝑑𝑄𝐻

𝑑𝑡
 =  𝜀𝐻𝐼𝐻 − (𝜈 + 𝜗𝐻 + 𝛾 + 𝛿𝐻)𝑄𝐻 ,      (7) 

     
𝑑𝑅𝐻

𝑑𝑡
 =  𝛾𝐼𝐻 + 𝛾𝑄𝐻 − (𝜎 + 𝛿𝐻)𝑅𝐻 ,      (8) 

For prevalence of the disease, it is necessary to consider the model in proportions of susceptible, infectious, 

isolated and recovered compartments. 

 

Adding equations (1) - (2) and equations (3) – (4) gives  

 
𝑑𝑁𝑊

𝑑𝑡
= 𝛽𝑊𝑁𝑊 − 𝛿𝐵𝑁𝑊 − (𝑑𝑤 + 𝜂)𝐼𝑊      (9) 

and 

𝑑𝑁𝐷

𝑑𝑡
= 𝛽𝐷𝑁𝐷 − 𝛿𝐵𝑁𝐷 − (𝑑𝐷 + 𝜂)𝐼𝐷     (10) 

Similarly, adding equations (5) – (8) gives the rate of change of the total human population:  

 
𝑑𝑁𝐻

𝑑𝑡
= 𝛽𝐻𝑁𝐻 − 𝛿𝐻𝑁𝐻 − 𝑑𝐻𝐼𝐻 − 𝜗𝐻𝑄𝐻    (11) 

 

We now define the proportion for each class as follows: 

 𝑠𝑤 =
𝑆𝑊

𝑁𝑊
,  𝑖𝑊 =

𝐼𝑊

𝑁𝑊
, 𝑠𝐷 =

𝑆𝐷

𝑁𝐷
,  𝑖𝐷 =

𝐼𝐷

𝑁𝐷
, 𝑠𝐻 =

𝑆𝐻

𝑁𝐻
, 𝑖𝐻 =

𝐼𝐻

𝑁𝐻
, 𝑞𝐻 =

𝑄𝐻

𝑁𝐻
, 𝑟𝐻 =

𝑅𝐻

𝑁𝐻
, 

So that 

             𝑠𝑊 + 𝑖𝑊 = 1 ⇒ 𝑠𝑊 = 1 − 𝑖𝑊 , 𝑠𝐷 + 𝑖𝐷 = 1 ⇒ 𝑠𝐷 = 1 − 𝑖𝐷 

and  

            𝑠𝐻 + 𝑖𝐻 + 𝑞𝐻 + 𝑟𝐻 = 1 ⇒ 𝑠𝐻 = 1 − 𝑖𝐻 − 𝑞𝐻 − 𝑟𝐻 

Thus, the system (1) – (8) expressed in proportion is given below: 

𝑑𝑠𝑊

𝑑𝑡
= 𝛽𝑊 − 𝛼𝑊(𝑖𝑊 + 𝑖𝐷)𝑠𝑊 − 𝛽𝑊𝑠𝑊 + (𝑑𝑤 + 𝜂)𝑖𝑊𝑠𝑊                       (12) 

𝑑𝑖𝑊

𝑑𝑡
= 𝛼𝑊(𝑖𝑊 + 𝑖𝐷)𝑠𝑤 − (𝑑𝑊 + 𝛽𝑊 + 𝜂)𝑖𝑊 + (𝑑𝑤 + 𝜂)𝑖𝑊

2                (13) 

𝑑𝑠𝐷

𝑑𝑡
= 𝛽𝐷 − 𝛼𝐷(𝑖𝑊 + 𝑖𝐷)𝑠𝐷 − 𝛽𝐷𝑠𝐷 + (𝑑𝐷 + 𝜂)𝑖𝐷𝑠𝐷                           (13) 

𝑑𝑖𝐷

𝑑𝑡
= 𝛼𝐷(𝑖𝑊 + 𝑖𝐷)𝑠𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)𝑖𝐷 + (𝑑𝐷 + 𝜂)𝑖𝐷

2                     (14) 

𝑑𝑠𝐻

𝑑𝑡
= 𝛽𝐻 − 𝛼𝐵(𝑖𝑊 + 𝑖𝐷)𝑠𝐻 + 𝑣(𝑖𝐻 + 𝑞𝐻) + 𝜎𝑟𝐻 − 𝛽𝐻𝑠𝐻 + 𝑑𝐻𝑠𝐻𝑖𝐻 + 𝜗𝐻𝑠𝐻𝑞𝐻         (15) 

𝑑𝑖𝐻

𝑑𝑡
= 𝛼𝐵(𝑖𝑊 + 𝑖𝐷)𝑠𝐻 − (𝜀 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾)𝑖𝐻 +𝜗𝐻𝑖𝐻𝑞𝐻 + 𝑑𝐻𝑖𝐻

2               (16) 
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𝑑𝑞𝐻

𝑑𝑡
= 𝜀𝐻𝑖𝐻 − (𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻)𝑞𝐻 + 𝑑𝐻𝑖𝐻𝑞𝐻 + 𝜗𝐻𝑞𝐻

2                        (17) 

𝑑𝑟𝐻

𝑑𝑡
= 𝛾𝑖𝐻 + 𝛾𝑞𝐻 − (𝜎 + 𝛽𝐻)𝑟𝐻 + 𝑑𝐻𝑖𝐻𝑟𝐻 + 𝜗𝐻𝑞𝐻𝑟𝐻                      (18)` 

The system (12) – (18) can be reduced further by setting  

 𝑠𝑊 = 1 − 𝑖𝑊 , 𝑠𝐷 = 1 − 𝑖𝐷   and  𝑠𝐻 = 1 − 𝑖𝐻 − 𝑞𝐻 − 𝑟𝐻  

𝑑𝑖𝑊

𝑑𝑡
= 𝛼𝑊(𝑖𝑊 + 𝑖𝐷)(1 − 𝑖𝑊) − (𝑑𝑊 + 𝛽𝑊 + 𝜂)𝑖𝑊 + (𝑑𝑤 + 𝜂)𝑖𝑊

2           (19) 

𝑑𝑖𝐷

𝑑𝑡
= 𝛼𝐷(𝑖𝑊 + 𝑖𝐷)(1 − 𝑖𝐷) − (𝑑𝐷 + 𝛽𝐷 + 𝜂)𝑖𝐷 + (𝑑𝐷 + 𝜂)𝑖𝐷

2                 (20) 

𝑑𝑖𝐻

𝑑𝑡
= 𝛼𝐵(𝑖𝑊 + 𝑖𝐷)(1 − 𝑖𝐻 − 𝑞𝐻 − 𝑟𝐻) − (𝜀 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾)𝑖𝐻 +𝜗𝐻𝑖𝐻𝑞𝐻 + 𝑑𝐻𝑖𝐻

2         (21) 

𝑑𝑞𝐻

𝑑𝑡
= 𝜀𝐻𝑖𝐻 − (𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻)𝑞𝐻 + 𝑑𝐻𝑖𝐻𝑞𝐻 + 𝜗𝐻𝑞𝐻

2                   (22) 

𝑑𝑟𝐻

𝑑𝑡
= 𝛾𝑖𝐻 + 𝛾𝑞𝐻 − (𝜎 + 𝛽𝐻)𝑟𝐻 + 𝑑𝐻𝑖𝐻𝑟𝐻 + 𝜗𝐻𝑞𝐻𝑟𝐻                  (23)` 

These are the governing equations of the model. 

 

3.0 Model Analysis 

The nonlinrar system (12) – (18) will be analysed so as to find the conditions for the existence and stability of 

the disease free equilibrium states (DFEs). To achieve this, we will compute the Basic Reproduction number and 

use it to determine if the disease can be eliminated from the population or not. 

 

3.1 Invariant Region 
The avian influenza model (12) – (18) in proportions will be analyzed to establish the biological 

feasible region as follows. The system (12) – (18) is split into two parts, namely the avian population 

where 𝑛𝐵(𝑡) = 𝑠𝑤(𝑡) + 𝑖𝑊(𝑡) + 𝑠𝐷(𝑡) + 𝑖𝐷(𝑡)and the human population where 𝑛𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝑖𝐻(𝑡) +
𝑞𝐻(𝑡) + 𝑟𝐻(𝑡).  
Consider the feasible region 

Ω = Ω𝐵 ∪ Ω𝐻 ⊂ ℝ+
4 × ℝ+

4  

with 

Ω𝐵 = {(𝑠𝑤 , 𝑖𝑊 , 𝑠𝐷 , 𝑖𝐷) ∈ ℝ+
4 : 𝑠𝑤 + 𝑖𝑊 + 𝑠𝐷 + 𝑖𝐷 ≤ 1} 

and 

Ω𝐻 = {(𝑠𝐻 , 𝑖𝐻 , 𝑞𝐻 , 𝑟𝐻) ∈ ℝ+
4 : 𝑠𝐻 + 𝑖𝐻 + 𝑞𝐻 + 𝑟𝐻 ≤ 1} 

 

The following steps are followed to establish the positive invariance of Ω (i.e., the solution in Ω remain 

inΩ for all 𝑡 > 0). The rate of change of the avian and human population (by adding the first four 

equations and the last four equations of the model (12) – (18)) is given 

 
𝑑𝑛𝐵

𝑑𝑡
= 𝛽𝐵 − 𝛽𝐵𝑛𝐵 + (𝑑𝑤 + 𝜂)𝑖𝑊𝑠𝑊 − (𝑑𝑊 + 𝜂)𝑖𝑊 + (𝑑𝑤 + 𝜂)𝑖𝑊

2 +

(𝑑𝐷 +)𝑖𝐷𝑠𝐷 − (𝑑𝐷 + 𝜂)𝑖𝐷 + (𝑑𝐷 + 𝜂)𝑖𝐷
2  (24) 

and 

𝑑𝑛𝐻

𝑑𝑡
= 𝛽𝐻 − 𝛽𝐻𝑛𝐻 + 𝑑𝐻𝑠𝐻𝑖𝐻 + 𝜗𝐻𝑠𝐻𝑞𝐻 − 𝛽𝐻𝑖𝐻 + 𝜗𝐻𝑖𝐻𝑞𝐻 + 𝑑𝐻𝑖𝐻

2 − 𝛽𝐻𝑞𝐻 + 𝑑𝐻𝑖𝐻𝑞𝐻 + 𝜗𝐻𝑞𝐻
2 − 𝛽𝐻𝑟𝐻 +

𝑑𝐻𝑖𝐻𝑟𝐻 +   𝜗𝐻𝑞𝐻𝑟𝐻         (25) 

 

It follows from (24) and (25) that 
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𝑑𝑛𝐵

𝑑𝑡
≤ 𝛽𝐵 − 𝛽𝐵𝑁𝐵         (26) 

and 

𝑑𝑛𝐻

𝑑𝑡
≤ 𝛽𝐻 − 𝛽𝐻𝑛𝐻          (27) 

Integrating (26) with respect to 𝑡 where the integrating factor, 𝐼𝐹 = 𝑒∫ 𝛽𝐵𝑑𝑡 = 𝑒𝛽𝐵𝑡 we have 

𝑒𝛽𝐵𝑡𝑛𝐵 ≤ ∫ 𝛽𝐵𝑒
𝛽𝐵𝑡𝑑𝑡 + 𝐶 

⇒ 𝑒𝛽𝐵𝑡𝑛𝐵 ≤ 𝑒
𝛽𝐵𝑡 + 𝐶 

∴ 𝑛𝐵(𝑡) ≤ 1 + 𝐶𝑒
−𝛽𝐵𝑡 

At 𝑡 = 0,  

𝐶 =  𝑛𝐵(0) − 1 

∴ 𝑛𝐵(𝑡) ≤ 1 + (𝑛𝐵(0) − 1)𝑒
−𝛽𝐵𝑡 

𝑛𝐵(𝑡) ≤ 𝑛𝐵(0)𝑒
−𝛽𝐵𝑡 + 1 − 𝑒−𝛽𝐵𝑡        (28) 

Also integrating (27) with respect to 𝑡 where the integrating factor, 𝐼𝐹 = 𝑒∫ 𝛽𝐻𝑑𝑡 = 𝑒𝛽𝐻𝑡 we have 

𝑒𝛽𝐻𝑡𝑛𝐻 ≤ ∫ 𝛽𝐻𝑒
𝛽𝐻𝑡𝑑𝑡 + 𝐶 

⇒ 𝑒𝛽𝐻𝑡𝑛𝐻 ≤ 𝑒
𝛽𝐻𝑡 + 𝐶 

𝑛𝐻(𝑡) ≤ 1 + 𝐶𝑒
−𝛽𝐻𝑡 

 

At 𝑡 = 0,  

𝐶 =  𝑛𝐻(0) − 1 

∴ 𝑛𝐻(𝑡) ≤ 1 + (𝑛𝐻(0) − 1)𝑒
−𝛽𝐻𝑡 

𝑛𝐻(𝑡) ≤ 𝑛𝐻(0)𝑒
−𝛽𝐻𝑡 + 1 − 𝑒−𝛽𝐻𝑡        (29) 

Applying the theorem of differential inequality (Birkhof and Rota, 1982) on equations (28) and (29) we obtain 

0 ≤ 𝑛𝐵(𝑡) ≤ 1  and 0 ≤ 𝑛𝐻(𝑡) ≤ 1 as 𝑡 → ∞ 

 

Thus, the region Ω is positively invariant. Hence it is sufficient to consider the dynamics of the flow generated 

by (12) – (18) in Ω. In this region, the model can be considered as being epidemiologically and mathematically 

well posed. Thus every solution of the model (12) – (18) with initial conditions in Ω remains in Ω for all 𝑡 > 0. 

This result is summarized below. 

 

Lemma1: The regionΩ = Ω𝐵 ∪ Ω𝐻 ⊂ ℝ+
4 × ℝ+

4  is positively invariant for the basic model (12) – (20) with non-

negative initial conditions inℝ+
8 . 
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3.2 Computation of The Basic Reproduction Number, 𝑹𝟎 

The model in proportion given by equations (19) – (23) has a unique disease – free equilibrium state ℰ0 =
(𝑖𝑊 , 𝑖𝐷 , 𝑖𝐻 , 𝑞𝐻 , 𝑟𝐻) = (0, 0, 0, 0, 0) obtained by setting 𝑖𝑊 = 0, 𝑖𝐷 = 0, 𝑖𝐻 = 0, 𝑞𝐻 = 0, 𝑟𝐻 = 0. 
 

To compute the basic reproduction number, we rewrite the model equation which contribute to the transmission 

of infection, in this case the 𝑖𝑊, 𝑖𝐷 and  𝑖𝐻 classes. Thereafter write down matrix of infection rates 𝐹𝑖 and the 

transition rate matrix 𝑉𝑖 which represents rates of appearance of new infections into infective class and the 

transfer of individuals into and out of this class by all other means respectively. 

The rate of appearance of new infection in compartments  𝑖𝑊, 𝑖𝐷 and  𝑖𝐻 are given by  
 

𝐹(𝑥) =  (

𝛼𝑊(𝑖𝑊 − 𝑖𝑊
2 + 𝑖𝐷 − 𝑖𝑊𝑖𝐷)

𝛼𝐷(𝑖𝑊 − 𝑖𝑊𝑖𝐷 + 𝑖𝐷 − 𝑖𝐷
2)

𝛼𝐵(𝑖𝑊 + 𝑖𝐷)(1 − 𝑖𝐻 − 𝑞𝐻 − 𝑟𝐻)

). 

While the remaining transfer terms in compartments 𝑖𝑊, 𝑖𝐷 and  𝑖𝐻 are given by 

𝑉(𝑥) = (

(𝑑𝑊 + 𝛽𝑊 + 𝜂)𝑖𝑊 − (𝑑𝑤 + 𝜂)𝑖𝑊
2

(𝑑𝐷 + 𝛽𝐷 + 𝜂)𝑖𝐷 − (𝑑𝐷 + 𝜂)𝑖𝐷
2

(𝜀 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾)𝑖𝐻 − 𝜗𝐻𝑖𝐻𝑞𝐻 + 𝑑𝐻𝑖𝐻
2

). 

Taking partial derivatives of 𝐹(𝑥) with respect to 𝑖𝑊, 𝑖𝐷 and  𝑖𝐻 at the disease – free equilibrium state ℰ0 

= (𝑖𝑊 , 𝑖𝐷 , 𝑖𝐻 , 𝑞𝐻 , 𝑟𝐻) = (0, 0, 0, 0, 0), to obtain 

 

𝐹𝑥(ℰ0) =  (

𝛼𝑤 𝛼𝑤 0
𝛼𝐷 𝛼𝐷 0
𝛼𝐵 𝛼𝐵 0

). 

Similarly the matrix of partial derivatives of 𝑉(𝑥) at the disease – free equilibrium state ℰ0 

= (𝑖𝑊 , 𝑖𝐷 , 𝑖𝐻 , 𝑞𝐻 , 𝑟𝐻) = (0, 0, 0, 0, 0) is given by 

 

𝑉𝑥(ℰ0) =  (

𝑑𝑊 + 𝛽𝑊 + 𝜂 0 0
0 𝑑𝐷 + 𝛽𝐷 + 𝜂 0
0 0 𝜀 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾

). 

and 

𝑉𝑥
−1(ℰ0) =  

(

 
 
 
 

1

𝑑𝑊 + 𝛽𝑊 + 𝜂
0 0

0
1

𝑑𝐷 + 𝛽𝐷 + 𝜂
0

0 0
1

𝜀 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾)

 
 
 
 

. 

Then 

𝐹𝑥(ℰ0)𝑉𝑥
−1(ℰ0) =  

(

 
 
 

𝛼𝑤
𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝑤
𝑑𝐷 + 𝛽𝐷 + 𝜂

0

𝛼𝐷
𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

0

𝛼𝐵
𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝐵
𝑑𝐷 + 𝛽𝐷 + 𝜂

0
)

 
 
 

. 

The eigenvalues are determined by solving the characteristic equation 

 

 det(𝐹𝑥(ℰ0)𝑉𝑥
−1(ℰ0) − 𝜆) = 0  
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𝑑𝑒𝑡

(

 
 
 

𝛼𝑤
𝑑𝑊 + 𝛽𝑊 + 𝜂

− 𝜆
𝛼𝑤

𝑑𝐷 + 𝛽𝐷 + 𝜂
0

𝛼𝐷
𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

− 𝜆 0

𝛼𝐵
𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝐵
𝑑𝐷 + 𝛽𝐷 + 𝜂

0 − 𝜆
)

 
 
 

= 0 

That is 

 

(0 − 𝜆) [(
𝛼𝑤

𝑑𝑊 + 𝛽𝑊 + 𝜂
− 𝜆) (

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

− 𝜆) −
𝛼𝐷

𝑑𝑊 + 𝛽𝑊 + 𝜂

𝛼𝑤
𝑑𝐷 + 𝛽𝐷 + 𝜂

] = 0 

(0 − 𝜆) [𝜆2 − (
𝛼𝑤

𝑑𝑊 + 𝛽𝑊 + 𝜂
+

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

) 𝜆] = 0 

(0 − 𝜆)𝜆 [𝜆 − (
𝛼𝑤

𝑑𝑊 + 𝛽𝑊 + 𝜂
+

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

)] = 0 

∴  𝜆 = 0 or 𝜆 =
𝛼𝑤

𝑑𝑊+𝛽𝑊+𝜂
+

𝛼𝐷

𝑑𝐷+𝛽𝐷+𝜂
 

The maximum eigenvalue of 𝐹𝑥(ℰ0)𝑉𝑥
−1(ℰ0) is given as: 

𝜆 =
𝛼𝑤

𝑑𝑊 + 𝛽𝑊 + 𝜂
+

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

 

Thus, the basic reproduction number is given as: 

𝑅0 =
𝛼𝑤

𝑑𝑊+𝛽𝑊+𝜂
+

𝛼𝐷

𝑑𝐷+𝛽𝐷+𝜂
       (30) 

 

This leads us to the following result. 

 

 

Proposition 1:  𝑅0 is a strictly decreasing function of  𝜂 𝜖 (0,1). 

 Proof 

Taking the partial derivative of 𝑅0 with respect to 𝜂 (0,1) to obtain 

𝜕𝑅𝑜
𝜕𝜂

=  − (
𝛼𝐷

(𝑑𝐷 + 𝛽𝐷 + 𝜂)
2
+

𝛼𝑊
(𝑑𝑊 + 𝛽𝑊 + 𝜂)

2
) 

 

Therefore 𝑅0 is a strictly decreasing function of 𝜂 𝜖 (0,1). 
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Figure 2: Graph of The Basic Reproduction Number,  𝑅0 as a function of the culling rate,  

    (𝜂 ∈ [0,1]).   
 

 

The simulation in Figure 2 shows that by increasing the culling rate 𝜂, the value of the basic reproduction 

number 𝑅0 decreases. At threshold, 𝑅0 = 1, corresponding to 𝜂 = 0.6. Any control programme with culling of 

infected birds (𝜂 > 0.6) will be effective. 

 

 

 

3.3 Existence And Local Stability of The Disease Free Equilibrium (DFE) State 

 

As stated in Section 3.2, the model given by equations (19) – (23) has a unique disease – free equilibrium state 

ℰ0 = (𝑖𝑊 , 𝑖𝐷 , 𝑖𝐻 , 𝑞𝐻 , 𝑟𝐻) = (0, 0, 0, 0, 0) obtained by setting 𝑖𝑊 = 0, 𝑖𝐷 = 0, 𝑖𝐻 = 0, 𝑞𝐻 = 0, 𝑟𝐻 = 0. 
 

To establish the local stability of the disease – free equilibrium (DFE) state, the associated Jacobian of (19) – 

(23) is evaluated at the DFE state.  

The Jacobian matrix of the system (3.4.12) – (3.4.16) evaluated at the disease – free equilibrium state at 𝐽(ℰ0) is 

given by 

 

 

     𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂)            𝛼𝑊                                   0                           0                        0 

  𝛼𝐷  𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)                   0                           0                  0 
𝐽(ℰ0) =   𝛼𝐵            𝛼𝐵         −(𝜀𝐻 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾)     0               0 

              0           0                                     𝜀𝐻              −(𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻)       0 

  0           0              𝛾                         𝛾     −(𝜎 + 𝛽𝐻) 
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The disease – free equilibrium state is locally and asymptotically stable if and only if all of the eigenvalues of the 

Jacobian matrix 𝐽(ℰ0) have negative real part (Benjah, 2007). The eigenvalues are determined by solving the 

characteristic equation det(𝐽 − 𝜆𝐼) = 0. 
 

𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) − 𝜆                  𝛼𝑊                                0                               0                         0 

  𝛼𝐷 𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂) − 𝜆               0                               0                  0                     

= 0  

  𝛼𝐵        𝛼𝐵        −(𝜀𝐻 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾) − 𝜆      0               0               

                0         0                          𝜀𝐻            −(𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻) − 𝜆    0 

  0         0                 𝛾                           𝛾      −(𝜎 + 𝛽𝐻) − 𝜆 

 

That is 

 

[−(𝜎 + 𝛽𝐻) − 𝜆][ −(𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻) − 𝜆][−(𝜀𝐻 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾) − 𝜆] 
[[𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) − 𝜆][𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂) − 𝜆 ] − 𝛼𝑊𝛼𝐷] = 0 

 

or 

 

[−(𝜎 + 𝛽𝐻) − 𝜆][ −(𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻) − 𝜆][−(𝜀𝐻 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾) − 𝜆] 
[𝜆2 − [𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) + 𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)]𝜆 + (𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂)) 
(𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)) − 𝛼𝑊𝛼𝐷] = 0 

 

Thus  𝜆 = −(𝜎 + 𝛽𝐻), −(𝑣 + 𝜗𝐻 + 𝛾 + 𝛽𝐻), −(𝜀𝐻 + 𝑑𝐻 + 𝛽𝐻 + 𝑣 + 𝛾) 
 

and 

[𝜆2 − [𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) + 𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)]𝜆 + (𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂)) 
(𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)) − 𝛼𝑊𝛼𝐷] = 0        (31) 

 

Clearly, three eigenvalues are negative. We further need to show that equation (31) has negative eigenvalues. 

Now equation (31) is the characteristic equation of sub matrix 𝐽1, 

 where  

 

𝐽1 = (
𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) 𝛼𝑊

𝛼𝐷 𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)
) 

We shall use the trace and determinant method to show that sub matrix (𝐽1), has negative eigenvalues. The sub 

matrix (𝐽1) satisfy 𝑅𝑒(𝜆𝑗) < 0 𝑖 = 1,2, if and only if only trace of (𝐽1) < 0 and 𝑑𝑒𝑡𝐽1 > 0 (Benjah, 2007). 

 

The trace of  (𝐽1) = 𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂) + 𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂) 

= (𝑑𝑊 + 𝛽𝑊 + 𝜂) [
𝛼𝑊

𝑑𝑊 + 𝛽𝑊 + 𝜂
− 1] + (𝑑𝐷 + 𝛽𝐷 + 𝜂) [

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

− 1] 

= (𝑑𝑊 + 𝛽𝑊 + 𝜂) [(𝑅0 −
𝛼𝐷

𝑑𝐷 + 𝛽𝐷 + 𝜂
) − 1] + (𝑑𝐷 + 𝛽𝐷 + 𝜂) [(𝑅0 −

𝛼𝑊
𝑑𝑊 + 𝛽𝑊 + 𝜂

) − 1] 

= (𝑑𝑊 + 𝛽𝑊 + 𝜂) [(𝑅0 − 1) −
𝛼𝐷

𝑑𝐷 + 𝛽𝐷 + 𝜂
] + (𝑑𝐷 + 𝛽𝐷 + 𝜂) [(𝑅0 − 1) −

𝛼𝑊
𝑑𝑊 + 𝛽𝑊 + 𝜂

] 

                       < 0   if 𝑅0 < 1.  
and 

 

 The 𝑑𝑒𝑡𝐽1 = (𝛼𝑊 − (𝑑𝑊 + 𝛽𝑊 + 𝜂))(𝛼𝐷 − (𝑑𝐷 + 𝛽𝐷 + 𝜂)) − 𝛼𝐷𝛼𝑊  
 = (𝑑𝑊 + 𝛽𝑊 + 𝜂)(𝑑𝐷 + 𝛽𝐷 + 𝜂) − 𝛼𝑊(𝑑𝐷 + 𝛽𝐷 + 𝜂) − 𝛼𝐷(𝑑𝑊 + 𝛽𝑊 + 𝜂) 
= (𝑑𝑊 + 𝛽𝑊 + 𝜂)(𝑑𝐷 + 𝛽𝐷 + 𝜂) − [𝛼𝑊(𝑑𝐷 + 𝛽𝐷 + 𝜂) + 𝛼𝐷(𝑑𝑊 + 𝛽𝑊 + 𝜂)] 

 

= 1 − [
𝛼𝑊

𝑑𝑊 + 𝛽𝑊 + 𝜂
+

𝛼𝐷
𝑑𝐷 + 𝛽𝐷 + 𝜂

] 
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= 1 − 𝑅0 > 0  if 𝑅0 < 1. 
 

Thus we proved the following lemma. 

 

Lemma 2: The DFEs of the model (3.4.12) – (3.4.16), given by ℰ0, is locally asymptotically stable (LAS) if 

𝑅0 < 1 and ℰ0 is unstable if  𝑅0 > 1.  
   

 

4.0:  Conclusion. 

The stability analysis of the model showed that the existing domain Ω is positively – invariant and attracting. In 

this region, the model can be considered as being epidemiologically meaningful and mathematically well – 

defined. Thus every solution of the basic model with initial conditions in Ω will remains in Ω for all 𝑡 > 0.  
 

Crucial to the stability analysis is the basic reproduction number, 𝑅0. 𝑅0 is an important threshold parameter 

used to determine the threshold between disease eradication and outbreak. We computed the basic reproduction 

number, 𝑅0 using the next generation method. Further analysis shows that the basic reproduction number, 𝑅0 is 

affected by the culling rate (𝜂)for infected birds as shown in proposition 1 and figure 2. The result shows that 

increasing culling of infected birds can reduce the basic reproduction number below unity. From the computation 

for 𝑅0it was obvious that 𝑅0 is not affected by isolation rate for infected humans. 

We further ascertain the stability for the disease free equilibrium states (DFEs) using linearization method, 

taking 𝑅0 as the threshold parameter. The result in Lemma 2 shows that if 𝑅0 < 1, the DFEs is locally 

asymptotically stable. Lemma 2 implies that a small influx of new infective will not generate large outbreaks and 

avian flu can be eliminated from the avian-human population (when 𝑅𝑜 < 1) if the initial sizes of the 

populations of the avian-human model are in the basin of attraction of the DFE, ℰ𝑜. 
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