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Abstract 

Regional disparity in literacy levels must be addressed if Kenya is to achieve its international goals such as 

Education for All (EFA) and Millennium Development Goals (MDG). Literacy level in Kenya has been on the 

rise. However, the 2007 Kenya National Literacy Survey crude rates showed that on average 38.5 per cent (7.8 

million) of Kenya’s adult population was illiterate with significant regional and gender variation. 

Bayesian binary logistic models (with and without CAR spatial and unstructured random effects)  are applied to 

the Kenya National Adult Literacy Survey (2007) data that was obtained from sampled 18000 households, 4782 

in urban and 10914 in rural areas, to investigate spatial variation of illiteracy levels in Kenya. There were 15734 

successful interviews that were comprised of 6493 were male and 9241 female 

The best fitted model was found to be the CAR model with age, sex, disability and awareness of adult literacy 

programs as the significant explanatory variables. Smoothed map of illiteracy from the best fitted model was 

then produced together with its corresponding confidence interval maps for regional variation in Kenya, in order 

to capture visual uncertainty in estimation. These maps can be used by policy makers to identify the pattern and 

tailor make programs appropriate for each region. 

Keywords: Illiteracy, Bayesian Hierarchical Models, Spatial modeling 

1. Introduction  

Literacy level in Kenya has been on the rise. Many programs and campaigns have been initiated with the aim of 

improving the literacy levels. The introduction of the free primary education program in 2003 has also seen the 

rise of literacy. This program enabled schools to buy teaching materials and books. A 20 percent increase in 

primary school enrollment was achieved, from 6.0 million in 2002 to 7.2 million pupils in 2003. It further 

increased to 8.6 million in 2008. Over the same period, Gross Enrollment Rate (GER) increased from 88.2 

percent to 107.6 percent in 2008. In 2008, the government of Kenya introduced Free Secondary Education which 

showed improvement in enrollment rates, UNESCO (2010). 

However, KNALS (2007) found out that on average 38.5 percent (7.8 million) of the Kenyan adult population 

was illiterate. The survey also showed women were poorer in reading and numeracy than men. Regional 

variations were also noted, Nairobi, the capital city, had an adult literacy rate of 87.1 percent while North 

Eastern province had an adult literacy of 9.1 percent. The urban areas recorded higher rates than rural areas. 

The main feature of literacy in Kenya which still remains consistent over years is the clear disparity in literacy 

levels among regions, gender and other categories. Regional disparity in literacy levels must be addressed if 

Kenya is to meet its international goals such as Education for All (EFA), Millennium Development Goals 

(MDG) and the UN Literacy Decade (2003-2012). If the regions with high illiteracy are not sensitized and given 

extra attention then the literacy level of the whole country will be dragged down; this will in turn affect 

negatively the social economics of the whole nation, Carron et al. (1989). A nation with a tainted social 

economic development record is also prone to political instability, Iftikhar (2011). 

Understanding these regional variations is one step in addressing them, Ahmed (2009). Several studies have been 

done on illiteracy levels in Kenya. All of them have been based on crude rates of measures which are highly 

affected by the sample size collected per region. The country has now been divided into counties and accurate 

county statistics are needed for regional planning and fund allocation in Kenyan government programs and thus 

their importance cannot be overemphasized. 
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In this study, we statistically modeled illiteracy levels in Kenya using a Bayesian technique which ensures 

smoothing of estimates and hence overcoming the sample size problem associated with crude rates. Spatial 

variation was also captured using a convolution model.  

Smoothed maps of county illiteracy levels were produced and their corresponding 95% credible interval maps 

produced to capture visual uncertainty in estimation. The maps can give clear guidance to policy makers on 

which regions to target the limited resources available and also tailor make the literacy alleviation programs and 

campaigns to suit the cultural and social-economic practices of the people in that county. 

2. Materials and Methods 

2.1 Approaches used to estimate illiteracy 

In Cotterell (1975), it is stated that, increasingly the world is becoming aware of adult illiteracy. Its extent may 

still surprise many people—in 1970 there were 783 million illiterate adults throughout the world, at least one 

million of whom were living in the United Kingdom—but what should really give us reason to pause are the 

social and economic implications of the problem. 

Most studies on adult illiteracy are not model based and so cannot be generalized. According to Kirsch et al. 

(2002), adult literacy rate in America was calculated by weighting where full sample and replicate weights were 

calculated for each record in order to facilitate the calculation of unbiased estimates and their standard errors. 

The statistical comparisons in this report were based on the t statistic. NAAL (2003), measures the English 

literacy of America's adults (people age 16 and older living in households or prisons). The findings are presented 

in percentages and tables. 

Mitra and Singh (2008), in their article to highlight the differences in literacy and schooling attainment among 

the scheduled tribe women in India used the proportions for each region to report their findings and draw 

conclusions. These results cannot be generalized to other regions. 

Mazumdar (2005), in his article developed from considering data from 56 countries around the world whose 

human development index was below 0.800 in 1999, to determine social-economic factors determining adult 

literacy in developing countries uses Ordinary Least Squares (OLS) multiple regression equation to estimate the 

rate of adult literacy of 1999. Backward elimination procedure was tried in this study since all of the eight 

predictor variables did not have significant coefficients for any of the samples. Accordingly, for different 

samples they ended up with different sets of variables having all coefficients significant. In all the three samples, 

regression equations were used as well correlation among variables to explain the relationship. The highest 𝑅2 is 

0.8212 and some are as low as 0.29. Therefore there was unexplained random effect of the determination of adult 

literacy in developing countries. 

In Kenya, a study of national adult literacy was conducted in 2006/2007 and the results were based on 

proportions. The survey’s sample sizes in the small areas are not large enough to support direct estimates of 

adequate precision. 

2.2 Spatial approach in estimation of illiteracy 

Often data from diverse areas such as climatology, ecology, environmental monitoring and health sciences are 

spatially correlated. Hence the dependence structure underlying the data is a function of the location information. 

Typically, observations located closer will be more similar than those further apart; thus, data exhibit spatial 

variability which when ignored when working with regression models, the estimates of variation will be biased 

resulting in inefficient statistical inference, Cressie (1993). Hence, to accurately assess the association between 

response and covariates it is important to allow for spatial dependence when developing regression models for 

data that may have spatial correlation. 

Spatial data are typically classified into one of three types: point-referenced data, point pattern data or areal data.  

Point- referenced data is often referred to as geocoded or geostatistical data. The response 𝑌(𝑠) is a random 

variable observed at location 𝑠 ∈ 𝑅𝑟  where s varies continuously over some fixed region 𝐷 ⊆ 𝑅𝑟  and the index 

set D contains an r-dimensional rectangle of positive volume, Li (2008). The response 𝑌(𝑠∗)    at some 

unobserved location 𝑠∗ is predicted based on the observed value at a fixed set of locations 𝑌(𝑠1), 𝑌(𝑠2), 𝑌(𝑠3),⋯ 

𝑌(𝑠𝑛) . 

The dependence between 𝑌(𝑠𝑖)  and 𝑌(𝑠𝑖′)  is modeled through a covariance model 

𝑪𝑶𝑽[𝒀(𝒔𝒊), 𝒀(𝒔𝒊′)] = 𝒄(𝒔𝒊, 𝒔𝒊′) = 𝒄(𝒅𝒊′′)    (1) 

Where 𝑑𝑖′′   is the distance between 𝑠𝑖  and  𝑠𝑖′ . 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.12, 2014 

 

114 

In point pattern data, it is the index set that is random and gives the locations of random events. When an event is 

equally likely to occur at any point of observation area regardless of the location of other events, it is termed as 

complete spatial randomness, characterized by the stochastic process, the homogeneous Poisson process. The 

two alternatives of complete spatial randomness are spatial clustering which implies that the events tend to be 

spatially close to the other points, and spatial regularity which implies that events points space themselves out as 

much as possible, Li (2008). 

For areal data, responses are observed on a regular or irregular lattice consisting of geographical areas with well-

defined boundaries. The spatial structure underlying the observations is often summarized through an adjacency 

matrix W, whose entries code, in some sense, the connectivity (neighborhood structure) of the underlying map. 

The typical definition for the adjacency matrix, spatially connecting units 𝑖 and 𝑗  is 

𝒘 = {

𝟎                                             𝒊𝒇 𝒊 = 𝒋

𝟎        𝒊𝒇 𝒊, 𝒋 𝒂𝒓𝒆 𝒏𝒐𝒕 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔
𝒄𝒊𝒋                𝒊𝒇 𝒊, 𝒋 𝒂𝒓𝒆 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔

   (2) 

Hence 𝒄𝒊𝒋 > 0   is the strength of the neighbor relationship areal units i and j. The most commonly used 

connectivity weight is  

𝑐𝑖𝑗 = {
1                         𝑖𝑓 𝑖, 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
0                𝑖𝑓 𝑖, 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

 

    (3) 

To model spatial dependence in the data 𝑌1, 𝑌2, ⋯ 𝑌𝑛 , the joint distribution 𝑓(𝑦1 , 𝑦2, ⋯ 𝑦𝑛 )  is constructed 

through the specification of a set of simple full conditional distributions  𝑓(𝑦𝑖\ 𝑦𝑗 , 𝑖 ≠ 𝑗), 𝑖 = 1,2,3, ⋯ 𝑛 .  In this 

context, it is clear that given a joint distribution, the full conditional distributions are always uniquely 

determined; however the converse is not always true. In general, we say that the set of full conditional 

distributions is compatible if they determine a unique and valid joint distribution, Li (2008). 

The conditional distributions will depend on neighborhood structure underlying the map, W, and spatial 

dependence is thus built into the joint model specification, Li (2008). The full conditional distribution of 𝑌𝑖  can 

be written as: 

 

𝒇(𝒚𝒊\ 𝒚𝒋 , 𝒊 ≠ 𝒋) = 𝒇(𝒚𝒊\ 𝒚𝒋 , 𝒋 ∈ 𝝏𝒊), 𝒊 = 𝟏, 𝟐, 𝟑, ⋯ 𝒏 (4)  

Where ∂i = {j, Wij  ≠ 0} denote the neighbors for region. We use a set of simple local specifications that depend 

only on lattice adjacencies to develop a spatial dependence structure. This sort of specification is referred to as a 

Markov random field (MRF) Besag (1974). 

A conditionally autoregressive model for modeling areal data 𝑦 = [𝑦2, ⋯ 𝑦𝑛 ]
𝑇 , Besag (1974) is, in a sense, the 

simplest non-trivial special case of Markov random field( MRF) that can be used to model spatial data. 

This model is specified through the set of full conditional distributions 

[yi| yj , i ≠ j]~N (∑
Wij

Wi+
j  ,

σ2

Wi+
) ,    i = 1,2,3, ⋯ n  (5) 

Where,  Wi+ = ∑ Wij
n
j=1   denotes the sum of the ith  row and  σ2  is the variance component, Li (2008). 

In our case we shall use binomial distribution, 

𝑦𝑖𝑗|  𝑝𝑖𝑗 ~𝐵𝑖𝑛 (𝑝𝑖𝑗 ) 

 log(𝑝𝑖𝑗 ) = 𝑋𝑖𝑗
𝑇 𝛽 + 𝑏𝑖  

      (6) 

𝑏 = (𝑏1 ⋯ 𝑏𝑛)𝑇~𝐶𝐴𝑅 (𝜎2) 

This kind of a model is referred to as generalized linear mixed spatial model. Fitting such a model using standard 

maximum likelihood techniques and using the likelihood function is difficult and therefore we shall use a 

Bayesian approach since it does not rely on asymptotic but the inference is based on computing the posterior 

distributions of the unknowns given the data. 

Since the spatial random effects are additive, we shall use the Conditional Auto-Regressive (CAR) models to 

account for spatial heterogeneity in the data, Osei (2010). 

2.3 Bayesian Analysis 

Statistical inference concerns the learning of some unknown aspect of the population from which the data was 

drawn, Li (2008). Bayesian inference fits a probability model to observed data and summarizes the results 

through a probability distribution on the unknown parameters and / or unobserved data we are interested in. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.12, 2014 

 

115 

The Bayesian method offers potentially attractive advantages over the frequency statistical approach for 

modeling spatial data as described in Banerjee et al. (2004). First, the Bayesian approach allows one to induce 

specific spatial correlation among random effects by use of prior distributions. Second, computational challenges 

associated with computing the posterior distributions can be overcome by use of Markov chain Monte Carlo 

methods. Third, the hierarchical Bayesian models provide mechanisms to specify a complicated non-Gaussian 

data through several layers, each of which can be easily understood and computed. Finally the Bayesian method 

explicitly acknowledges the uncertainty of the model and parameters. 

The parameters in the model will be estimated from the posterior distribution which will be obtained by updating 

the prior distribution with the observed data through the likelihood function of the observed data. 

The likelihood for the data {𝑦𝑖},   𝑖 = 1,2,3, ⋯ 𝑛 is defined as 

𝐿(𝑥|𝜃) = 𝜋𝑖=1
𝑛  𝑓(𝑥𝑖|𝜃)       (7) 

The data are assumed to be conditionally independent. 

A prior distribution is a distribution assigned to the parameter before seeing the data. The sample provides 

additional ' data ' for a problem and so they can be used to improve estimation or identification of parameters, 

Lawson (2009). These distributions of parameters also have parameters controlling their forms since parameters 

in models are regarded as stochastic (and thereby have probability distributions governing their behavior), then 

these parameters also have distributions. These distributions are known as hyper-priors and their parameters are 

known as hyper parameters. 

The posterior distribution is the product of the likelihood and the prior distributions. It describes the behavior of 

the parameters after the data are observed and prior assumptions are made, Lawson (2009). The posterior 

distribution is the conditional distribution of the parameters after observing the data and it integrates the prior 

and the sample information. For a probability distribution whose population parameter is a random variable, then 

the joint probability function can be written as 𝑓(𝜃, 𝑋1, ⋯ 𝑋𝑛) = 𝑓(𝑋1, ⋯ 𝑋𝑛|𝜃)𝜋(𝜃).  The marginal probability 

density of X will be given by 𝑓(𝑋1, ⋯ 𝑋𝑛). Then the conditional distribution becomes;  

𝑓(𝜃|𝑥) =
𝑓(𝜃,𝑋1,⋯𝑋𝑛)

𝑓( 𝑋1,⋯𝑋𝑛)
=

𝐿(𝑋1,⋯𝑋𝑛|𝜃)𝜋(𝜃)

∑ 𝐿(𝑋1,⋯𝑋𝑛|𝜃)𝜋(𝜃)
              (8) 

𝜋(𝜃) represent the prior distribution, 𝐿(𝑋1, ⋯ 𝑋𝑛|𝜃)  is the probability of the data given our prior belief and it is 

referred to as the likelihood, and the updated 𝑓(𝜃|𝑥)  is the posterior. 

2.4 Linear Models 

As stated in Li (2008), regression models are commonly used to assess the relationship between response 

variables and explanatory variables. They can be used for prediction, inference and hypothesis testing. A 

standard regression specification for continuous data is the linear model  

    

  XY , 

),0( 2IMVN          (9) 

Where 
TYYY ),,( 21 

, 
is a vector of response variables, X is a pn  matrix of covariates and   is the p - 

vector of regression coefficients. The vector  is of dimension n   and the elements of  are assumed to be 

independent and identically distributed based on Gaussian specification ),0(~ 2
..

 N
dii

. This model is 

appropriate when the response data is from normal distribution, however if normality assumption does not hold, 

a generalized model proposed by Nelder and Wedderburn (1972) is more appropriate for the exponential family 

of distributions. Examples of distributions that belong to the exponential family include Bernoulli, binomial, 

Poisson, beta, gamma and negative binomial distributions. Li (2008) also explains that the generalized linear 

models are used to analyze data under independence assumptions. 

From Uppal et al. (2012), for n   trials in each of which there are only two outcomes (failure and success) with 

probabilities  f   and s   respectively, the probability )(yp  of exactly y   successes is given by 

yyn sf
y

n
yp 









)( , y=0, 1, 2, ……   (20) 

The area of study will be divided into n disjoint regions. The regions under consideration will be the 47 counties 

in the country. 

Let ijy be the literacy status of the 
thj  individual in the 

thi  county. This variable is binary since ijy
 is discrete 

count data, so the Bernoulli distribution can be used to model the data counts. 

)(~ ijij pBerny       (31) 
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Where ijp   is the probability that the 
thj adult in the 

thi  county is illiterate. Then the mass function of ijy  can 

be expressed as 

ijij y

ij

y

ijijij pppyf



1

)1()()|(
    

(42)
 

According to Li (2008), we model the expected value, ijp , of ijy  as a linear function of the covariates ijx  after 

transformation by 


T

ijijij xpg  )(      (53) 

where (.)g is the link function which is usually a nonlinear monotonically increasing function, transforming ijp  

to the real line. 

When, )(~ ijij pBerny , the Bernoulli logistic regression is obtained through the logit link 





ij

ij

ij
p

p
pg

1
log)( 

T

ijx       (64) 

that constrains ijp  between 0 and 1. 

2.5 Statistical Modeling of adult illiteracy in Kenya 

The covariates that were considered included gender, disability, awareness of literacy programs and age. The 

variable ijy  is the illiteracy status of the 
thj individual in the 

thi   county. ijy  being discrete , i.e count data. 

The PMF is 
)1(

ijijij
)p1()p()p|f( ijyijy

ij
y





   

(75)

 The likelihood function of the observed data is then given by 







n

i

y

ij

y

ijijij
ijij pp)p|y(L

1

)1(
)1()(

   

(86)

 The posterior distribution of the parameter, ijp ,  was computed as 

)(

)(
)|(

ij

ijijij

ijij
yg

p)p|y(L
yp





     (97) 

 

Where  
ijp

ijijijij p)p|yf(yg )()(   is the marginal distribution of ijY
 of the 

thi county. 

Four models were compared. The probability was linked to other parameters and co-variates via a linear 

predictor. Individual level co-variates, ijX  , related to illiteracy were introduced into the model as follows; 

                                      βX
T

ijijplogit )(     (108) 

Where the   parameters are assumed to have prior distributions so that 

)|(),|()|,(   fyLyP ijij     (119) 

Where )|( f  is the joint distribution of the co-variates parameters conditional on the hyper-parameter 

vector  .  Regarding these parameters as independent, 





p

j

jj j
ff

1

)|()|(      (20) 

Assigning to the co-variate parameters a Gaussian distribution and assuming that they correlate

  ,0~ pN  , so that  





p

j
j

Nf
1

),0()|(           (21) 

At the next level of hierarchy, a prior distribution of  
j  was taken as 

),(~   Gamma
j

      (22) 

The probability was then linked to other parameters and co-variate and random effects via a linear predictor such 

as, Lawson (2009). Therefore,  

IUTij βX
T

ijijplogit )(      (23) 

Assuming that a logistic link was appropriate for the probability and that the random effect at the individual 

county was included, then 

)exp(1

)exp(

IU

IU
T

ij

T

ij






βX

βX
T

ij

T

ij

ijp       (24) 

 

Hence the hierarchy is as follows; 
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),(~|

),(~

),0(~|

)(

)(~

2

ijij

ij

ijij

uujiij

ij

T

ijij

ijij

uNuu

Gamma

N

plogit

pBerny











IUTij βX
   (25) 

Secondly, incorporating unstructured heterogeneity in the model in addition to the co-variates, 

    ivβX  T

ijijplogit )(     (26) 

Where iv  was modeled using a Gaussian process with mean zero. 

Thirdly, for correlated heterogeneity, 

    iuβX  T

ijijplogit )(     (27) 

Where iu is the correlated component. 

To capture both spatial variation and unstructured heterogeneity the following model was used; 

    ii uvβX  T

ijijplogit )(    (28) 

To assess the quality of the estimators, we used a loss function, ),( ii apL  that measures the loss incurred by 

using  


 ijij pa as an estimate of ijp .The “best” estimate is chosen so as to minimize the Expected loss, 

)),((


ii ppLE , where the expectation is taken over ip  with respect to the posterior distribution )|( ii pyf . 

Samples were obtained from the posterior distribution using the Markov Chain Monte Carlo simulation 

technique. Parameters were estimated using sample quantiles from the posterior distribution. The estimate of the 

marginal distribution of the parameter ip  was obtained from the empirical distribution of the sample values, 

Lawson (2009).  

Since the modeling was done under the Bayesian platform, each of the parameters in  was treated as a random 

variable, hence was given a prior distribution. This allowed adjustment of the uncertainty parameters by 

assigning prior distributions to the parameters, Osei (2010). 

3.  Results 

The four models were applied and the best model based on DIC identified. The significant covariates that 

explain variation in illiteracy are reported. Finally the smooth maps are presented. All this was done using 

WINBUGS software. 
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Table of results: 

 

Parameter Model 1 Model 2  Model 3 Model 4 

Intercept -2.601(-2.723,- 2.470) -2.852(-3.197,- 2.439) -2.201(-2.353,- 1.900) -2.251(-2.323,- 1.970) 

aware 1.193(1.104,1.287) 0.867(0.790,0.948) 0.865(0.785,0.946) 0.865(0.785,0.946) 

disab 1.335(1.235,1.433) 1.275(1.169,1.396) 1.271(1.160,1.390) 1.274(1.163,1.391) 

Sex 0.537(0.495,0.581) 0.437(0.400,0.476) 0.437(0.399,0.478) 0.437(0.340,0.479) 

Age 0.050(0.048,0.053) 1.070(1.067,1.073) 0.068(0.064,0.071) 0.067(0.064,0.071) 

DIC 17219 13882.7 13881.3 13884.7 

The best fitting model is Model 3 in which the CAR spatial random effects have been incorporated. There is a 

moderate association between illiteracy and disability as well as with awareness of the literacy programs. For 

every one unit increase in age, the expected change in log odds is 0.068. The smoothed maps are as follows. 

Smoothed Map: 

 

4.  Conclusion and Recommendations 

The factors considered in this study reflect the individual differences at aggregate level. Evidently, the illiteracy 

level is highest in the Northern part of the country. This could be due to the low level of development, culture 

and economic activities. 

The maps give clear guidance to policy makers on which regions to target the limited resources available and 

also tailor make the illiteracy alleviation programs and campaigns to suit the cultural and social-economic 

practices of the people in that county. 

If the regions with high illiteracy are not sensitized and given extra attention then the literacy level of the whole 

country will be dragged down; this will in turn affect negatively the social economic status of the whole nation 

as Carron et al. (1989). Consequently a nation with a tainted social economic development record is also prone 

to political instability Iftikhar (2011). 
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This approach is not only applicable to data on illiteracy; it can be used to model other aspects in the counties 

such as epidemiology, climatology and accidents among others. 

Illiteracy levels at any region will vary from time to time. As such, an extension of our model, to include 

illiterate individuals in county i at time t, and a vector of time dependent covariates incorporated in the logit 

model would make it possible to examine the time-lagged associations of adult illiteracy over time. Indeed, 

levels of adult illiteracy evolve over time and allowing the regression parameters to evolve over time is a worthy 

avenue of future research. 
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