A Common Fixed Point Theorem for Four Compatible Mappings of Type (P) In Complete Metric Space

V. H. Badshah *, V. K. Gupta **, Arvind Kumar Sharma *** and Arihant Jain****

School of Studies in Mathematics, Vikram University, Ujjain (M.P.) India

** Department of Mathematics, Govt. Madhav Science College, Ujjain (M.P.) India

*** Department of Applied Mathematics, Mahakal Institute of Technology and Management Ujjain (M.P.) India

**** Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.) India

Abstract: The purpose of this paper is to present a common unique fixed-point theorem for four self mappings in complete metric space using weaker condition such as compatible of type (P) and associated sequence in place of compatible mappings. Our result generalizes the results of Sharma, Badshah and Gupta [5], Lohani and Badshah [3] and Singh and Chouhan [6].

Keywords: Complete metric space, compatible mappings, compatible mappings of type (P), common fixed point.

Mathematics Subject Classification: 54H25, 47H10.

1. Introduction:

Jungck [1,2], introduced more generalized commutativity; known as compatibility, which is weaker than weakly commuting maps and proved a common fixed point theorem for weakly commuting maps. After various author proved a common fixed point theorem for compatible mappings satisfying contractive type conditions and continuity of one of the mapping is required.

The purpose of this paper is to generalize some common fixed point theorems, which extend the results of Sharma, Badshah and Gupta [5], Lohani and Badshah [3], Singh and Chouhan [6] by using a rational inequality and compatible mappings of type (P) instead of compatible mappings. To illustrate our main theorems, an example is also given.

2. Preliminaries:

Definition 2.1 : Two mapping S and T from a metric space (X, d) into itself ,are called commuting on X, if d(STx, TSx) = 0 i.e. STx = TSx for all x in X.

Definition 2.2 : Two mapping S and T from a metric space (X, d) into itself ,are called weakly commuting on X, if d(STx, TSx) ≤ d(Sx, Tx) for all x in X.

Clearly, commuting mappings are weakly commuting, but converse is not necessarily true, given by following example:

Example 2.1 [5]

Let X = [0, 1] with the Euclidean metric d. Define S and T : X → X by

Sx = \frac{x}{3 - x} and Tx = \frac{x}{3} for all x in X.

Then for any x in X,

\[d(STx, TSx) = \left| \frac{x}{9 - x} - \frac{x}{9 - 3x} \right| \]

\[= \left| \frac{-2x^2}{(9 - x)(9 - 3x)} \right| \]
\[\frac{x^2}{9 - 3x} \leq \frac{x}{3 - x} - \frac{x}{3} = d(Sx, Tx) \]
i.e. \(d(STx, TSx) \leq d(Sx, Tx) \) for all \(x \) in \(X \).

Thus \(S \) and \(T \) are weakly commuting mappings on \(X \), but they are not commuting on \(X \), because

\[STx = \frac{x}{9 - x} < \frac{x}{9 - 3x} = TSx \quad \text{for any } x \neq 0 \text{ in } X. \]
i.e. \(STx < TSx \) for any \(x \neq 0 \) in \(X \).

Definition 2.3. If two mapping \(S \) and \(T \) from a metric space \((X, d)\) into itself, are called compatible mappings on \(X \), if

\[\lim_{m \to \infty} d(STx_m, TSx_m) = 0, \]

when \(\{x_m\} \) is a sequence in \(X \) such that \(\lim_{m \to \infty} Sx_m = \lim_{m \to \infty} Tx_m = x \) for some \(x \) in \(X \).

Clearly two mapping \(S \) and \(T \) from a metric space \((X, d)\) into itself, are called compatible mappings on \(X \), then \(d(STx, TSx) = 0 \) when \(d(Sx, Tx) = 0 \) for some \(x \) in \(X \). Note that weakly commuting mappings are compatible, but the converse is not necessarily true.

Example 2.2 [5]
Let \(X = [0, 1] \) with the Euclidean metric \(d \). Define \(S \) and \(T : X \to X \) by

\[Sx = x \quad \text{and} \quad Tx = \frac{x}{x + 1} \quad \text{for all } x \text{ in } X. \]

Then for any \(x \) in \(X \),

\[STx = S(Tx) = S \left(\frac{x}{x + 1} \right) = \frac{x}{x + 1} \]
\[TSx = T(Sx) = T(x) = \frac{x}{x + 1} \]
\[d(Sx, Tx) = \left| x - \frac{x}{x + 1} \right| = \frac{x^2}{x + 1} \]

Thus we have

\[d(STx, TSx) = \left| \frac{x}{x + 1} - \frac{x}{x + 1} \right| \]
\[= 0 \leq \frac{x^2}{x + 1} \quad \text{for all } x \text{ in } X. \]
\[= d(Sx, Tx) \]
i.e. \(d(STx, TSx) \leq d(Sx, Tx) \) for all \(x \) in \(X \).

Thus \(S \) and \(T \) are weakly commuting mappings on \(X \), and then obviously \(S \) and \(T \) are compatible mappings on \(X \).

Example 2.3 [5]
Let \(X = \mathbb{R} \) with the Euclidean metric \(d \). Define \(S \) and \(T : X \to X \) by

\[Sx = x^2 \quad \text{and} \quad Tx = 2x^2 \quad \text{for all } x \text{ in } X. \]

Then for any \(x \) in \(X \),

\[STx = S(Tx) = S \left(2x^2 \right) = 4x^4 \]
\[TSx = T(Sx) = T \left(x^2 \right) = 2x^4 \]
are compatible mappings on \(X \), because

\[d(Sx, Tx) = \left| x^2 - 2x^2 \right| = \left| -x^2 \right| \to 0 \quad \text{as } x \to 0 \]
Then
\[d(ST_n, TS_n) = |4x^4 - 2x^3| = 2|x^4| \to 0 \text{ as } x \to 0 \]
But
\[d(ST_n, TS_n) \leq d(S_n, T_n) \]
is not true for all \(x \) in \(X \).
Thus \(S \) and \(T \) are not weakly commuting mappings on \(X \). Hence all weakly commuting mappings are compatible, but converse is not true.

Definition 2.4 If two mapping \(S \) and \(T \) from a metric space \((X, d)\) into itself, are called **compatible mappings of type (A)** on \(X \), if
\[
\lim_{n \to \infty} d(ST_n, TT_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d(TS_n, SS_n) = 0
\]
whenever \(\{x_n\} \) is a sequence in \(X \) such that \(\lim S_{x_n} = \lim T_{x_n} = t \) for some \(t \in X \).

Definition 2.5 If two mapping \(S \) and \(T \) from a metric space \((X, d)\) into itself, are called **compatible mappings of type (B)** on \(X \), if
\[
\lim_{n \to \infty} d(ST_n, TT_n) \leq \frac{1}{2} \left[\lim_{n \to \infty} d(ST_n, St) + \lim_{n \to \infty} d(St, SS_n) \right]
\]
and
\[
\lim_{n \to \infty} d(TS_n, SS_n) \leq \frac{1}{2} \left[\lim_{n \to \infty} d(TS_n, Tt) + \lim_{n \to \infty} d(Tt, TTX_n) \right]
\]
whenever \(\{x_n\} \) is a sequence in \(X \) such that \(\lim S_{x_n} = \lim T_{x_n} = t \) for some \(t \in X \).

Definition 2.6 If two mapping \(S \) and \(T \) from a metric space \((X, d)\) into itself, are called **compatible mappings of type (P)** on \(X \), if
\[
\lim_{n \to \infty} d(SS_n, TTX_n) = 0
\]
whenever \(\{x_n\} \) is a sequence in \(X \) such that
\[
\lim S_{x_n} = \lim T_{x_n} = t \quad \text{for some } t \in X .
\]

Example 2.4
Let \(X = [0, 1] \) with the usual metric \(d(x, y) = |x - y| \).

Define \(S \) and \(T: X \to X \) by
\[
S_x = \begin{cases}
\frac{1}{3} & \text{when } 0 \leq x < \frac{1}{2} \\
\frac{1}{2} & \text{when } \frac{1}{2} \leq x \leq 1
\end{cases}
\]
\[
T_x = 1 - x \quad \text{for all } x \in X.
\]

Then clearly the pair \((S, T)\) is compatible of type (P). For this take a sequence \(x_n = \frac{1}{2} + \frac{1}{n}, n \geq 3 \).

Then
\[
\lim_{n \to \infty} S_{x_n} = \frac{1}{2} \quad \lim_{n \to \infty} T_{x_n} = \frac{1}{2}
\]
Also
\[
\lim_{n \to \infty} SS_{x_n} = \lim_{n \to \infty} S \left(\frac{1}{2} \right) = \frac{1}{2}
\]
and
\[
\lim_{n \to \infty} TTX_n = \lim_{n \to \infty} T \left(\frac{1}{2} - \frac{1}{n} \right) = \lim_{n \to \infty} \left(\frac{1}{2} \right) = \frac{1}{2}
\]
so that
\[
\lim_{n \to \infty} (SS_{x_n}, TTX_n) = 0.
\]
Hence the pair \((S, T)\) is compatible of type (P) on \(X \). But the pair \((S, T)\) is not compatible on \(X \), for this take a sequence \(x_n = \frac{1}{2} + \frac{1}{n}, n \geq 3 \).

Then
\[
\lim_{n \to \infty} S_{x_n} = \frac{1}{2} \quad \lim_{n \to \infty} T_{x_n} = \frac{1}{2}
\]
Also
\[
\lim_{n \to \infty} TS_{x_n} = \lim_{n \to \infty} T \left(\frac{1}{2} \right) = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2}
\]
But
\[
\lim_{n \to \infty} ST_{x_n} = \lim S \left(\frac{1}{2} - \frac{1}{n} \right) = \lim \left(\frac{1}{2} \right) = \frac{1}{2}
\]
so that
\[
\lim_{n \to \infty} (TS_{x_n}, ST_{x_n}) \neq 0.
\]
Hence \((S, T)\) is not compatible on \(X \). Note that compatible mappings are compatible of type (P), but the converse is not necessarily true.

Singh and Chouhan [6] proved the following theorem.
Theorem 2.1: Let \(A, B, S \) and \(T \) be mappings from a complete metric space \((X, d) \) into itself satisfying the following conditions:

\[
A(X) \subseteq T(X) \quad \text{and} \quad B(X) \subseteq S(X)
\]
(3.1)

One of \(P, Q, S \) and \(T \) is continuous,

\[
\begin{align*}
& \left[d(Ax, By) \right]^2 \leq k_1 \left[d(Ax, Sx) + d(By, Ty) \right] + k_2 \left[d(Ax, Ty) + d(By, Sx) \right] \\
& + k_3 \left[d(Ax, Sx) + d(By, Ty) + d(By, Sx) \right]
\end{align*}
\]
(3.2)

for all \(x, y \in X \), where \(k_1, k_2, k_3 \geq 0 \) and \(0 \leq k_1 + k_2 + k_3 < 1 \).

The pairs \((A,S)\) and \((B,T)\) are compatible on \(X \), then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \). Lohani and Badshah [3] proved the following theorem.

Theorem 2.2: Let \(P, Q, S \) and \(T \) be self mappings from a complete metric space \((X, d) \) into itself satisfying the following conditions

\[
S(X) \subseteq Q(X), \quad T(X) \subseteq P(X)
\]
(3.3)

\[
d(Sx, Ty) \leq \alpha d(Qy, Ty) \left[1 + d(Px, Sx) \right] + \beta d(Px, Qy)
\]
(3.4)

for all \(x, y \in X \) where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \).

Suppose that

(i) One of \(P, Q, S \) and \(T \) is continuous

(ii) Pairs \((S, P)\) and \((T, Q)\) are compatible on \(X \). Then \(P, Q, S \) and \(T \) have a unique common fixed point in \(X \).

Sharma, Badshah and Gupta [15] proved the following theorem.

Theorem 2.3 Let \(P, Q, S \) and \(T \) be mappings from a complete metric space \((X, d) \) into itself satisfying the conditions

\[
S(X) \subseteq Q(X), \quad T(X) \subseteq P(X)
\]
(3.5)

\[
d(Sx, Ty) \leq \left[\alpha + \beta \frac{d(Sx, Px)}{1 + d(Px, Qy)} \right] d(Ty, Qy)
\]
(3.6)

for all \(x, y \in X \) where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \).

Suppose that

(i) One of \(P, Q, S \) and \(T \) is continuous,

(ii) Pairs \((S, P)\) and \((T, Q)\) are compatible on \(X \).

Then \(P, Q, S \) and \(T \) have a unique common fixed point in \(X \).

Now we generalize the theorem 2.3 using weakly compatible mappings in place of compatible mappings also condition of any one of the mapping is being dropped.

Associated Sequence: Suppose \(P, Q, S \) and \(T \) be mappings from a complete metric space \((X, d) \) into itself satisfying the conditions:

\[
S(X) \subseteq Q(X) \quad \text{and} \quad T(X) \subseteq P(X)
\]
(3.5)

\[
d(Sx, Ty) \leq \left[\alpha + \beta \frac{d(Sx, Px)}{1 + d(Px, Qy)} \right] d(Ty, Qy)
\]
(3.6)

for all \(x, y \in X \) where \(\alpha, \beta \geq 0 \) and \(\alpha + \beta < 1 \).

Then for an arbitrary point \(x_0 \) in \(X \), by (3.5) we choose a point \(x_1 \) in \(X \) such that \(Sx_0 = Qx_1 \) and for this point \(x_1 \), there exists a point \(x_2 \) in \(X \) such that \(Tx_1 = Px_2 \) and so on. Proceeding in the similar manner, we can define a sequence \(\{y_m\} \) in \(X \) such that

\[
y_{2m+1} = Qy_{2m} = Sx_{2m+1} \quad \text{for} \ m \geq 0 \quad \text{and} \ y_{2m} = Px_{2m} = Tx_{2m-1} \quad \text{for} \ m \geq 1
\]
(3.7)

we shall call this sequence as an “Associated sequence of \(x_0 \)” relative to four self mappings \(P, Q, S \) and \(T \).

Lemma 2.1: Let \(P, Q, S \) and \(T \) be mappings from a complete metric space \((X, d) \) into itself satisfying the conditions (3.5) and (3.6). Then the Associated sequence \(\{y_m\} \) relative to four self mappings \(P, Q, S \) and \(T \) defined in (3.7) is a Cauchy sequence in \(X \).

Proof. By definition (3.7) we have

\[
d(y_{2m+1}, y_{2m}) = d(Sx_{2m}, Tx_{2m-1})
\]
\[
\begin{align*}
\leq & \left\{ \alpha + \beta \frac{d(Sx_{2m}, Px_{2m})}{1+d(Px_{2m}, Qx_{2m})} \right\} d(Tx_{2m-1}, Qx_{2m-1}) \\
\leq & \left\{ \alpha + \beta \frac{d(y_{2m+1}, y_{2m})}{1+d(y_{2m}, y_{2m-1})} \right\} d(y_{2m}, y_{2m-1}) \\
\leq & \alpha d(y_{2m+1}, y_{2m}) + \beta d(y_{2m+1}, y_{2m-1}) \\
\text{i.e. } d(y_{2m+1}, y_{2m}) & \leq \frac{\alpha}{1-\beta} d(y_{2m}, y_{2m-1}) \\
\text{Hence } d(y_{2m+1}, y_{2m}) & \leq h d(y_{2m}, y_{2m-1}) \\
\text{Where } h & = \frac{\alpha}{1-\beta} < 1 \\
\text{Similarly we can show that } & \\
\text{For } k > m, \text{ we have } & \\
\sum_{i=1}^{k} d(y_{n+k}, y_{n+i-1}) & \leq \sum_{i=1}^{k} h^{n+i-1} d(y_{1}, y_{0}) \\
\text{i.e. } d(y_{n+k}, y_{n}) & \leq \left(\frac{h^{n}}{1-h} \right) d(y_{1}, y_{0}) \rightarrow 0 \text{ as } n \rightarrow \infty \\
\text{Since } h < 1, \text{ } h^{n} & \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ so that } d(y_{n}, y_{n+k}) \rightarrow 0. \text{ This Show that the sequence } \{y_{n}\} \text{ is a } \text{Cauchy’s sequence in } X. \text{ and since } X \text{ is a complete metric space, it converges to a limit, say } u \text{ in } X. \text{ The converse of the lemma is not true, that is } P, Q, S \text{ and } T \text{ satisfying (3.5) and (3.6) , even if for } x_{0} \text{ in } X \text{ and the Associated sequence of } x_{0} \text{ converges, the metric space } (X, d) \text{ need not be complete. The following example establishes this.}
\]

Example 2.5

Let \(X = [0, 1] \) with usual metric \(d(x, y) = |x - y| \). Define Self mappings \(P, Q, S \) and \(T \) on \(X \) by

\[
Sx = Tx = \begin{cases}
\frac{1}{3} & \text{if } 0 \leq x < \frac{1}{2} \\
\frac{1}{2} & \text{if } \frac{1}{2} \leq x \leq 1
\end{cases}, \quad \text{and} \quad Px = Qx = 1 - x \text{ for all } X.
\]

Then \(S(X) = T(X) = \left[\frac{1}{2}, 1 \right] \) while, \(P(X) = Q(X) = [0, 1] \)

Clearly \(S(X) \subseteq Q(X) \) and \(T(X) \subseteq P(X) \). Also inequality (3.6) can be easily verified with appropriate values of \(\alpha \) and \(\beta \). Also the sequence \(Sx_{0}, Tx_{1}, Sx_{2}, Tx_{3}, ... Sx_{2n}, Tx_{2n+1}, ... \) converges to \(\frac{1}{2} \). But \((X, d) \) is not a complete metric space.

3. Main Result

Theorem 3.1 Let \(P, Q, S \) and \(T \) be mappings from a metric space \((X, d) \) into itself satisfying the conditions (3.5) and (3.6). Suppose that the pairs \((S, P) \) and \((T, Q) \) are compatible mappings of type \((P) \) on \(X \). Further the associated sequence relative to four self mappings \(P, Q, S \) and \(T \) such that \(Sx_{0}, Tx_{1}, Sx_{2}, Tx_{3}, ... Sx_{2n}, Tx_{2n+1}, ... \) converges to \(u \) in \(X \) as \(n \rightarrow \infty \). Then \(P, Q, S \) and \(T \) have a unique common fixed point \(u \) in \(X \).

Proof. Let \(\{y_{n}\} \) be the Associated sequence in \(X \) defined by (3.7). By **lemma 2.1**, the Associated \(\{y_{n}\} \) is a Cauchy sequence in \(X \) and hence it converges to some point \(u \) in \(X \). Consequently, the subsequences \(\{Sx_{2n}\}, \{
\(p_{x_{2m}} \), \(T_{x_{2m-1}} \) and \(Q_{x_{2m-1}} \) of \(\{ y_n \} \) also converges to \(u \). Suppose \(S \) is continuous. Then \(S_{x_{2m}} \to S_u \), \(S_{x_{2m-1}} \to S_u \) as \(n \to \infty \).

Since \((S, P)\) is compatible of type (P), then

\[
\lim_{m \to \infty} d(SS_{x_{2m}}, TT_{x_{2m}}) = 0.
\]

This gives \(\lim_{m \to \infty} PP_{x_{2m}} = S_u \).

Hence

\[
\lim_{m \to \infty} PP_{x_{2m}} = \lim_{m \to \infty} SS_{x_{2m}} = S_u.
\]

To prove \(S_u = u \) put \(x = P_{x_{2m}}, y = x_{2m-1} \) in (3.6), we get

\[
d(SP_{x_{2m}}, T_{x_{2m-1}}) \leq \lim_{m \to \infty} \left\{ \alpha + \beta \frac{d(SP_{x_{2m}}, PP_{x_{2m}})}{1 + d(PP_{x_{2m}}, Q_{x_{2m-1}})} \right\} d(T_{x_{2m-1}}, Q_{x_{2m-1}})
\]

Letting \(m \to \infty \)

\[
d(S_u, u) \leq \left\{ \alpha + \beta \frac{d(S_u, Su)}{1 + d(S_u, u)} \right\} d(u, u)
\]

i.e. \(d(Su, u) \leq 0 \)

So that \(u = S_u \), since \(S(X) \subseteq Q(X) \) there exists \(v \in X \) such that \(u = Sv = Qv \), we prove that \(T_v = Qv \).

To prove \(T_v = u \) put \(x = x_{2m}, y = v \) in (3.6), we get

\[
d(S_{x_{2m}}, T_v) \leq \left\{ \alpha + \beta \frac{d(S_{x_{2m}}, P_{x_{2m}})}{1 + d(P_{x_{2m}}, Q_v)} \right\} d(T_v, Q_v)
\]

Letting \(m \to \infty \)

\[
d(u, T_v) \leq \left\{ \alpha + \beta \frac{d(u, u)}{1 + d(u, Q_v)} \right\} d(T_v, u)
\]

\[(1-\alpha) d(u, T_v) \leq 0 \]

i.e. \(d(u, T_v) \leq 0 \)

So that \(u = T_v \). Hence \(u = T_v = Qv \).

Since \((T, Q)\) is compatible of type (P) and \(u = T_v = Qv \), we get \(d(TT_v, QQ_v) = 0 \). This gives \(d(Tu, Qu) = 0 \). Hence \(Tu = Qu \).

To prove \(Tu = u \) put \(x = u, y = x_{2m-1} \) in (3.6), we get

\[
d(S_u, T_{x_{2m-1}}) \leq \left\{ \alpha + \beta \frac{d(S_u, Pu)}{1 + d(Pu, Q_{x_{2m-1}})} \right\} d(T_{x_{m-1}}, Q_{x_{2m-1}})
\]

Letting \(m \to \infty \)

\[
d(u, Tu) \leq \left\{ \alpha + \beta \frac{d(u, Su)}{1 + d(u, Q_v)} \right\} d(u, u)
\]

i.e. \(d(u, Tu) \leq 0 \)

So that \(u = Tu \). Hence \(u = Tu = Qu \), therefore \(u \) is a common fixed point of \(T \) and \(Q \). Since \(T(X) \subseteq P(X) \) there exists \(v' \in X \) such that \(u = T_u = P_v \), we prove that \(S_v' = P_v' \).

To prove \(S_v' = u \) put \(x = v', y = u \) in (3.6), we get

\[
d(S_v', Tu) \leq \left\{ \alpha + \beta \frac{d(S_v', P_v')}{1 + d(P_v', Qu)} \right\} d(T_u, Qu)
\]

\[
d(S_v', u) \leq 0
\]

So that \(u = S_v' \). Hence \(u = S_v' = P_v' \). Since \((S, P)\) is compatible of type (P) and \(u = S_v' = P_v' \), we get \(d(PP_v', SS_v') = 0 \). This gives \(d(Pu, Su) = 0 \). Hence \(Pu = Su \).

109
Hence \(u = Pu = Su \) therefore \(u \) is a common fixed point of \(P \) and \(S \). Thus \(u = Tu = Qu = Su = Pu \). Hence \(u \) is a common fixed point of \(P, Q, S \) and \(T \).

For uniqueness of \(u \), suppose \(u \) and \(z \), \(u \neq z \), are common fixed points of \(P, Q, S \) and \(T \). Then by (3.6), we obtain
\[
d(u, z) = d(Su, Tz)
\leq \left\{ \alpha + \beta \frac{d(Su, Pu) + d(Pu, Qz)}{1 + d(Pu, Qz)} \right\} d(Tz, Qz)
\leq \left\{ \alpha + \beta \frac{d(u, u) + d(u, z)}{1 + d(u, z)} \right\} d(z, z)
\leq 0
\]
i.e.,
\[
d(u, z) \leq 0
\]
which is a contradiction. Hence \(u = z \). So \(u \) is a unique common fixed point of \(P, Q, S \) and \(T \).

This completes the proof.

Remark 3.1 From the example 2.5
\[
\text{Since } SPx = S(1-x) = \begin{cases} \frac{1}{3} & \text{if } 0 \leq x < \frac{1}{2} \\ \frac{1}{2} & \text{if } \frac{1}{2} \leq x \leq 1 \end{cases}
\]
and \(PSx = P \left[\begin{cases} \frac{1}{3} & \text{if } 0 \leq x < \frac{1}{2} \\ \frac{1}{2} & \text{if } \frac{1}{2} \leq x \leq 1 \end{cases} \right] \)
\[
\begin{aligned}
SPx & = S \left(\frac{1}{2} \right) = \left(\frac{1}{3} - \frac{1}{2} \right) = \frac{1}{2} \\
PSx & = P \left(\frac{1}{2} \right) = \left(-\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2}.
\end{aligned}
\]

Hence the pair \((S, P)\) is not commuting on \(X \). Similarly easily verified that the pair \((T, Q)\) is not commuting on \(X \). Also the pairs \((S, T)\) and \((T, Q)\) are not compatible on \(X \), for this take a sequence \(x_n = \frac{1}{2} + \frac{1}{n} \), \(n \geq 3 \).

Then \(\lim_{n \to \infty} Sx_n = \frac{1}{2} \), \(\lim_{n \to \infty} Px_n = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{n} \right) = \frac{1}{2} \).

Also \(\lim_{n \to \infty} PSx_n = \lim_{n \to \infty} \left(\frac{1}{2} \right) = \frac{1}{2} \).

\[
\begin{aligned}
\text{But } & \lim_{n \to \infty} SPx_n = \lim_{n \to \infty} S \left(\frac{1}{2} \right) = \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{2} \right) = \frac{1}{2}.
\end{aligned}
\]

Hence \((S, P)\) is not compatible on \(X \). Similarly easily verified that the pair \((T, Q)\) is not compatible on \(X \). It can be easily verified that the pairs \((S, T)\) and \((T, Q)\) are not compatible of type (A), compatible of type (B). But the pairs \((S, T)\) and \((T, Q)\) are compatible of type (P). For this take a sequence \(x_n = \frac{1}{2} + \frac{1}{n} \), \(n \geq 3 \).

Then \(\lim_{n \to \infty} Sx_n = \frac{1}{2} \), \(\lim_{n \to \infty} Tx_n = \frac{1}{2} \) and \(\lim_{n \to \infty} SSx_n = \lim_{n \to \infty} S \left(\frac{1}{2} \right) = \frac{1}{2} \).

Hence \((S, T)\) is compatible of type (P) on \(X \). Similarly easily verified that the pair \((T, Q)\) is compatible mappings of type (P) on \(X \). Also the rational inequality (3.6) holds for appropriate value of \(\alpha, \beta \) with \(\alpha, \beta \geq 0 \) and \(\alpha + \beta < 1 \) and \(\alpha < 1 \). Clearly \(\frac{1}{2} \) is the unique common fixed point of \(P, Q, S \) and \(T \).
Conclusion: The conclusion of this paper that we shown a unique common fixed point theorem with generalization result of Sharma, Badshah and Gupta [5] using weaker condition compatible of type (P), instead of compatible mappings also we illustrate our result by example.

References

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar