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ABSTRACT 

Hepatitis B is a global threat as over a billion people have been infected and about 300 million people 

die annually across the world. In this paper, a mathematical model for the transmission dynamics of 

hepatitis B virus infection considering vaccination and treatment as control parameters in the host 

population is presented. First, the disease-free equilibrium state of the model was determined. The 

next generation method was used to determine the basic reproduction number,  as a threshold 

parameter, in terms of the given model parameters.  was analytically evaluated for its sensitivity to 

vaccination and treatment parameters. It was proved that the disease-free equilibrium state is locally 

asymptotically stable if the  is below unity, otherwise, it is unstable. Local stability of the endemic 

equilibrium state was established using the centre manifold theory. The analytical results of the  

show that increasing the proportion of people who receive vaccines, either at birth or later in life, 

reduces it below unity. Similarly, increasing the proportion of carriers who receive treatment achieves 

the same purpose. The result of the local stability analysis of the disease-free equilibrium state shows 

that the disease can be eliminated if  is below unity. The result of the centre manifold theory on the 

endemic equilibrium state shows that the disease can persist as the value of  increases above one. 

The findings of this study strongly suggest a combination of effective vaccination and treatment as a 

control strategy is crucial to the success of HBV disease control. 

1. Introduction 

Hepatitis B is a disease that is characterized by inflammation of the liver and is caused by infection by 

the hepatitis B virus. Hepatitis may be caused by drugs or viral agents. These viral agents include the 

hepatitis A, B, C, D, E, F, G and H viruses (WHO, 2002).        

 Hepatitis B is one of the world’s most serious health problems. More than a billion people around the 

world have serological indicators of past or present infection with hepatitis B virus (HBV). Over 300 

million people are chronic carriers of the virus (White and Fenner (1994), Platkov et al (2001), 

Carriapa et al (2004), Fernandez et al (2006), Onuzulike and Ogueri (2007)).  

HBV infection can be transmitted from mother to child (vertical), contact with an infected person 

(horizontal transmission), sexual contact (homosexual and heterosexual transmission) with infected 

partners, exposure to blood or other infected fluids and contact with HBV contaminated instruments 

(WHO, 2002). 

 HBV control measures include vaccination, education, screening of blood and blood products; and 

treatment (CDC, 2005). 

Epidemiological models help to capture infection or disease transmission mechanisms in a population 

in a mathematical frame-work to predict the behavior of the disease spread through the population. 

Mathematical models have become important tools in analyzing the spread and control of infectious 

diseases. Understanding the transmission characteristics of infectious diseases in communities, regions 

and countries across the world in mathematical frame works can lead to better approaches to 

decreasing the transmission of these diseases (Anderson and May, 1991). 
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R e c e n t l y ,  mathematical models have been used to study the transmission dynamics of HBV in 

various communities, regions and countries across the world. Anderson and May (1991) proposed a 

simple deterministic, compartmental mathematical model to investigate the effects of carriers on the 

transmission of HBV. Anderson et al (1992) and Williams et al (1996) presented models of sexual 

transmission of HBV, which include heterogeneous mixing with respect to age and sexual activity. 

Edmunds et al (1993) explored the relation between the age at infection with HBV and the 

development of the carrier state. Medley et al (2001) proposed a model to show that the prevalence of 

infection is largely determined by a feedback mechanism that relates the rate of transmission, average 

age at infection and age-related probability of developing carriage following infection. Thornley et al 

(2008) applied the model of Medley et al (2001) to predict chronic hepatitis B infection in New 

Zealand. The prevalence of HBV in developing countries is different from that in developed countries, 

since it appears that the rate of transmission in childhood is the major determinant of the level of HBV 

endemicity and little is known on the rates and patterns of sexual contact in developing countries 

(Edmunds et al, 1996c). Mclean and Blumberg (1994) and Edmunds et al (1996a) studied models of 

HBV transmission in developing countries and Williams et al  (1996) described a model of HBV in 

UK. Zou et al (2009) proposed a mathematical model to investigate the transmission dynamics and 

prevalence of HBV in mainland China. The model is formulated from that of Medley et al (2001) 

based on the characteristics of HBV in China. 

Public health policy on the design of various HBV control programs has benefitted a lot from the 

recommendations of the previous mathematical modellers and much success has been recorded. 

However, available data in various regions on the prevalence of HBV infection shows a slow pace of 

control (WHO, 2009). Much still needs to be done until HBV infection is eradicated from the global 

community. 

The model by Zou et al (2009) forms the motivation for this study. In their work, a mathematical 

model was proposed to study the transmission dynamics and prevalence of HBV infection in mainland 

China.  

They assumed that the newborns to carrier mothers infected at birth do not stay in a latent period, so 

that they instantaneously become carriers. However, as pointed out by Anderson and May (1991) and 

White and Fenner (1994), an HBV carrier must have harboured the virus in the blood for at least six 

months. By this newborns to carrier mothers infected at birth are latently infected individuals. 

Mehmood (2011) supported the same view in his study and assumed that the proportion of the infected 

newborns to carrier mothers is latent. The role of treatment of HBV carriers as a measure of control 

was not considered in their model. 

In our paper, we study the impact of vaccination and treatment on HBV transmission dynamics.  We 

also assume that the newborns to carrier mothers infected at birth are latently infected individuals and, 

therefore, shall include them in the latent compartment. 

The plan of this work is as follows. The model equations are formulated in section 2. Section 3 is 

devoted to deriving the basic reproduction number. Stability analysis of both the disease-free and 

endemic equilibria is carried out in section 4. Results are discussed in section 5. Finally conclusion is 

passed in section 6. 

 2.  Formulation of the Model Equations 

  2.1. The Existing Model 

We begin our model formulation by introducing the model by Zou et al (2009).  We, first, present the 

parameters and assumptions of the existing model.  

2.2. Assumptions of the Existing model 

The following are the assumptions of the existing model by Zou et al (2009): 
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(i) The population is compartmentalized into the proportions of  susceptible individuals ,  

latent individuals  acutely infected individuals  chronic carriers  

vaccinated individuals  and the recovered individuals  all at time  

(ii) The population is homogeneous, 

(iii) Influx into the population is by birth only, 

(iv) Exit out of the population is by natural and HBV-related mortality only, 

(v) The vaccinated individuals do not acquire permanent immunity, 

(vi) The newborns to carrier mothers infected at birth proceed to carrier state immediately.  

   2.3. Variables and Parameters of the Existing Model 

The population is partitioned into six compartments described as follows:  proportion of the 

susceptible individuals at time  

 proportion of the latent individuals at time  

proportion of the acutely infected individuals at time  

 proportion of the chronic carriers at time  

 proportion of the recovered individuals at time  

 proportion of the vaccinated individuals at time  

The following are the parameters of the existing model: 

birth rate, 

=natural mortality rate, 

HBV-related mortality rate, 

proportion of births without vaccination, 

proportion of births vaccinated, 

proportion of births vertically infected, 

rate of waning vaccine-induced immunity, 

rate of moving from latent state to acute state, 

transmission coefficient, 

ate of moving from acute to other compartments, 

average probability that an individual fails to clear an acute infection and develops to carrier state, 

 rate of moving from acute to carrier, 

rate of moving from acute to recovered class, 

ate of moving from carrier to immune, 
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vaccination rate of the susceptible individuals, 

 reduced transmission rate relative to acute infection by carriers. 

The following is a flow diagram for the existing model. 

 

2.4. The Equations of the Existing Model 

Using the above assumptions, parameters and flow diagram, Zou et al (2009) derived the following 

model equations. 

 

 

 

 

 

 

2.5The Extended Model  

We shall use the following assumptions and flow diagram to derive the extended model used in this 

work. 

 

  

 

 

 

 

Figure 1: Flow diagram of HBV transmission dynamics for the existing model 
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 2.6. Assumptions of the Extended Model 

In addition to the assumptions by Zou et al (2009) except (vi), we make the following assumptions: 

     (i)       The chronic carriers are treated at the rate  Acute infections are not subjected to antiviral 

treatment because of possibility of relapse and resistance (WHO, 2001), 

(ii) The newborns to carrier mothers infected at birth, first, enter the latent class (Mehmood, 

2011), 

(iii) The treated individuals recover (O’Leary et al, 2008).  

The flow diagram for the existing model is now amended to obtain the flow diagram for the extended 

model as follows: 

 

2.7. Equations of the Extended Model 

The infected newborns are now moved to the second equation instead of the fourth equation in the 

existing model. Also, chronic individuals are now treated at a rate  and this is incorporated in the last 

term in the fourth equation. 

Based on the above assumptions, parameters and flow diagram, we extend the model by Zou et al 

(2009) as follows. 
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Figure 2: Flow diagram of HBV transmission dynamics for the extended model 
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Because the models are in terms of proportions,  

 

  for all time   

The model is defined in the subset  of , where 

 

 3. The Basic Reproduction Number,   

We now calculate the disease-free equilibrium state of the extended model. We begin this by setting 

the left hand sides of equations  to zero and get the disease-free equilibrium state as 

follows. The disease-free equilibrium state, , where  and 

 

Remark 1: For SEIR models, the rate of appearance of new infections is given by the new infection 

terms in the latent-compartment. See, for example, Van Driesche and Watmough (2002), Heffernan et 

al (2005) and Ameh (2009). 

From the equations  of the extended model, we have the following:  

The vector  of the rates of new infections in compartments  and  is given by 

  

   

Also, the remaining transfer terms in compartments and  are given by 

   

The matrix of partial derivatives of at the disease-free equilibrium state  

is given by 

 , where  

and the matrix of partial derivatives of  at the disease-free equilibrium state 

 is:
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It follows that the basic reproduction number  is given by: 

  

 leads to the following results. 

Proposition 3.1   is a strictly decreasing function of  

Proof:  

The partial derivative of   with respect to  is given by 

<0. 

Therefore,  is a strictly decreasing function of  

Proposition 3.2  is a strictly decreasing function of  

Proof: 

Also, the partial derivative of  with respect to  is given by 

 

Therefore,  is a strictly decreasing function of  

 

Proposition 3.3  is strictly decreasing on  

Proof: 

The partial derivative of  with respect to  is  

 

Therefore,  is a strictly decreasing function of   

The basic reproduction number is a decreasing function of both vaccination and treatment rates.  

4. Stability of Equilibria 

4.1. Existence and Local Stability Analysis of the Disease-free Equilibrium State (DFEs) 

We will now examine the existence and local stability of DFEs. We shall first compute the Jacobian 

matrix for the disease-free equilibrium state using equations  as done in Zou et al (2009). 
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The Jacobian matrix for the disease-free state  is given as 

 

 

 

For ease of analysis, we perform the following operations: 

(1)  Subtract column 5 from column 1, 

(2) Add row 1 to row 5. 

By these operations, we have the following equivalent matrix: 

 

 

 

Theorem 4.1 If then the disease-free equilibrium state   is locally and asymptotically 

stable; if  then  is unstable. 

Proof: To prove theorem 4.1, it suffices to show that all the eigenvalues of the characteristic equation 

for the Jacobian matrix above have negative real parts. 

The diagonal entries  and  are the two of the eigenvalues  of the 

characteristic equation of Jacobian matrix . Thus, excluding these columns and the corresponding 

rows, we calculate the remaining eigenvalues. These eigenvalues are the roots of the characteristic 

equation of the reduced matrix of dimension three given by 

 

To simplify the notations, we let 

  

so that 

 

Therefore, the corresponding characteristic equation to  is  
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  where, 

 

 and 

 

The Routh-Hurwitz conditions (Murray, 2002) are the sufficient and necessary conditions on the 

coefficients of the characteristic equation  

By Routh-Hurwiz criteria, all the roots of the characteristic equation  

 have negative real parts if , B,  and . 

 

 

 

 

To show that   we apply  as a threshold. Observe that the basic reproduction number as 

shown in  is: 

 

Substituting   in  gives 

 

Let  and  so that  

 implies that     and  are terms of . Rearranging the terms in   

gives  

+  
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  if  

To show that   we also apply  as a threshold as follows. 

 

 

 

 if   

To show that   we also apply  as a threshold as follows. We also recall that  

 

 

Therefore, 

 

 

 if  

Therefore, by Routh-Hurwitz criteria all the roots have negative real parts and the disease-free 

equilibrium state  is locally asymptotically stable if 
 

This means that infection can be eliminated from the population if . 

However, if  then 

 

This means that not all of the eigenvalues of the characteristic equation (2.9) have negative real parts 

and, therefore,  is unstable. 

4.2 Existence and Stability of Endemic Equilibrium State 

 We shall discuss the stability of the endemic equilibrium state of our model equations  

In the sequel, we shall employ the method of centre manifold theory to investigate the existence and 

stability of the endemic equilibrium state.  
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4.3 Analysis of Centre Manifold Near Ex 0  and  

In the previous section, we discussed the local stability of the disease-free equilibrium using the basic 

reproduction number and linearization method. The change of stability that occurs at  is often 

followed by the emergence of a branch of steady states. This is referred to as bifurcation, and this may 

happen for values of  slightly greater than (or less than) one. This is called a forward (backward) 

bifurcation. One way of determining the direction of bifurcation (forward or backward) in an 

epidemiological model is the use of the centre manifold method. This method reduces the system 

under consideration to a simpler system which has the same qualitative properties and which can be 

studied in a relatively easier way (Ameh, 2009). 

In this section, we investigate the bifurcation behavior of a general epidemic model around the critical 

value  in a neighbourhood of a disease-free equilibrium, E0 . Let  and rewrite our 

general epidemic model in the following way: 

 

with the assumption that  is continuously differentiable at least twice. We have the following result.  

Let  be the matrix of partial derivatives of f  at the disease-free equilibrium. Also let u and 

v be the right and the left eigenvectors of   

Theorem 4.2 (Mukandavire et al 2010). Consider the disease transmission model defined by (2.10) 

with the function   is the parameter as described from the foregoing. Assume that the zero 

eigenvalue of   is simple. Let  
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  Assume that 0b . Then, there exists 0  

such that 

(i) If ,0a  0b , when  with  E0  is locally asymptotically stable, and there 

exists a positive unstable equilibrium; when  E0  is unstable and there exists a 

negative asymptotically stable equilibrium; 

(ii) If ,0a  0b , when   with E0  is unstable; when  E0  is 

asymptotically stable, and there exists a positive unstable equilibrium; 

(iii) If ,0a  0b , when   with  E0  is unstable, and there exists a locally 

asymptotically stable negative equilibrium; when  E0  is stable and a positive 

unstable equilibrium appears 

(iv) If ,0a  0b , when 
 
changes from negative to positive, E0  changes its stability from 

stable to unstable. Corresponding negative equilibrium becomes positive and locally 

asymptotically stable. 

4.4 Application of Centre Manifold Theory to Local Stability of Endemic Equilibrium 

Using the centre manifold theory as described above, we now investigate the local asymptotic stability 

of the endemic equilibrium. We make the following change of variables to system  in 

order to apply the centre manifold theory: . We use the 

notation . Then the model system  can be expressed in the form 

  such that 
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The Jacobian matrix of the system at the disease-free equilibrium is given by 

 

It can be found that the linearized system of transformed equations  with  has a 

simple zero eigenvalue. Hence, the centre manifold theory (see, Driessche et al, 2005, Mukandavire et 

al, 2010), Ameh, 2009) can be used to analyse the dynamics of system   The Jacobian 

( J E0
) of system  has a right eigenvector associated with zero eigenvalue given by 
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Therefore, by (iv) of theorem 4.2, the disease-free equilibrium becomes unstable and the endemic 

equilibrium becomes locally asymptotically stable as  changes values from less than one to values 

slightly greater than one.  

 5. Discussion 

In this study, we extended and analyzed a mathematical model for the transmission dynamics of HBV 

infection considering vaccination and treatment as control measures.  The analytical results obtained 

are discussed as follows. Fundamental in our analytical results, is the basic reproduction number, . 

 serves as a threshold parameter that predicts whether an infection can spread, and is used as a guide 

to the public health or control agency on the amount of effort needed to control or eradicate a disease.  

The basic reproduction number,  for the model was computed using the next generation method.  

was analytically evaluated for its sensitivity to the vaccination rate of susceptible individuals , the 

treatment rate  the  proportion of newborns vaccinated  The results can be found in 

propositions 3.1, 3.2, and 3.3.  The results show that increasing the proportion of people who receive 

vaccines, either at birth or later as susceptible individuals, can reduce the basic reproduction number 

below unity. Similarly, increasing the proportion of carriers who receive treatment achieve the same 

purpose. Thus,  decreases with both vaccination and treatment rates, pointing out to the fact that the 

two are useful in controlling the infection. This also suggests that taking vaccination and treatment in 

combination as a control strategy gives a better result than either of them. 

The result of the stability analysis for the disease-free equilibrium state can be found in theorem 4.1. 

The result show that if  the DFEs is locally asymptotically stable. This means that the disease 

cannot spread and, therefore, the disease can be eliminated.  Otherwise, the DFEs is unstable if 

 Thus, there is a possibility of the disease invading the population and becoming endemic. The 

result of the centre manifold theory (theorem 5.1) shows that there exists a unique endemic 

equilibrium state that is locally and asymptotically stable. 

6. Conclusion and Recommendations 

 

 6.1 Conclusion 

 

In this study, we extended and studied a mathematical model for the transmission dynamics of HBV 

infection considering vaccination and treatment as control measures in the host population. The model 

parameters are given in Section (2). The model was derived with the aid of a flow diagram in Figure 2. 

The disease-free equilibrium state of the model was determined.  The basic reproduction number,  

for the model was computed using the next generation method.  was analytically evaluated for its 

sensitivity to the vaccination rate of the susceptible individuals, the proportion of the newborns 

vaccinated and the treatment rate. It was also proved that the disease-free equilibrium state was locally 

asymptotically stable if  and unstable if   

The existence and stability of the endemic equilibrium state was established through the centre 

manifold theory.  

Our analytical results show that  is a decreasing function of the susceptible vaccination rate, the 

newborn vaccination rate and the treatment rate. Effective vaccination or treatment is a good control 

strategy for HBV infection. However, a combination of effective vaccination and treatment is a better 

control strategy for the disease.   

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.12, 2014 

 

42 

6.2Recommendations 

 

Based on the findings in the research study, we make the following recommendations. 

(1) The Governments should include effective vaccination and treatment in combination as a 

control strategy on HBV control programs. 

(2) Vaccination of every individual susceptible to HBV and treatment of every individual 

chronically infected with HBV may be impossible because of resources. However, this 

study gives threshold values for vaccination and treatment to be used for optimal results. 
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