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Abstract 

In this paper unless otherwise stated the letter p represents a fixed prime number. The concept of p- groups is 

fundamental in the theory of groups. Sylow theorems will be assumed known in this paper. In classifying finite 

groups we know in the Abelian case that the number of groups of order n is influenced largely by the character of 

the prime factorization of n, and not by the size of n alone. Any finite group G contains the so called Sylow 

p-subgroups which are p-groups and are closely linked to the structure of G. Recent developments in theory of 

finite simple groups have brought insights on p-groups and have suggested investigations in diverse areas. In this 

paper, however, we shall present some of the most basic results on transitive p-groups and their defining 

relations. 
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1. Introduction 

Groups of Orders   

A group of prime order   cannot have a proper subgroup and so must be a cyclic group, generated by any 

element different from the identity. It is well known that a group  without any proper subgroups is cyclic of a 

prime order. A group  of order   , if it is not cyclic, will contain two distinct subgroups of order , say  

and , where  and  since this are both maximal subgroups. Since these are 

both maximal subgroups they will both be normal, and ; and so,  is an Abelian group with 

 as a basis. Suppose  is of order  , where  are primes. By the third, Sylow theorem, the 

number of subgroups of order  is of the form  and divides , whence it must be 1, and the unique 

subgroup of  order   will be normal, say , with . The number of subgroup of order  is of the 

form  and divides , whence it is 1 or . If the number is 1, we have for some  a normal subgroup 

 with  and  as the direct product of  and . But here  is of order  and  is  

cyclic. There remains the case with  subgroup order , where a subgroup  of order  is not 

normal. Then we have  and since  is normal,  for some . Here if 

 is Abelian and is the cyclic group above. Hence  Then 
1 i ira b a b   for any  and  in 

particular , whence . More generally we find 
jj j ra ba b  , 

proceeding by induction. Thus for  we have 
pp p rb a ba b   whence,  that this 

necessary condition on  is also sufficient may be verified by establishing the general rule  

   
xu u x y u x vr ya b a b a b   

for multiplying any two elements and proving that this rule defines the group of order pq . 

For groups of order
3p , there are three Abelian types, with invariants respectively    3 2,,p p p , 
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and  , ,p p p . In finding non-Abelian groups, we handle the cases 2p  and p odd  separately. First let 

2p  and consider non-Abelian group of order 8. There can be no element of order 8, since the group would be 

cyclic. If all elements of order 2, then  
2

1,ab  or 1,abab   
2 2 ,ba a bab ab   and the group is 

Abelian. Hence there must be an element of order 4, say  
4 1.a   If  2 ,b a A  then G A Ab   and 

2 .b A . If 
2b a  or

3a , then b is of order 8 and G  is cyclic. Hence 
2 1b   or 

2a  Also
1b ab A  , 

since A  is normal, and 
1b ab a   or 

3a , since it is an element of order 4. But with 
1 ,b ab a G   will be 

Abelian. Hence
1 3.b ab a  . Thus we have found two non-Abelian groups, the dihedral group with defining 

relations  

 
4 2 1 31, 1, ,a b b ab a    

and the quaternion group with defining relations  

 
4 2 2 1 31, , ,a b a b ab a    

It is easily verified that these relations do define two groups of order 8 and that they are not isomorphic to each 

other. 

Finally, consider non-Abelian groups of order
3p , p an odd prime. Since G  is not cyclic, It contains no 

element of order
3p . Let us first suppose the element G contains an element of order 

22 , 1.pp a  Then 

  ,a A  as a maximal subgroup is normal. Let b A . Then 
1... ,pG A Ab Ab     and 

1, .p rb A b ab a  Here 1,r  since G is non-Abelian. Since we find by induction on j that 

,
jj j rb ab a   and since 

pb  as an element of A  permutes with a , we have 

,
pp p ra b ab a  whence  21 modpr p . From the Fermat theorem,  mod ,pr r p and 

so  1 modr p . Write 1 .r sp  Then, with j chosen so that  1 modjs p , we have  

 
 1 1 1 .

sp jj j sjp pb ab a a a
      

Since  , 1, ,jj p b A  we may replace b by 
jb  to get  

 
1... ,pG A Ab Ab      

Groups of orders 
2 3, ,p p p  
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Where
1 1 pb ab a  . 

Now ,pb A whence 
p tb a . Here t  must be a multiple of p since b is not of order

3p . 

Write
p upb a . Then, using the rule 

 1
,

i pia b ba


 we calculate and find                                                                

(1 2 ... 1)p up up pb a       

1p upb a   

Here we use the fact that 1 2 ... 1 ( 1) / 2p p p      is a multiple of p since p is odd. Now 

with
1

ub ba , we have the relations
2 1 1

1 1 11, 1,p p pa b b ab a    . This last follows since 

 1 1

1 1 .u ub ab a b ab a    

As a last case suppose that G contains no elements of order
2p . The center ( )G must be of order p , 

since if it were of order
2p , G  would be Abelian. / ( )G G  will be of the type 

1, 1, .p px y yx xy    

If in the homomorphism / ( ), , ,G G G a x b y    then 
1 11, 1, ( ).p pa b a b ab c G     If 

1 1 1a b ab   , since ,a b and ( )G generate ,G G would be Abelian. Hence 1c  is a generator for 

( )G and our relations become  

 1, 1, 1, , , .p p pa b c ab ba ac ca bc cb       

 

1.1.1 TABLE OF DEFINING RELATIONS 

.I G  order p . 

1) Cyclic 1pa  . 

.II G order 
2p  

1) Cyclic. 
2

1pa  . 

2) Elementary Abelian.  
21, 1,pa b ba ab   . 

.III G order ,pq p  < q  
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Cyclic. 1.pqa   

Non-Abelian.    
11, 1, ,p q ra b a ba b    

   1 mod ,pr q r  1 mod ,q p divides 1q   

    

The solutions of  1 mod ,pz q z  1 mod q are 
2 1, ,... ,pr r r 

 and all yield the same group, since 

replacing a by as a generator of  a replaces r by
jr . 

.IV G order
3p . 

Abelian.  

3

1.pa   

2

1, 1, .p pa b ba ab    

1, , , .p p pa b c ba ab ca ac cb bc       

Non-Abelian order
32 8 . 

Dihedral. 
4 2 31, 1, .a b ba a b    

Quaternion 
4 2 2 31, , .a b a ba a b    

Non –Abelian order 
3,p p  odd  

4) 
2 1 11, 1,p p pa b b ab a     

 5) 1, 1, 1, , , .p p pa b c ab bac ca ac cb bc                 

 TRANSITIVE p-GROUPS OF DEGREES p 
n 
(p = 2, 3; n = 2, 3)  

  

 

2. Results 

Let p be a prime number and G be a group acting on a non - empty set  of size  p 
n
 (n = 2, 3 and  p = 2, 3). 

Here we determine, up to isomorphism, the actual transitive p – groups (abelian and non – abelian) of degrees p
2
 

and p
3
 for p = 2, 3 and achieve a total classification of these according to small degrees. We rely heavily on the 

algebraic computer software GAP (Groups, Algorithms and Programming) to obtain both the presentations and 

the generators of  the afore – mentioned groups.  

 

2.1.1 Lemma 

Let  be a set, G a group acting on  and let H be a transitive subgroup of G on . Then G is transitive on 
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. 

Proof: 

 Let   . Since 
G
 is an orbit G on , it follows that 

G 
                                    

(2.1)   

Also since H is transitive on , we must have 
H
 =                                                   

(2.2)   

Claim:   
G
    

Let  , then  
H
 (using (2.2)), thus  = 

h
 for h H  G. Hence  = 

h
 for some  

h G and G is transitive on  and so   
G
 and using (2.1), the result follows.    

2.1.2 Lemma 

Let G ≤ Sym (), where  is a set. If | G |   | |, then G is not transitive on . 

Proof: 

If G is transitive on , then |
G
|
  

= ||,  , hence  

G=
G
G= | G  |   , thus || G and G≥. 

2.1.3 Lemma 

Let G and K be finite polycyclic groups such that GK. If G contains all the generators of K, then G 

= K. 

Thus the groups G and K are just two different presentations of the same and one group.   

Proof: 

 Let {k1, k2, … , k s} be the set of all generators of K with  1in

ik , where  

n i = o(k i) and (i = 1, 2,…, s); and let {g1, g2, … , g r} be the set of the generators of G with 1im

ig , m i = 

o(g i), (i =1, 2, …, r).  

Suppose x K, then we can always write ii

s

i

n

i nnwherekx i 



/

1

, . As each k j  G and  

1jn

jk  we have jj ndividesm  and iij

r

i

m

ij mmwithgk ij 
1

, hence 

iiij

rs

ji

nm

i

s

i

r

j

nm

i

s

i

n

i mnmwithggkx iifiiji  




 






'

,

1,1 11

)(  

Consequently K  G, so K is a subgroup of G and since GK, the result follows. 

 

2.2 TRANSITIVE 2 – GROUPS OF DEGREE 2
2
 = 4 

 Let G be a
 
transitive 2 – group of degree 4 = 2

2 
acting on the set  = {1, 2, 3, 4}. Then G ≤ Sym () and as 

Sym ()= 4! = 2
3
.3 we must have |G| = 2

n
, where n = 1, 2, 3.

  

Clearly n 1, by Lemma2.1.2 and if n = 2, then |G| = 2
2 
= 4, G is essentially abelian and either G  C4 or G  C2 

x C2. For transitivity we must have , 
G
G= 4. 

We then have the following possibilities: 


G
=1,G=4,                  (2.3)                                                                                                     


G
=2,G=2,                 (2.4) 
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
G
=4,G=1.                   (2.5)                                                                                    

Thus (2.5) holds for transitivity. 

If G  C4, then we may write G = < a > where a
4 
= 1, a Sym (4) and take a = (1, 2, 3, 4).  

If G  C2  C2, then G = {1, a, b, ab} where a, b Sym (4) with a
2 
= b

2 
= (ab)

2 
= 1 with  

a = (1, 3)(2, 4) and b = (1, 2)(3, 4). 

If n = 3, then G = 2
3
 and for transitivity we must have   ,  

G
G= 8. This yields the following 

possibilities for G:                                                                                        


G
=1,G=8,                                                                    (2.6) 


G
=2,G=4,                                                                    (2.7) 


G
=4,G=2,                                                                    (2.8) 


G
=8,G=1                                                                    (2.9)  

Thus (2.8) only holds for transitivity and in this case G is non – abelian. Consequently G is either the quaternion 

group or the octic group. 

We notice that the octic group G = < a, b: a
4 
= 1, b

2 
= 1, ba = a

3
b >, where a = (1, 2, 3, 4),  

b = (1, 4)(2, 3), is non – abelian transitive on .  

We now summarize our finding:  

2.2.1 Proposition 

There are, up to isomorphism, 3 transitive 2 - groups of degree 2
2 
= 4: the Klein  

4 - group, the cyclic group of order 4 and the octic group (see table1). 

 

2.3 TRANSITIVE 2 - GROUPS OF DEGREE 2
3
 = 8 

 Let G be a transitive 2 - group of degree 2
3 
= 8 acting transitively on the set  

 = {1, 2, 3, 4, 5, 6, 7, 8}, then G ≤ Sym (8) and since | Sym (8) | = 8! =2
7
.3

2
.5.7 and G is a 2 – group, we must 

have | G | = 2
n
, where n = 1, 2, 3, 4, 5, 6, 7. 

Clearly, n ≠1 and n 2 by Lemma 2.1.2 and when n = 3, then | G | = 2
3
 = 8 and so G is regular. 

 Now it is well - known that there are exactly 5 non – isomorphic groups of order 8,  

3 of which are abelian, namely C8, C2  C4, C2  K4 and 2 non – abelian namely the octic group and quaternion 

group. 

 First assume G is abelian. If G  C8, then G1,3 = < x > for some x in Sym (8) with x
8 
= 1, we may take x = (1, 2, 

3, 4, 5, 6, 7, 8). 

 If G  C2 x C4, then G2,3 =  a, b: a
4 
=1, b

2 
=1, ab = ba  for some distinct a and b in Sym (8). Taking a = (1, 3, 5, 

7)(2, 4, 6, 8) and b = (1, 4)(5, 8)(3, 6)(2, 7) do satisfy G2,3. 

If G  C2 x K4, then G3,3 =  a, b, c: a
2 
= b

2 
= c

2 
=1, ba = ab, ca = ac, cb = bc . Taking  

a = (1,2)(3, 4)(5, 6)(7, 8), b = (1, 3)(2, 4)(5, 7)(6, 8), c = (2, 5)(1, 6)(3, 8)(4, 7) do satisfy G3,3. 

Next we assume G non – abelian, then either G  D2 =  x, y: x
4 
= 1, y

2 
= 1, yx = x

3
y  or 

G  E =  x, y: x
4 
= 1, x

2
 = y

2
, yx = x

3
y . 

Now the elements x = (1, 4, 6, 8)(3, 5, 7, 2) and y = (8, 5)(1, 3)(2, 4)(6, 7) of Sym (8) do satisfy D2. 

And taking x = (1, 5, 7, 2)(4, 6, 8, 3) and y = (1, 6, 7, 3)(4, 2, 8, 5) satisfy the requirements for E. 

Clearly all the above – named groups satisfy | 
G 

| = 8, | G | = 1,   .  

2.3.1 Lemma 

There are, up to isomorphism, 5 transitive 2 – groups of degree 2
3
 and order 2

3 
= 8, namely the groups G1,3, G1,2, 

G3,3, D2 and E described above. 

 When n = 4, then G = 2
4 
= 16 and for transitivity, we must have 

 
G
  = 8,  G  = 2,  . 
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In this case G is not abelian and so contains no elements of order 16. Suppose G is of exponent 8, then G 

contains an element a, say, of order 8 and let H =  a . Then  

G = H  Hb for some b G, so [G: H] = 2 and H is normal in G. Clearly b
2 
H and we have the following 

possibilities for b
2
: 

b
2
=1,                    (2.10)                                                                                                                      

b
2
=a,                    (2.11)                                                                                                                            

b
2
=a

2
,                     (2.12)                                                                                                                   

b
2
=a

3
,                    (2.13)                                                                                                                         

b
2
=a

4
,                    (2.14)                                                                                                                               

b
2
=a

5
,                          (2.15) 

                                                                                                                

b
2
=

6a                                        (2.16) ,                                                                                                                        

b
2
=a

7
.                    (2.17) 

                                                                                                                        

Cases (2.11), (2.13), (2.15) and (2.17) imply that G = H which is impossible since  

 G  H. Thus cases (2.10), (2.12), (2.14), and (2.16) hold. 

Now as H is normal in G, b
-1

ab H and as a and b
-1

ab have the same order, we have         

b
-1

ab = a                   (2.18)                                                                                                           

or b
-1

ab=a
3  

                    (2.19)                                                                                                                

or b
-1

ab=a
5  

                       (2.20)                                                                                                              

or b
-1

ab=a
7
.                     (2.21) 

                                                                                                               

Clearly b
-1 

a b  a, otherwise G would be abelian. Thus we have the following possibilities for G: 

G1,4a,b:a
8
=1,b

2
=1,ab=ba

3
,                                      (2.22)                       

G2,4a,b:a
8
=1,b

2
=1,ab=ba

5
,                                                         (2.23)    

G3,4a,b:a
8
=1,b

2
=1,ab=ba

7
,                                                      (2.24) 

G1,4
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

3
,                                                  (2.25)          

G2,4
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

5
,                                                  (2.26)    

G3,4
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

7
,                                                   (2.27)    

G1,4
//
a,b:a

8
=1,b

2
=a

4
,ab=ba

3
,                                                (2.28)   

 
        

G2,4
//
a,b:a

8
=1,b

2
=a

4
,ba=ba

5
,                                                  (2.29) 

G3,4
//
a,b:a

8
=1,b

2
=a

4
,ab=ba

7
,                                                (2.30) 

G1,4
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

3
,                                                       (2.31) 

G2,4
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

5
,                                 (2.32) 

G3,4
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

7
,                                 (2.33) 

 

Now the elements a = (1, 2, 3, 4, 5, 6, 7, 8) and b = (4, 8)(1, 7)(3, 5) satisfy the requirements for G1,4.  

Next taking a = (1, 2, 3, 4, 5, 6, 7, 8), b = (6, 2)(4, 8) satisfy the requirements for G2,4. Taking a = (1, 2, 3, 4, 5, 6, 

7, 8), b = (2, 8)(3, 7)(4, 6) satisfy the requirements for G3,4. 

It is easy to see that G2,4 = G2,4
/
 = G2,4

///
 (by Lemma 2.1.3). 

We easily see, by Gap – programmes, that the groups G 1,4
/
, G3,4

/
, G2,4

//
, G3,4

//
, G1,4

///
 and G3,4

///
 do not exist as 

transitive permutation groups of degree 8. 
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If G is of exponent 4, then we obtain the following groups: 

G5,4 =  a, b, c: a
4 
=1, b

2 
=1, ab = ba, c

2
=1, ac = ca

3
, bc = ca

2
b

 
 with generators  

a = (1, 3, 5, 7)(2, 4, 6, 8), b = (2, 6)(4, 8) and c = (1, 2)(3, 8)(4, 7)(5, 6)(see GAP – programme 4). 

G6,4 =  a, b, c, d: a
2 
= b

2 
= c

2 
=1, ba = ab, ca = ac, cb = bc, d

2
=1, ad = db, bd = db,  

cd = dabc  with generators a, b, c the same as those of G3,3 and d = (2, 3)(6, 7). 

Note that the group G7,4 =  a, b: a
4 
=1, b

4 
=1, ab = ba

3 
, with G7,4=16 does not exist. 

If G is of exponent 2, then G does not exist as a permutation group. 

We summarize our finding into the following:  

2.3.2 Lemma 

There are, up to isomorphism, 5 non – abelian transitive 2 - groups of degree 2
3
 and order 2

4 
=16, namely the 

groups G1,4, G2,4, G3,4, G5,4 and G6,4 described above.  

When n =5, then | G | = 2
5 
= 32 and for transitivity we must have:  

 
G
 = 8,  G = 4,  , in this case G is non – regular and must be non – abelian. 

Since G is of degree 8, it contains no elements of order 16 and 32. 

Let a G be such that a
8 
=1 and let A =  a , set H = A  A b for some b H – A. Since  

| NH (A) | = | H | = 16, then A ⊴ H and b
– 1 

a b A, this yields the following valid equations:   

ab=ba
3
                                                                    (2.34) 

or ab=ba
5 

                                                           (2.35) 

or ab=ba
7
.                                (2.36) 

 

Thus we have the following possibilities for H: 

H1 = < a, b: a
8  

=1, b
2 
=1, ab = ba

3 
>,                                       (2.37) 

H2a,b:a
8
=1,b

2
=1,ab=ba

5
,                                                (2.38) 

H3a,b:a
8
=1,b

2
=1,ab=ba

7
,                                                   (2.39) 

H1
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

3
,                                              (2.40) 

H2
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

5
,                                         (2.41)   

H3
/
a,b:a

8
=1,b

2
=a

2
,ab=ba

7
,                                                      (2.42) 

H1
//
a,b:a

8
=1,b

2
=a

4
,ab=ba

5
,                                          (2.43) 

H2
//
a,b:a

8
=1,b

2
=a

4
,ab=ba

5
,                                                   (2.44) 

H3
//
a,b:a

8
=1,b

2
=a

4
,ab=ba

7
,                                                   (2.45) 

H1
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

3
,                                                (2.46) 

H2
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

5
,                                             (2.47) 

H3
///
a,b:a

8
=1,b

2
=a

6
,ab=ba

7
                                                      (2.48) 

But these are the groups obtained when treating the case n = 4, hence only the groups H1, H3, H3 are valid. Now 

G i = H i  H i c (i = 1, 2, 3) for some c  G – H i. Clearly c
2 
Hi as  

[G: Hi] = 2 (for i = 1, 2, 3). Also there is no c in G – Hi such that c
2 
A b. Hence we must have c

2
A, and from 

above we have the following possibilities:   

c
2
=1                                                (2.49) 

or c
2
=a

2
                                                                        (2.50) 

or c
2
=a

4
                                         (2.51)  

or c
2
=a

6                                                        
(2.52) 

 

Also as Hi ⊴ G, c
-1

ac Hi = A  Ab and c
-1

bc Hi = A  Ab, for each i =1, 2, 3. 

We first treat case H1: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                         www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.11, 2014 

 

200 

Since o(c
-1

ac) = o(a) = 8, we must have: 

ac=ca                                                                (2.53) 

or ac=ca
3
                                                                    (2.54) 

or ac=ca
5
                                                                  (2.55)                                                            

or ac=ca
7
                                                                (2.56) 

 

Also since o(c
-1

bc) = o(b) = 2, we must have: 

bc=cb                                                           (2.57) 

or bc=ca
4
                                                            (2.58) 

or bc=ca
2
b                                                            (2.59) 

or bc=ca
4
b                                                         (2.60) 

or bc=ca
6
b                                                              (2.61)  

Combining the equations (2.49) – (2.52) with equations (2.53) – (2.56) and with equations (2.57) - (2.61) yields 

80 different presentations of the same non – abelian group containing H1 as a subgroup and for reference 

purposes, we choose one of them, say,  

G1,5 = < a, b, c: a
8 
= 1, b

2 
= 1, ab = ba

3
, c

2 
= 1, bc = cb, ac = ca

7 
> with  

a = (1, 2, 3, 4, 5, 6, 7, 8), b = (4, 8)(1, 7)(3, 5) and c = (1, 3)(4, 8)(5, 7)(here c determined from  Gap – 

programme 1). 

Next we consider the case H2, and following the above arguments, we get 96 different presentations of the same 

non – abelian group containing H2 as a subgroup. As a representative of these groups we choose the following: 

G2,5 =  a, b, c: a
8 
= 1, b

2
 =1, ab = ba

5
, c

2 
=1, cb = bc, ac = ca

7 
  with  

a = (1, 2, 3, 4, 5, 6, 7, 8), b = (2, 6)(4, 8) and c = (2, 8)(3, 7)(4, 6)  (here c is determined by some adjustments to 

Gap – programme 1). But we see that the set of generators of G2,5 is contained in G1,5 and by Lemma 2.1.3, G2,5 

= G1,5.  

Lastly we examine the case H3: 

Here we obtain 144 different presentations of the same non – abelian group G3,5 containing H3  

as a subgroup. Again for reference purposes we choose one of these, say, 

G3,5 =  a, b, c: a
8 
=1, b

2 
=1, ab = ba

7
, c

2 
=1, bc = cb, ac = ca

3
  with a = (1, 2, 3, 4, 5, 6, 7, 8), 

 b = (2, 8)(3, 7)(4, 6), c = (2, 4)(3, 7)(6, 8) (here c is obtained from Gap – programme 1).  

Again the generators of G3,5 are in G1,5 and by Lemma 2.1.3, G3,5 = G1,5.  

There is no elements a, b in Sym (8) with G =  a, b: a
8 
=1, b

4 
=1, ab = ba

3
 > and  

|G| = 2
5 
= 32. 

If G is of exponent 4, we have the following groups: 

G4,5 =  a, b, c: a
4 
=1, b

4 
=1, ab = ba, c

2 
=1, ac = cab

2
, bc = cb

3 
 with generators  

a = (1, 3, 5, 7)(2, 4, 6, 8), b = (2, 4, 6, 8) and c = (4, 8), 

G5,5 = < a, b, c, d: a
4 
=1, b

2 
=1, ab = ba, c

2 
=1, ac = ca

3
, bc = ca

2
b, d

2
=1, ad = da

3
,  

bd = db,  cd = dc  with the same generators a, b, c for G5,4 and d = (3, 7)(4, 8)  

(see Gap - programme 2).   

From G6,4, we obtain a group of exponent 4 isomorphic to G3,5. 

If G is of exponent 2, then G does not exist as a permutation group. 

We now summarize our findings into the following:  

2.3.3 Lemma 

There are, up to isomorphism, 3 non – abelian transitive 2 - groups of degree 2
3
 and order 2

5 
= 32, namely the 

groups G1,5, G2,5 and G3,5 described above.  
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 When n = 6, then G= 2
6 
= 64 and for G to be transitive, we must have: 

 
G
  = 8,  G = 8,  . 

 Consequently G is not abelian. Clearly G contains no elements of order 64, 32 and 16, hence G is essentially of 

exponent 8. If G contains two elements of order 8, then G must be of the form: 

 G0,6
 
=  a, b: a

8 
=1, b

8 
=1, ab = ba

3
  or G00,6 =  a, b: a

8 
=1, b

8 
=1, ab = ba

5
  or  

G000,6 =  a, b: a
8 
=1, b

8 
=1, ab = ba

7 
. 

 But computations confirm the non – existence of such permutations a and b satisfying the requirements of G0,6 

or G00,6 or G000,6. Consequently G contains exactly one generator of order 8. 

Now let a G with a
8  

=1 and let A =  a . For b G – A, let H =  b, A , then 

 H = A  A b and [H: A] = 2, so that A ⊴ H. Consequently, b
-1

ab A and since  

o(b
-1

ab) = o(a) = 8 and  G is non – abelian, it follows that: 

 ab=ba
3
                                                                 (2.62) 

 or ab=ba
5
                                                           (2.63) 

or ab=ba
7
                                                                (2.64)  

Also as [H: A] = 2, b
2 
A. Hence either: 

 b
2
=1                                            (2.65) 

 or b
2
=a

2
                                                                     (2.66) 

 or b
2
=a

4
                                                                       (2.67) 

 or b
2
=a

6
                                                                        (2.68) 

 

Combining the equations (2.62) – (2.64) and the equations (2.65) – (2.68) yields the already obtained groups H1, 

H2, … (see the case n = 4 above) of which only 3 are valid. 

Let Hi (i =1, 2, 3) be any such group and let Ki =  c, Hi , for some c G - Hi then  

Ki = Hi  Hi c and [ Ki: Hi ] = 2.Thus Hi ⊴ Ki and c
2 
Hi, c

-1
ac Hi and c

-1
bc Hi (since  

a A⊴ Hi, bAb  Hi). Thus the group Ki so constructed is just the unique group G1,5 obtained in the case n = 5. 

Finally let G1,6 =  d, G1,5   for some d G1,6 - G1,5, then let G1,6 = G1,5  G1,5d,  

[ G1,6 : G1,5] = 2 and G1,5 ⊴ G1,6. Consequently, d
2 
G1,5, d

-1
ad, d

-1
bd, d

-1
cd G1,5 (since aHi  G1,5, bHi  G1,5, 

cG1,5) for each i. The elements a, b, c are already known and we look for the generator d satisfying the above 

requireme   nts.  

 

Clearly G1,6= 2
6
 and the group G1,6 contains G1,5 as a subgroup and is the group we are after.  As d

2
 G1,5, 

then o (d
2
) = 1 or 2 or 4, that is,  

d
2
=1                                                                      (2.69) 

 or d
2
=a

4
                                                        (2.70) 

 or d
2
=b                                     (2.71) 

 or d
2
=a

2
b                                                        (2.72) 

 or d
2
=a

4
b                                                                 (2.73) 

or d
2
=a

6
b                                                                       (2.74) 

or d
2
=c                                                                (2.75) 

or d
2
=ac                                                          (2.76) 

or d
2
=a

2
c                                                                   (2.77)  

or d
2
=a

3
c                                                                 (2.78) 

or d
2
=a

4
c                                                                (2.79) 

or d
2
=a

5
c                                                             (2.80) 
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or d
2
=a

6
c                                                               (2.81) 

or d
2
=a

7
c                                                                   (2.82) 

or d
2
=bc                                                                        (2.83)  

or d
2
=a

4
bc                                                     (2.84)   

or d
2
=a

2
                                                                 (2.85) 

or d
2
=a

6 
                                                                   (2.86) 

or d
2
=ab                                                                    (2.87) 

or d
2
=a

3
b                                                             (2.88) 

or d
2
=a

5
b                                                                (2.89)  

or d
2
=a

7
b

 
                                                                 (2.90) 

or d
2
=a

2
bc                                                                (2.91)  

or d
2
=a

6
bc                                                          (2.92)  

If o (d
2
) =1 then d

2 
=1. But d

-1
ad  G1 and since o(d

-1
ad) = o(a) = 8, it follows that  

ad=da                                                                        (2.93) 

or  ad=da
3
                                                      (2.94) 

or ad=da
5
                                                                      (2.95)  

or ad=da
7
                                 (2.96) 

or ad=dabc                                                            (2.97) 

or ad=da
3
bc                                                           (2.98) 

or ad=da
5
bc                                                    (2.99) 

or ad=da
7
bc                                                           (2.100) 

Also d
–1

bd G1 and as o (d
-1

bd) = o (b) = 2, if follows that 

bd=db                                                     (2.101) 

or  bd=da
4
                               (3.102) 

or  bd=dc                                 (2.103) 

or bd=da
2
b                                             (2.104) 

or bd=da
4
b                                              (2.105) 

or bd=da6b                                             (2.106) 

or bd=dac                                                 (2.107)  

or bd=da
2
c                                                 (2.108)  

or bd=da
3
c                                                                  (2.109) 

or bd=da
4
c                                                                  (2.110)  

or  bd=da
5
c                                                               (2.111) 

or bd=da
6
c                                                                     (2.112) 

or bd=da
7
c                                                                     (2.113)

 

As d
-1

cdG and o(d
-1

cd) = o(c) = 2, it follows that  

cd=dc                                                                           (2.114) 

or cd=da
4
                                                                (2.115) 

or cd=dc                                            (2.116)  

or cd=da
2
b                                                                   (2.117) 

or cd=da
4
b                 (2.118)  

or cd=da6b                         (2.119) 

or cd=dac                                     (2.120) 

or cd=da
2
c                           (2.121) 
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or cd=da
3
c                               (2.122) 

or cd=da
4
c                  (2.123) 

or cd=da
5
c                              (2.124) 

or cd=da
6
c                                 (2.125)  

or cd=da
7
c                                 (2.126) 

Combining the equations (2.69) – (2.92) with the equations (2.93) – (2.100) with the equations (2.101) – (2.113) 

with the equations  (2.114) - (2.126) yields 45 valid different representations of the group G1,6 and we choose 

one of them as a representative of G1,6 , thus G1,6 =  a, b, c, d: a
8 
= 1, b

2 
= 1, ab = ba

3
, c

2 
= 1, bc = cb, ac = ca

7
, d

2 

= 1, bd = da
2
c,  

cd = da
6
b, ad = da

3
bc , where a = (1, 2, 3, 4, 5, 6, 7, 8), b = (1, 7)(3, 5)(4, 8),  

c = (1, 3)(4, 8)(5, 7) and d = (1, 6)(2, 5)(3, 8)(4, 7) (here we use Gap – programme 2 to obtain d ) and so and G1,6 

is transitive on . 

 If G is of exponent 4, then we have the following presentations: 

G2,6 =  a, b, c: a
4 
=1, b

4 
=1, ab = ba, c

4 
=1, ac = ca

3
b

2
, bc = ca

3
b , with generators 

 a = (1, 3, 5, 7)(2, 4, 6, 8), b = (2, 4, 6, 8) and c = (1, 2, 3, 4)(5, 6, 7, 8).  

G3,6 = < a, b, c, d, e: a
4 
=1, b

2 
=1, ab = ba, c

2 
=1, ac = ca

3
, bc = ca

2
b, d

2 
=1, ad = da

3
,  

bd = db,  cd = dc, e
2
=1, ae = eab, be = eb, ce = ecd, de = ed

 
, where a, b, c, d are the same generators as those 

of G3,5 and e = (4, 8) 

Thus, we have: 

 

2.3.4 Lemma 

There are, up to isomorphism, 3 non – abelian transitive 2 – groups of degree 2
3
 and order 2

6 
= 64, namely the 

groups G1,6, G2,6 and G3,6 described above.  

 When n = 7, then G=2
7
 = 128 and for G to be transitive, we must have: 

 
G
 = 8, G =16,  . 

Arguing in a similar fashion as in the case n = 6, we see that G contains G1,6 as a subgroup and that a 

presentation of G of exponent 8 is   

G1,7 =  a, b, c, d, e: a
8 
=1, b

2 
=1, ab = ba

3
, c

2 
=1, bc = cb, ac = ca

7
, d

2 
=1, bd = da

2
c,  

cd = da
6
b, ad = da

3
bc, e

2 
=1, be = ea

4
c, ce = ea

4
b, de = ea

3
c, ae = ebd

  
 where a, b, c, d  are the same generators 

as those of G1,6 and e = (2, 4)(6, 8). 

 

If G is of exponent 4, then we have the following presentations: 

G2,7 =  a, b, c, d: a
4
=1, b

4
=1, ab = ba, c

4
=1, ac = ca

3
b

2
, bc = ca

3
b, d

2
 =1, ad = dab

2
,  

bd = db
3
, cd = dac

3
 , where a, b, c are the same generators as those of G2,6 and d = (4, 8). 

G3,7 = < a, b, c, d, e, f: a
4 
=1, b

2 
=1, ab = ba, c

2 
=1, ac = ca

3
, bc = ca

2
b, d

2 
=1, ad = da

3
,  

bd = db, cd = dc, e
2 
=1, ae = eab, be = eb, ce = ecd, de = ed, f 

2 
=1, af = facd, bf = fbd, 

 cf = fc, df = fd, ef = fde
 
, where a, b, c, d, e are the same generators as those of G3,6 and  

f = (3, 4)(7, 8). 

 

Thus, we have: 

2.3.5 Lemma 

 There are, up to isomorphism, 3 non – abelian transitive 2 – groups of degree 2
3
 and order 2

7 
=128, namely the 

groups G1,7, G2,7 and G3,7 described above.  

We now summarize our findings in table2 and we have: 
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2.3.6 Proposition 

There are, up to isomorphism, 19 transitive 2 – groups of degree 2
3 

= 8, three of these are abelian. Of the 

remaining 16 non – abelian, 6 are of exponent 8, 10 are of exponent 4 and none is of exponent 2.  

 

2.4 TRANSITIVE 3 - GROUPS OF DEGREES 3
2
 AND 3

3
 

 Here we are working in the groups Sym (9) and Sym (27) of large orders. Especially the order of Sym (27) is too 

large for the memory of any computer since the Gap software was written/ manufactured with such limitations. 

Consequently, it is impossible to run Gap – based computer programmes that search through the whole of Sym 

(27) for results and such programmes are rather run on subgroups of Sym (27) of orders relatively small enough 

for the computer memory.  

In order to determine the transitive 3 – groups of degrees 3
2
 and 3

3
 up to equivalence, we partly make use of the 

method exposed in determining the transitive 2 – groups of degrees 2
2
 and 2

3
, Lemmas 2.1.1, 2.1.2, 2.1.3, some 

facts from Number Theory and the following results: 

2.4.1 Lemma 

Let p be an arbitrary but fixed prime. Let 

).(,,)(mod1

,,1,1:,,1,1:,

332

323

pSymbbadistinctandprwhere

ababbabaGandbaabbabaG

p

rpprpp








 

Then G = G and there is no element b Sym (p
3
) satisfying G where | G | = p

5
. 

Proof: 

 We first show that | G | = | G* | = p
4
. Clearly | G* | = p

4
 and let A= < a >, 1

3

pa . Then  

b A and   12 2

...  pAbAbAbAG , where |A b
i
 | = p

3
, for each  

i = 0, 1, . . . , p
2 
- 1. 

 

Clearly 
2pa  is an element of A of order p, while b

p
 is an element of Ab

p
 of order p, hence  

ppppp

ppppp

pppppp

Abbathatsobbthat

followsitpdcgasNowbaorbathatfollowsitgroupsamethe

ofsubgroupsarebandaceandbasoandpba











)1(1

)1(

2

22

222

1,

,1)1,1(...1,

sin||||

   

Thus A = Ab
p
 and A b

i
 = Ab

p+ i
 for each i = 0, 1, . . . , p

2
 – 1. Consequently, 

ppppppppppppp AbAbAbAbAbAbAbAbAb   1)1(222111 222222

,...,, So 

that 

  1112 2

......  pppp AbAbAbAbAbAbAG  

      12 ...  pAbAbAbA  

Thus | G | = | AAb  … Ab
p – 1 

| = | A | + | Ab | + … + | Ab
p – 1  

| = p
3
. p

 
= p

4
 = | G* |.                                     

Since 1,1
2

 

pp bthathaveweb  and so b G. Hence the result by lemma 2.1.3   

2.4.2 Lemma  
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Let p be an arbitrary but fixed prime. Let   

).(,,)mod(1

,,1,1:,,1,1:,

333

333

pSymbbadistinctandprwhere

ababbabaGandbaabbabaG

p

rpprpp








 

Then G = G and there is no element b Sym (p
3
) satisfying G where | G | = p

6
. 

Proof: 

 This follows a similar argument used in the proof of Lemma 2.4.1. Here 
2pa is an element of A of order p 

while 
2pb is an element of Ab

p
 of order p, where A = < a > with 1

3

pa  and b A.  

2.4.3 Lemma 

Let p be an arbitrary but fixed prime. Let    

 

).(,,)mod(1

,,1,1:,,1,1:,

322

222

pSymbbadistinctandprwhere

ababbabaGandbaabbabaG

p

rpprpp








 

  Then G = G and there is no element b Sym (p
3
) satisfying G where | G | = p

4
. 

Proof: 

 This follows a similar argument used in the proof of Lemma 2.4.1. Here 
pa is an element of A of order p while 

pb is an element of Ab
p
 of order p, where A = < a > with 1

2

pa  and b A. 

             Our Main Result 

2.4.4 Theorem   

Let p be an arbitrary but fixed prime number and G a non – abelian transitive p – group of degree p
3
, exponent p 

and rank 5, then every p – group of degree p
3
 and rank 6 containing G as a normal subgroup, is of exponent p

2
.  

Proof: 

Let G
/
 be a p – group containing G as a normal subgroup, then by Lemma 2.1.1, G

/
 is transitive of degree p

3
 and 

by Lemma 2.1.2 and as a consequence of Lagrange’s theorem, G
/
 contains elements of orders p, p

2
 and p

3
.   

Since G is of exponent p and rank 5, G is generated by 5 generators each of order p, hence G
/
 is generated by 6 

generators each of order p and G
/
 = p

6
.  

We have that G
/ 
= < G, f >, for some f Sym (p

3
) such that f 

p
 = 1, f  G and G ⊴ G

/
. Now let y  G

/
 - G such 

that y is of order p
3
. Then 1py is an element of G

/
 of order p

2
. As

' :G G p    , we have G
/
 = G  G f  . . . 

 G f 
p-1

, and so 
py  G or 

py  G f 
k
, for some integer k with 1  k  p -1. Now as G is of index p in G

/
, it 

follows that 
py  G, and hence

py  G f 
k
, thus Gfy kp 

 but 
py  G and Gf k 

 for any k with 1  k 

 p -1. Consequently we must have
kpkp fyandfy  1 . Thus 

2

)()(1 ppkkpp yfff  , but 

this is impossible since y is an element of G
/
 of order p

3
. Thus G

/
 contains no elements of order p

3
, but an 

element of order p
2
 and the exponent of G is p

2
. 

 

2.4.5 Remark 

(i) It is well – known that the solutions of z 
p
 1 (mod q), where z is not congruent to 1 modulo q are 
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2 1, ,..., pr r r 
 and all yield the same group, since by replacing a by a 

j
 as a generator of < a > replaces r by 

r 
j
. Consequently, the groups  

< a, b: a 
m 

= 1, b 
n  

= 1, a b = b a 
r
 >, where r is such that r 

n  
 1 (mod m) and r 1, are the same. 

(ii) In the light of (i) above, we easily see that the only instance that the group     

),(,)mod(1,1,1:, 32222

pSymbadistinctandprwherebaabbabaG prpp   

with | G | = p
4
 exists as a permutation group of degree p

3
 is that it be abelian. 

The same remark applies to the group 

).(,,)mod(1

),mod(1,)mod(1,,1,,1,1:,,

32

22

2

22222

pSymcbadistinctandpt

psprwherecbbccaaccbaabbacbaG

p

pptsprpp




 

PROGRAMME 1: 

gap>s8:=Group((1,2),(1,2,3,4,5,6,7,8));; 

gap> a:=(1,2,3,4,5,6,7,8);;b:=(1,7)(3,5)(4,8);; 

gap> h:=Subgroup(s8,[a,b]);; 

gap> diff:=Difference(s8,h);; 

gap> req:=[];; 

gap> for c in diff do 

> if c^2 = () then 

> if b^c = b then 

> if a^c = a^7 then 

> Add(req,c); 

> fi; 

> fi; 

> fi; 

> od; 

gap> req; 

[ (1,3)(4,8)(5,7), (1,7)(2,6)(3,5) ] 

 

 

PROGRAMME 2: 

Gap> s8:=SymmetricGroup(8);; 

gap>a:=(1,2,3,4,5,6,7,8);;b:=(1,7)(3,5)(4,8);;c:=(1,3)(4,8)(5,7);; 

gap> H:=Subgroup(s8,[a,b,c]);; 

gap> diff:=Difference(s8,H);; 

gap> req:=[];; 

gap> for r in diff do 

> if r^2=() then 

> if Order(s8,r)<>4 then 
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> if Order(s8,r)<>8 then 

> if a^r in H then 

> if b^r in H then 

> if c^r in H then 

> if Size(Subgroup(s8,[a,b,c,r]))=64 then 

> Add(req,r); 

> fi; 

> fi; 

> fi; 

> fi; 

> fi; 

> fi; 

> fi; 

> od; 

gap> req; 

[(3,7)(4,8), (2,6)(3,7), (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,3)(2,8)(4,6)(5,7), (1,4)(2,7)(3,6)(5,8), 

(1,5)(4,8), (1,5)(2,6), 

  (1,6)(2,5)(3,8)(4,7), (1,7)(2,4)(3,5)(6,8), (1,7)(2,8)(3,5)(4,6), 

(1,8)(2,3)(4,5)(6,7) ] 

 

 PROGRAMME 4 

gap> s8:=SymmetricGroup(8);; 

gap> a:=(1,3,5,7)(2,4,6,8);;b:=(2,6)(4,8);; 

gap> H:=Subgroup(s8,[a,b]);; 

gap> diff:=Difference(s8,H);; 

gap> req:=[];; 

gap> for c in diff do 

> if c^2=() then 

> if Order(s8,c)<>4 then 

> if Order(s8,c)<>8 then 

> if a^c in H then 

> if b^c in H then 

> if Size(Subgroup(s8,[a,b,c]))=16 then 

> Add(req,c); 

> fi; 

> fi; 

> fi; 

> fi; 

> fi; 

> fi; 

> od; 

gap> req;; 

gap> Size(req); 

40 
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gap> req; 

[ (4,8), (3,7), (3,7)(4,8), (2,4)(6,8), (2,4)(3,7)(6,8), (2,6), (2,6)(3,7), 

 (2,6)(3,7)(4,8), (2,8)(4,6), (2,8)(3,7)(4,6), (1,2)(3,4)(5,6)(7,8), 

  (1,2)(3,8)(4,7)(5,6), (1,3)(5,7), (1,3)(4,8)(5,7), (1,3)(2,4)(5,7)(6,8), 

  (1,3)(2,6)(5,7), (1,3)(2,6)(4,8)(5,7), (1,3)(2,8)(4,6)(5,7), 

  (1,4)(2,3)(5,8)(6,7), (1,4)(2,7)(3,6)(5,8), (1,5), (1,5)(4,8), 

  (1,5)(3,7)(4,8), (1,5)(2,4)(6,8), (1,5)(2,4)(3,7)(6,8), (1,5)(2,6), 

  (1,5)(2,6)(4,8), (1,5)(2,6)(3,7), (1,5)(2,8)(4,6), (1,5)(2,8)(3,7)(4,6), 

  (1,6)(2,5)(3,4)(7,8), (1,6)(2,5)(3,8)(4,7), (1,7)(3,5), (1,7)(3,5)(4,8), 

  (1,7)(2,4)(3,5)(6,8), (1,7)(2,6)(3,5), (1,7)(2,6)(3,5)(4,8), 

  (1,7)(2,8)(3,5)(4,6), (1,8)(2,3)(4,5)(6,7), (1,8)(2,7)(3,6)(4,5)  
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