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Abstract

In this paper oscillation criterion is investigated for all solutions of the third-order non linear
neutral differential equations with positive and negative coefficients:

[x(6) + r(Of (@ ON]" + p(D)g (x(a(®))) — ¢(O)g (x(a(®))) = 0,6 = £, (1.1) Some
sufficient conditions are established so that every solution of eq.(1.1) oscillate. We improved
theorem 2.4 and theorem 2.10 in [5]. Examples are given to illustrated our main results.
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1. Introduction

The study of neutral differential equations with positive and negative coefficients has been
recently considered the attention of many authors see [2]- [5] and [7]-[9] a few of them have
been investigated the case with variable coefficients , see [2]-[3], [5].[7]- [9]. The authors in
[5] investigated eq.(1.1) of higher order where f(u) = u and established necessary and
sufficient conditions to ensure the oscillation of every solution of eq.(1.1). In this paper we
give a different structure of [5] and established necessary and sufficient conditions for the
oscillation of every solution of eq.(1.1).

Consider the nonlinear neutral differential equation with positive and negative coefficients
of third order.

[x(@®) + r(®O)f x@ON]" + p(®)g(x(a(2))) — q(O)g(x(a(t))) =0,t =, (1.1)
Wherer,p,q € C[[ty,©); R*],7,0,a are continuous functions with

lim;_, 7(t) = oo, lim;_, o(t) = o, lim;_, a(t) = o, and a(t) is increasing
function, a~1(t) ,will denote the inverse function of a(t). (1.2

By a solution of eg.(1.1) we mean a function x(t) € ([t, ,%); R ) such that

x(t) +r(t)f(x(z(t))) is three times continuously differentiable and x(t) satisfies eq. (1.1)
where t, = max{z(t),o(t),a(t)}. In initial interval solution of eq.(1.1) is said to be
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oscillatory if it has arbitrarily large zeros , otherwise is said to be non oscillatory .The purpose
of this paper is to obtain sufficient conditions for the oscillation of all solutions of eq. (1.1).

2. Some Basic Lemmas
The following lemmas will be useful in the proof of the main results:
Lemmal (Lemma2.1.2[1])

Suppose that p,q € C[R*,R*], q(t) <t for t>t, lim,,,q(t) = and

t

1
lirtn inf fp(s)ds > A (2.1)
q(t)

Then the inequality y'(t) + p(t)y(q(t)) <0 has no eventually positive solutions, and
the inequality y'(t) + p(t)y(q(t)) = 0 has no eventually negative solutions.

Lemma2 (Lemma2.1.2 [1])

Suppose that p,q € C[R*,R*],q(t) >t for t >t,,and

q(t)

1
lirtn infj p(s)ds > A (2.1)
t

Then the inequality y'(t) —p(t)y(q(t)) =0 has no eventually positive solutions, and the
inequality y'(t) — p(t)y(q(t)) < 0 has no eventually negative solutions.

Lemma 3( Lemma 1.5.5[2] )
let g(t) € C[R,R*],R* =[0,),0(t),a(t) be continuous strictly increasing functions
with  lim,,e 0(t) = 00, lim,,e a(t) = o0 and o(t) < a(t), fora(t) = t,,

a(t)

if ft‘f g(O)dt < oo then lim;q, [, g(s)ds = 0.

In this paper we will assume that the following conditions hold.
H. liminf[h(t) = p(t) — q(@” (a(ON[a" (a(t)]1>0,  t=1t.

Hi. limsup[h(t) = p(t) — q(a™*(e(®)[a " (o(£))]] < 0

t—>oo

JD)

H,. fEC(R;R), 0<TSM,’LL¢O.

Hy. g €CRRLO<N, <22 <N, ,u=0.

184


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) LL,IIA
Vol.4, No.11, 2014 NS'E
. Main results

In this section we present the following results. For simplicity let

z(t) = x(t) + r(O)f (x(z())) (3.1

w(t) = z(t) + j;oofoo fa‘l(d(u)) q(v)g (x(a(v))) dvduds, (3.5)

Theorem 3.1. Assume that H;- H; hold ,7(t) < t,a(t) < t,a(t) <t,r(t) is bounded and
there exists a continuous function g(t) >t with o(B(t)) <t

o o ra” (o))
f f f q(v)dvduds < © (3.3)
t, vs u

¢ B 1
liminf N, f f (v —wWh®)[1 — Mr(c(v))]dvdu > - (3.4)
tmee s(B®) Ju €

Then every solution of (1.1) is oscillatory.

Proof. Let x(t) be nonoscillatory solution of eq.(1.1). for the sake of contradiction suppose
that x(£) > 0,x(z()) > 0,x(a(£)) > 0,x(a(t)) > 0for t = t,.

By condition (3.3) and Lemma(3) we get

© ro ra” (o))
limf f f q(w)dvduds = 0 (3.5)
t Js Yu

t—o

Differentiating eq.(3.2) three times reduce to

w''(t) = — [p(t) —q (a‘l(a(t))) [a"l(a(t))]] g (x(a(t))) <0 (3.6)
Hence w(t),w'(t),w”(t) are monotonic functions.
Since w(t) > 0 then we have only two cases to consider for t > t; > t,:
. w()>0 w(t)>0 w'(t) >0 w"(t)<0
ii. w() >0, w()<0, w'(t) >0, w"(t) <0
Case i. In this case it follows that lim;_,,, w(t) = oo.
On the other hand

By H1 there exist A > 0 suchthat h(t) = p(t) — q(a 1 (a()))[a"(a(t))] = 1 for
t > t, = t,. Integrating (3.6) from t, to oo we get:

—w'"(t,) < — f:: h(s)g (x(a(s))) ds
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w'(ty) = wh(s)g (x(a(s))) ds > N, wh(s)x(a(s))ds

2
w'(t,) = N;A f:x(a(s))ds

ftjx(a(s))ds < % then x(t) € L[t,, o) implies that x(t) is bounded then there exist a
constant k > 0 such that x(t) < k. From (3.2) it follows

o ro ra” (o))
w(t) < x(6) + Mr(©Ox(z(©) + N, j j ] aw)x(a(v))dvduds

© ro ra” (o)
<k+Mr(t)k + Nzkf f f q(v)dvduds
t S u

Using (3.5) then for t large enough it follows that for each € > 0
w(t) < k(1 + Mr(t) + Ny¢)
Which is a contradiction.

Caseii. w(t) >0, w'(t) <0, w"(t) >0, w"(t) < 0. Integrating (3.6) from
t to B(t), where (t) =t we get

—w'(t) < — fﬁ(t) h(s)g (x(a(s))) ds

t

w'(t) = jﬁ(t) h(s)g (x(a(s))) ds

t

B(t)
> le h(s)x(a(s))ds
t
Integrating the last inequality from t to S(t)

—w'(t) = N, ftﬁ(t) ff(s)h(v)x(a(v))dvds

B(®)
—w'(t) = le (v— t)h(v)x(a(v))dv

w'(©) < =Ny [P O~ Hh@)x(s(v))dv (3.7)
From (3.2)
© ro ra”l(o(w)
x(t) =w() —r(O)f (x(r(t))) — f f f q(v)g (x(a(v))) dvduds
w o ra” (o)
> w(t) — Mr(t)x(r(t)) — sz f f q(v)x(a(v))dvduds
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> w(t) - MrOw(z®) = N, [ 717 " qw)w () dvduds

> w(t) — Mr(®)w(z(t)) — Nyw(a(t)) f:o f:o ff_l(a(u)) q(v)dvduds
x(t) = w(t) — Mr(t)w(‘r(t)) — stw(a(t)), foreach € >0

x(t) = w(t)[1 — Mr(t)] — Ke where N,w(a(t)) < K, hence for large enough t

x(o(t)) = w(a(®)[1 — Mr(a(t))] (3.8)
Substituting (3.8) into (3.7) yields
B(®)
w'(t) £ —N, j (v — H)hR@Iw(c())[1 — Mr(a(v))]dv (3.9)

B®)
w'(t) + Nyw (a(B())) f (v — ORW)[1 — Mr(c(v))]dv < 0

Then by Lemma 1 with condition (3.4) the last inequality has no eventually positive solution,
which is a contradiction. m

Remark 3.2. We can see that theorem 3.1 remain true if we replace condition (3.4) by

B(©)
lim inf %J; (v—t)2h(v) (1 - Mr(a(v))) dv>1 (3.10)

t—w

Proof. The proof is similar to that in case i (Theorem 3.1), while in case ii Integrating (3.9)
fromt to f(t) we get

B rB(s)
—w(t) < —N; f f (v— S)h(v)w(a(v)) (1 — Mr(a(v))) dvds
t N

N, (F®

<-—| @-0h@w(o®) (1-Mr(o(w)))dv

N, B(t)
w(t) 2 = w(o(B(©))) f (v — )2 h(v) (1 - Mr(a(v))) dv

1> % f ﬁ(t)(v — )2 h(v) (1 - Mr(a(v))) dv

Which is a contradiction with (3.10).

Example 1. Consider the third order neutral differential equation:
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37'[
1 — 3
x(t +—xt—47‘t] + et+—(1— >
[() 2 ) ( 2 cos?t+2 Z(t—37”)+1

_tx(t - [x*(t — ) + 2]
(t —77) +1

where r(t) =1, p(t) = et +;(1 -

=0 ,t>t, (ED

) @ =e

cos2t+2

() =t —4m , o(t) =t—3?” . a(t) =t—77”, a Y (o(t)) =t +2n

f()y=u , M=1

u(u?+2) gw) _ u+2

u2+1 Tu _u2+1

gu) = =1, N, =2

(i) h(0) = p(t) — q(a—l(a(t))[a—l(a(t))]' _ ot 4 30080t an

2 cos2t+2
lim inf,_[p(t) — q (a‘l(a(t))[a_l(a(t))]] =1>0

(i) Jy, [ f, " e vdvduds = e~ (1 - e72T) < oo

3

(iii) lim 1an,of fum —u)[e™ +§(1 -— ) —e V] (1 _%) dvdu = 33L2 ~

cos2v+2

2.9

Then according to Theorem 3.1 every solution of equation (E1) is oscillatory, for instance
x(t) =sint issuch solution.

Theorem 3.3 : Assume that H;, H, - Hs, and (3.3) are hold, 7(t) < t,a(t) >t, r(t)is
bounded, and there exists a continuous functions B(t) > t such that

o) AW 1
lim inf N J j (v = WAL - Mr(e@)dvdu >~ (34)

Then every bounded solution of eq.(1.1) is oscillatory.

Proof. Let x(t) be nonoscillatory solution of eq.(1.1), for the sake of contradiction suppose
that x(t) > O,x(r(t)) > O,x(a(t)) > 0,x(a(t)) > 0for t > t,.

By condition (3.3) and Lemma(3) implies that (3.5) holds.

Differentiating eq.(3.2) three times reduce to

w(t) = — [p(t) —q (a‘l(a(t))) [a‘l(a(t))]] g (x(a(t))) >0

Hence w(t), w'(t), w'(t) are monotonic functions.
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Since w(t) > 0 then we have two cases:

Lw@®) >0 wi)>0w'(®)>0w'(t)=0
iLw@®) >0,w@®)>0w @) <ow'(t)=0
Case i. In this case it follows that lim;_,,, w(t) = oo.

On the other hand since x(t) is bounded then there exist a constant k > 0 such that x(t) <
k. From (3.2) it follows

© ro ra” (o))
w(t) < x(t) + Mr(t)x(r(t)) + sz f f q(v)x(a(v))dvduds
t S u

0 o ~a”t (o)
<k+Mr(t)k + Nzkj j j q(v)dvduds
t S u

Using (3.5) it follows that for t large enough we have for each € > 0
w(t) < k(1 + Mr(t) + Ny¢)

Which as t — oo we get a contradiction.

Caseii. Let lim; ,w(t) =1, 0<I<o

If [ = oo we can treat in similar way as in case i and get a contradiction.

If 0<i<oo, w(t)<l

Integrating (3.6) from t to S(t), where B(t) > t we obtain
" B(t)
—w'(t) 2 — [ h(s)g(x(o(s)))ds
" B®)
w'() < [[7 h(s)g(x(a(s)))ds
Integrating the last inequality from t to f(t) yields

~w'(®) < [FO [FOr@)g(x(o()))dvds

wi(t) > — ftﬁ(t) ff(s) h(v)g (x(a(v))) dvds
B(b)
w'(t) > le (v — D)) |x(c(v))dv (3.11)

t

From (3.2) we get

x(®) = w(t) = r@f (x(z®)) = [ 7 J2 Y q(w)g (x(a@))) dvduds
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> w(t) - rOMx(c(®) = Ny [7[7 [ ™ q)x(av))dvduds
> w(t) - MrOw(z(®) = N, [ 1717 " gw)w(a(w))dvduds
> w(t) - MrOw(z(©) = Nol [ [7 [© ™ q(v)dvduds.

By (3.5) for each & > 0 the last inequality reduce to

x(t) = w(t)[1 — Mr(t)] — N,le , then for t large enough it follows that

x(t) = w(t)[1— Mr(t)] hence

x(a(t)) > W(a(t))[l — Mr(a(t))] (3.12)
Substituting (3.12) into (3.11) we get
w(@©) = N, [P0 - 01r@)w(o)[1 — Mr(c())]dv (3.13)  *
B(t)

w'(t) — le(a(t))f (wv—=-0)h()|A —Mr(e(v)))dv =0

Then by Lemma 2 with condition (3.4)’ the last inequality has no eventually positive
solution, which is a contradiction. m

Remark 3.4. We can see that theorem 3.3 remain true if we replace condition (3.4)' by

N, (B®
liminf = | (v =02 k()| (1= Mr(o()))dv >1 (3.14)

And a(t) = B(t).

Proof. The proof is similar to that in case i Theorem 3.3, and in case ii Integrating (3.13) from
t to f(t) we get

w@B®) —w(t) = Ny [7© [FOw - ) h@)w(o@)[1 - Mr(e())]dvds

N B(®)
w(B(®) = M j v = 0*[h@)I[1 = Mr(o(@))]dv, o(8) 2 B(®)
N, (PO
12| (=0 h®I[1 - Mr(s(v)]dv

t

Which contradicts (3.14).
Example2. Consider the neutral differential equation of third order

1 x(2t)[x%(2t)+3] 2 x(2t-m)[x?(2t-n)+3] 0
t*  x2(26)+2 t3 x2(2t—-m)+2 o

[x(®) + 2x(t — 2m)] +
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t>t>0, (E2)

2T

where () =1,p() ==, q() =3

) =t—2n, o) =2t, at) =2t—m, a *(o(®)) =t+% B() =2t

f(wy=u , M=1

_ u(u?+3) gw) _ u+3 _ 1 _ _3
g = 7, . — i, 1t hence Ny =1, N, =2
i _ drp _ 1 2
@) @ =p® —q (@ (o) g e (e@)] = 5~ Zz = 0 for >0
2
. w ro u+t2m tits
(D) f, Jf; [, 755 dvduds =mln <
Y e 2m 1 1 3n 1
(lll)llrtriionff f (v—u) T3 A (1—Z>dvdu:71n2z1.6>g
c (v+2)

Then according to Theorem 3.3 every solution of equation (E2) is oscillatory.
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