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Abstract. In this paper, we introduce and study the notion of generalized Z-closed sets. Also, the notion 

of generalized Z-open sets and some of its basic properties are introduced discussed. Further, we 

introduce the notion of generalized Z-closed functions. Moreover, some characterizations and properties  

of it are investigated. 
Keywords: gZ-closed sets, Z-T1/2-spaces,  gZ-continuous and ZgZ-continuous functions. 

 

1.Introduction and Preliminaers. 

   In 2011, EL-Magharabi and  Mubarki [12] introduced and studied the notion of Z-open sets. The class of g-

closed sets was investigated by Aull [5]. Maki et.al  [14] (resp. Fukutake et.al [17], Dontchev [7]) introduced the 

concept of gp-closed (resp. g-closed, gsp-closed) sets. In this paper, we define and study the notion gZ-closed 

sets and gZ-open sets which is stronger than the concept of g-closed and weaker than the concepts of gp-closed 

and Z-closed sets. Also, some characterizations of these concepts are discussed. Further, we introduce and study 

new forms of generalized Z-closed functions. Moreover,  some properties of these new forms of generalized Z-

closed functions and preservation theorems are discussed. 

               Throughout this paper (X, τ) and (Y, σ) (Simply, X and Y) represent non-empty topological spaces on 

which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), 

int(A) and X \ A denote the closure of A, the interior of A and the complement of A respectively. A point x  X 

is called a δ-adherent  point of A [18] if 

 A ∩ int(cl(V))  ∅, for every open set V containing x. The set of all δ-adherent points of A is called the δ-

closure of A and is denoted by clδ(A). A subset A of X is called δ-closed if A= clδ(A)). The complement of δ-

closed set is called δ-open. The δ-interior of set consists of those points x of A such that for some open set U 

containing x, U int(cl(U))  A and will be denoted by intδ(A).  

Definition 1.1. A subset A of a space (X, ) is called:  

(1) -open [16] if A  int(cl(int(A))), 

(2) preopen [15] if A  int(cl(A)), 

(3) Z-open [12] if A  cl(intδ(A))  int(cl(A))), 

(4) b-open [3] or γ-open [10] or sp-open [8] if A  int(cl(A))  cl(int(A)), 

(5) -open [1] (= semi-preopen [2] ),  if A  cl(int(cl(A))). 

       The complement of -open (resp. preopen, Z-open, -open, -open or semi-preopen) sets is called -

closed [16] (resp. pre-closed, Z-closed, -closed, -closed). The intersection of all -closed (resp. pre-closed, Z-

closed, -closed, -closed or semi-preclosed) sets containing A is called the -closure (resp. pre-closure, Z-

closure, -closure, -closure or semi-preclosure) of A and denoted by  -cl(A) (resp. pcl(A), Z-cl(A), -cl(A), -

cl(A) or sp-cl(A)). The union of all -open (resp. preopen,Z-open,  -open, -open or semi-preopen) sets 

contained in A is called the -interior (resp. pre-interior, Z-interior, -interior,  -interior or semi-pre-interior) of 

A and denoted by -int(A) (resp. pint(A),Z-int(A),-int(A),  -int(A) or sp-int(A)). The family of all Z-open 

(resp. Z-closed) sets in a space (X, ) is denoted by  ZO(X, ) (resp. ZC(X, )). 

Definition 1.2. A subset A of a space(X, ) is called: 

(1) generalized closed (= g-closed )set [5] if  cl(A)  U whenever  A  U and U is open, 

(2)  -generalized closed (=g-closed ) set [6] if  -cl(A)  U whenever A  U and U is open, 

(3) generalized pre-closed (= gp-closed ) set [ 14] if pcl(A)  U whenever A  U and U is open, 
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(4) -generalized closed (= g-closed  [17] or g-closed [9]) set if  -cl(A)  U whenever A  U and  

U is open,  

(5) generalized semi-pre-closed (=gsp-closed ) set [7] if sp-cl(A)U whenever A U and U is open. 

  

  The complement of - generalized closed (=g-closed) set is called -generalized open 

 (= g-open ). 

 

2. Generalized Z-closed sets. 

Definition 2.1. A subset B of a topological space (X,) is called a generalized Z-closed (= gZ-closed) set if Z-

cl(B)  U whenever B  U and U is open in (X, ). 

 The family of all generalized Z-closed sets of a space X is denoted by GZC(X). 

Remark 2.2. The following diagram holds for any a subset A of X. 

 

closed    -closed     pre-closed    Z-closed    -closed    sp-closed 

                                                                                                   

g-closed g-closed  gp-closed    gZ-closed   g-closed    gsp-closed 

 

 None of these implications are reversible as is shown by[5, 6, 7, 9, 14, 17]  and by the following examples.  

Example 2.3. Let  X = {a, b, c, d, e} with topology τ = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},     {b, d}, {a, b, 

c}, {a, b, d}, {b, c, d}, {a, b, c, d}, X}. Then: 

(1) the subset A={c, d}of X is a  gZ-closed set but not gp-closed, 

(2) the subset B ={a, c, d} of X is a g-closed set but not gZ-closed. 

Example 2.4. If  X = {a, b, c, d, e} and τ = {∅, {a}, X}, then a subset A = {a, c} of X  is gZ-closed but it is not 

Z-closed. 

Theorem 2.5.The arbitrary intersection of any gZ-closed subsets of X is gZ-closed of X.  

Proof. Let { : }iA i I  be any collection of  gZ-closed subsets of X  such that HAii 1   and H   be Z-

open in X Since, iA is a gZ-closed subset of X, for each i I , then Z-cl( iA )  H, for each i I this implies 

that 1i  Z-cl( iA )  H, for each i I , hence, Z-cl( 1i iA )  H. Therefore, ii A1  is  gZ-closed of  X.  

Remark 2.6. The union  of two gZ-closed subsets of X need not be gZ-closed of X. Let   

 X = {a, b, c} with topology τ = {∅, {b, c}, X}. Then two subsets {b} ,{c} of X  are gZ-closed subsets , but their 

union {b, c} is not  gZ-closed of X. 

    The following theorem is given the another definition of the concept gZ-closed. 

Theorem 2.7. A subset A of a space (X, ) is gZ-closed if and only if, for each A  H and H is  

Z-open ( resp.-open), there exists a Z-closed (resp. -closed) set F of X such that A  F  H.  

Proof. We prove that this theorem for the case of Z-open.  Suppose that A  is a gZ-closed subset of X, A  H 

and H  is a Z-open set. Then Z-cl(A)  H.  If we put  F = Z-cl(A) , hence A  F  H. 

Conversely. Assume that A  H and H  is a Z-open set. Then by hypothesis, there exists a Z-closed set F of X 

such that A  F  H. So, A  Z-cl(A)  F and hence Z-cl(A)  H. Therefore A  is gZ-closed. 

Lemma 2.8. Let A be a -closed (resp. closed) and B be a Z-closed set of X, then A  B is  

Z-closed (resp. -closed). 

Remark. 2.9. The following example is shown that the union of a closed and a Z-closed set of X is -closed but 

it is not Z-closed.   

Let  X = {a, b, c, d} with topology τ = {∅, {a}, {c}, {a, c}, {a, b}, {a, b, c}, {a, c, d}, X}. 

If A = {c} is Z-closed  and  B = {b} is closed, then A  B = {b, c} is -closed and it is not Z-closed. 
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Theorem 2.10.  If A  is a -closed (resp. closed) and B is a gZ-closed subset of a space X, then       A  B  is 

also gZ-closed (resp. g-closed).  

Proof. Suppose that A  B  H and H  is a Z-open set. Then A  H and B H. But, B is gZ-closed, then Z-

cl(B)  H and hence A B  A  Z-cl(B)  H. But, A  Z-cl(B) a Z-closed (resp. -closed) set. Hence, there 

exists a Z-closed set A  Z-cl(B) of X such that  

A  B  A  Z-cl(B)  H. Therefore by Theorem 2.7, A  B  is gZ-closed.  

Theorem 2.11. For any element p  X of a space X , the set X \{ }p  is gZ-closed or Z-open.  

Proof. Suppose that X \{ }p  is not a Z-open set. Then, X  is the only Z-open set containing X /{ }.p  This 

implies that Z-cl(X \{ }p )  X . Hence, X \{ }p is gZ-closed in X. 

Proposition 2.12. If A is a gZ-closed set of X such that A B  Z-cl(A), then B is gZ-closed in X. 

Proof. Let H  be an open set of X such that B  H. Then A  H. But, A is a gZ-closed set of X, then ,Z-cl(A)  

H. Now, Z-cl(B)  Z-cl(Zcl(A))= Z-cl(A)  H. Therefore B  is gZ-closed in X. 

Theorem 2.13. Let A be a gZ-closed subset of (X, ). Then Z-cl(A) \ A does not contain no non-empty  closed 

set of X.   

Proof. Let F be a closed subset of  Z-cl(A) \ A. Since, X \ F is open, A  X \ F and A is gZ-closed, it follows 

that Z-cl(A)  X \ F and thus F  X \ Z-cl(A). This implies that F  (X \ Z-cl(A))  (Z-cl(A) \ A) = ∅ and hence 

F = ∅. 

Corollary 2.14. A gZ-closed subset A of a topological space X is Z-closed if and only if 

 Z-cl(A) \ A is closed.  

Proof. Let A be a gZ-closed set of X. If A is Z-closed, then, by Theorem 2.13, we have  

Z-cl(A) \ A = ∅ which is closed.  

Conversely. Let Z-cl(A) \ A be a closed set of X . Then, by Theorem 2.13, Z-cl(A) \ A does not contain any non-

empty closed subset set of X. Since Z-cl(A) \ A is closed, then Z-cl(A) \ A = ∅. This implies that A = Z-cl(A) 

and so, A is Z-closed.  

Corollary 2.15. If A  is an open and a gZ-closed sets of X, then A is gZ-closed in X. 

Proof . Let H   be any open set of X such that A  H . Since, A  is an open and a gZ- closed sets of  

X, then Z-cl(A)  A. Then, Z-cl(A)  A  H . Hence, A  is gZ-closed in X. 

Proposition 2.16. If A is both an open and a gZ-closed subsets of a topological space (X, ), then        A  is Z-

closed.  

Proof . Assume that A is both an open and a gZ-closed subsets of  a topological space (X, ). Then Z-cl(A)  A.  

Hence, A is Z-closed.  

Theorem 2.17. If A is both an open and a gZ-closed subsets of X  and F is a -closed (resp. closed) set of  X,  

then A  F  is gZ-closed (resp. g-closed) in X. 

Proof . Let A  be an open and a gZ-closed subsets of X and F be a -closed (closed) set in X. Then by 

Proposition 2.16, A is Z-closed. So, A  F  is Z-closed (resp. -closed). Therefore, A  F is a      gZ-closed 

(resp. g-closed) set of  X. 

Proposition 2.18. If A is a -open (resp. an open) set and H is a Z-open set of a topological space    (X, ), then 

A  H is Z-open (resp. -open) in X. 

Proof.  Obvious from Theorem 2.17. 

Proposition 2.19. If A  is both an open and a g-closed subsets of A, then A  is gZ-closed in X. 

Proof. Let A  be an open and a g-closed subsets of X  and A  H, where H  is an open set of  X.   

Then by hypothesis, Z-cl(A)  cl(A)  A , that is, Z-cl(A)  H . Thus A is gZ-closed in X. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.11, 2014 

 

 178 

Theorem 2.20. For a topological space (X, ), then ZO(X, )  F  X: F is closed if and only if  

every subset of X is  gZ-closed of X. 

Proof. Suppose that ZO(X, )  F  X: F is closed. Let A be any subet of X such that A  H, where H is a Z-

open set of  X. Then H  ZO(X, )  F  X: F is closed, that is, H  F  X: F is closed.Thus H  is Z-closed 

. Then, Z-cl(H) = H . Also, Z-cl(A)  Z-cl(H)  H . Hence, A  is a gZ-closed of X.  

Conversely. Suppose that every subset of X is gZ-closed in X . Let H  ZO(X, ). Since, H  H  and H  is gZ-

closed, then Z-cl(H)  H. Thus, Z-cl(H) = H  and hence, H  F  X: F is closed. Therefore, ZO(X, )  F  

X: F is closed.   

Definition 2.21. The intersection of all Z-open subsets of (X, ) containing A is called the Z-kernel of A and is 

denoted by Z-ker(A).  

Lemma 2.22. For any subset A  of a toplogical space (X, ), then A  Z-ker(A).   

Proof.  Follows directly from  Definition 2.21.  

Lemma 2.23. Let (X, )  be a topological space and A be a subset of X.  If A  is a Z-open set of X X,  then, Z-

ker(A) = A. 

Theorem 2.24. A subset A of a topological space X is gZ-closed if and only if Z-cl(A)  Z-ker(A). 

Proof. Since,  A is a gZ-closed set of X, Z-cl(A)  G, for any open set G with A  G . Hence  

Z-cl(A)  Z-ker(A).   

Conversely. Let G be any open set such that A  G. Then by hypothesis, Z-cl(A)  Z-ker(A)  G . So, A is 

gZclosed. 

 

3. Some properties of generalized Z-open sets. 

Definiton 3.1.  A subset A of a topological space (X, ) is called a generalized Z-open ( breifly, gZ- 

open) set of  X if X \ A is gZ-closed in X.We denote the family of all gZ-open sets of X by GZO(X). 

Theorem 3.2. Let (X, ) be a topological space and A  X. Then the following statements are equivalent: 

(1) A  is a gZ-open set, 

(2) for each closed set F contained in A, F  Z-int(A),  

(3) for each closed set F contained in A, there exists a Z-open set H such that  F  H  A.  

Proof. (1) (2).   Let F  A and F  be a Z-closed set. Then X \ A  X \ F  which is Z-open of X , hence, Z-cl(X 

\ A)  X \ F. So,  F  Z-int(A).  

(2) (3). Suppose that F  A and F  be a Z-closed set. Then by hypothesis, F  Z-int(A). But, 

 H = Z-int(A), hence there exists a Z-open set H such that F  H  A. 

(3)  (1). Assume that X \ A  V and  V is a Z-open set of X.  Then by hypothesis, there exists a  

Z-open set H such that X \ V  H  A,  that is, X \ A  X \ H  V. Therefore, by Theorem 2.7,        

X \ A is gZ-closed in X  . Then, A is gZ-open in X. 

Theorem 3.3. If A is  an -open (resp. open) and B is a gZ-open (resp. g-open) subset of a space X, then 

A B is gZ-open ( resp.g-open).  

Proof.  Follows from Theorem 2.10.  

Proposition 3.4. If Z-int(A)  B  A  and A  is a gZ-open set of X,  then B is gZ-open.  
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Proposition 3.5. Let A  be a Z-closed and a gZ-open sets of X. Then A  is Z-open.  

 Proof. Let A be a Z-closed and a gZ-open sets of X. Then A  Z-int(A) and hence A is Z-open.  

Theorem 3.6. For a space (X, ), if A is a gZ-closed set of X, then Z-cl(A) \ A  is gZ-open.  

Proof . Suppose that A  is a gZ-closed set of X and F is a Z-closed set contained in Z-cl(A) \ A.   

Then by Theorem 2.7 , F = ∅ and hence F  Z-int(Z-cl(A) \ A).  Therefore, Z-cl(A) \ A is gZ-open. 

Theorem 3.7.  If A  is a gZ-open subset of a space (X, ),  then G = X, whenever G  is open and  

Z-int(A)  (X \ A)  G.  

Proof. Let G be an open set of X and Z-int(A)  (X \ A)  G. Then X \ G  (X \ Z-int(A))  A = Z-cl(X \ A) \ 

(X \ A). Since, X \ G is closed and X \ A is gZ-closed, by Theorem 2. 13, X \ G = ∅ and hence G = X. 

Theorem 3. 8. For a topological space (X, ), then every singleton of X is eiher gZ-open or Z-open.  

Proof.L et (X,) be a topological space and pX. To prove that { }p is eiher gZ-open or Z-open,  

that is, to prove \{ }X p is eiher gZ-closed or Z-open  which follows directly from Theorem 2.13.  

4. Z-T1/2 spaces and generalized Z-continuous functions.  

Definition 4.1. A space (X, ) is called a Z-T1/2 -space if every gZ-closed set is Z-closed.  

Theorem 4.2. For a topological space (X, ), the following conditions are equivalent: 

(1) X  is Z-T1/2 . 

(2) Every singleton of X  is either closed or Z-open.  

Proof. (1) (2). Let p X and { }p be not closed. Then \{ }X p   is not open and hence \{ }X p   is gZ-

closed. Hence, by hypothesis, \{ }X p   is Z-closed  and thus{ }p is Z-open. 

 (2)  (1). Let A  X be a gZ-closed set of X and p Z-cl(A). We will show that .p A   For consider the 

following two cases: 

 Case (1). The singleton set { }p is closed. Then, if ,p A  then there exists a closed set of  

Z-cl(A) \ A.  Hence, by Corollary 2.14, .p A  

Case (2). The  singleton set { }p is Z-open. Since p Z-cl(A), then { }p  Z-cl(A)  ∅ .Thus .p A  So, in 

both cases, p A . This shows that Z-cl(A)  A  or equivalently, A  is Z-closed. 

Theorem 4.3. For a topological space (X, ), the following  statements are hold: 

(1) ZO(X, )  GZO(X,), 

(2) a space X is Z-T1/2  if and only if  ZO(X, ) = GZO(X,). 

Proof. (1) Let A be a Z-open set. Then X \ A  is Z-closed and so gZ-closed . This implies that A is  

gZ-open. Hence ZO(X, )  GZO(X, ) .  

(2) The necessity. Let (X, ) be a Z-T1/2  space and let AGZO(X, ). Then X \ A is gZ-closed. Hence by 

hypothesis, X \ A is Z-closed and thus A is Z-open this implies that A  ZO(X, ). Hence, ZO(X, ) = GZO(X, 

). 
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The sufficiency. Let ZO(X, ) = GZO(X, ) and let A be a gZ-closed set. Then X \ A  is gZ-open. Hence, X \ A 

 ZO(X, ). Thus A  is Z-closed. Therefore (X, ) is Z-T1/2. 

Definition 4.4. A function f: X  Y is called: 

(1) gZ-continuous if, f
 -1

(F) is gZ-closed in X, for every closed set F of Y, 

(2) Z-gZ-continuous if, f
 -1

(F) is gZ-closed in X, for every Z-closed set F of Y, 

(3) gZ-irresolute if, f
 -1

(F) is gZ-closed in X, for every gZ-closed set F of Y. 

Definition 4.5. A function f: X  Y is called: 

(1) g-continuous [17] if, f
 -1

(F) is g-closed in X, for every closed set F of Y, 

(2) -g-continuous [9] if, f
 -1

(F) is g-closed in X, for every -closed set F of Y, 

(3) g-irresolute [17]  if, f
 -1

(F) is g-closed in X, for every g-closed set F of Y, 

(4) Z-continuous [12] if, f
 -1

(F) is Z-closed in X, for every closed set F of Y, 

(5) Z-irresolute  [13] if, f
 -1

(F) is Z-closed in X, for every Z-closed set F of Y. 

Remark 4.6. The following diagram holds for a function f: (X, ) (Y, ): 

g-irresoluteness   -g-continuity    g-continuity 

                                                           

gZ-irresoluteness  Z-gZ-continuity   gZ-continuity 

                                                           

                               Z-irresoluteness    Z-continuity 

 

The converses of the above implications are not true in general as is shown by [9] and the following 

example. 

Example 4.7. In Example 2.3,  Let f: (X, )  (X, )  be a function defined by f(a) = a,   f(b) = b, f(c)= c, f(d) = 

e and f(e) = d. Then f is g-continuous (resp. g-continuous) but it is not 

 ZgZ-continuous (resp. gZ-continuous).  

Example 4.8. Let X = {a, b, c, d} and  =  = {∅, {b}, {d}, {b, d}, {a, b}}. Let f: (X, ) (Y, )  be a function 

defined by  f(a) = a, f(b) = c, f(c)= b and f(d) = d Then f is gZ-continuous but it is neither Z-gZ-continuous nor 

Z-continuous. 

If we define the function f: (X, ) (Y, )  as follows: f(a) = a, f(b) = b, f(c) = d and f(d) = b,  then f is Z-gZ-

continuous but it is neither gZ-irresolute nor Z-irresolute. 

Example 4.9. Let  X = Y = {a, b, c, d} with τ =  = {∅, {a}, {c}, {a, b}, {a, c}, {a, b ,c}, {a, c, d}, X} and f :(X, 

τ) → (X, τ) be defined by f(a) = b, f(b) = d,  f(c) = a and f(d) = d is Z-continuous but it is not Z-irresolute.  

Theorem 4.10. Let f : X  Y and h : Y  Z be functions. 

(1) If, f is gZ-irresolute and h is gZ-continuous, then the composition h ° f: X  Z is gZ-continuous. 

(2) If, f is gZ-continuous and h is continuous, then the composition h ° f: X  Z is gZ-continuous. 

(3) If, f and h are gZ-irresolute, then the composition h ° f : X  Z is gZ-irresolute. 

(4) If, f is gZ-irresolute and h is Z-gZ-continuous, then the composition h ° f: X  Z is 

 Z-gZ-continuous.                                                                                                                                          

(5) If, f and h are Z-gZ-continuous and Y is Z-T1/2 , then the composition h ° f : X  Z is  

Z-gZ-continuous. 

Theorem 4.11. If a function f : X  Y is Z-gZ-continuous and Y is a Z-T1/2 space, then f  is 

 gZ-irresolute. 

Proof. Let F be any gZ-closed subset of Y. Since, Y is a Z-T1/2  space  , then F is Z-closed in Y. Hence, f
 -1

(F) is 

Z-closed in X. This show that f is gZ-irresolute. 

Theorem 4.12. If a function f: X Y is gZ-continuous and X is a Z-T1/2  space  , then, f  is  

Z-continuous. 

Proof. Let F be any closed set of Y and f be gZ-continuous. Then, f 
-1

(F) is gZ-closed in X and hence , f 
-1

(F) is 

Z-closed in X. Therefore, f  is Z-continuous.  

Theorem 4.13. If a function f: X Y is Z-gZ-continuous and X a Z-T1/2  space  , then, f  is  

Z-irresolute. 

Proof. Let F be any Z-closed set of Y and f be Z-gZ-continuous. Then, f 
-1

(F) is gZ-closed in X and hence, f 
-1

(F) 

is Z-closed in X. Hence, f  is Z-irresolute. 

Definition  4.14. A function f : X → Y is said to be:  

(1) gZ-closed if ,f(A) is gZ-closed in Y, for each closed set A of X. 

(2) Z-gZ-closed if, f(A) is gZ-closed in Y, for each Z-closed set A of X. 

Theorem 4.15. If, f : X → Y is a closed and a Z-gZ-continuous functions, then f
 -1

) K) is gZ-closed in X, for 

each  gZ-closed set K of Y. 

 Proof. Let K be a gZ-closed set of Y and U be an open set of X containing f
 -1

(K). Put, 
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 V = Y \ f(X \ U), then V is open in Y, K  V  and f
 -1

(V )  U. Therefore, we have Z-cl(K)  V and hence f
 -

1
(K)  f

 -1
 (Z-cl(K))  f

 -1
(V )  U. Since, f is Z-gZ-continuous, then f

 -1
 (Z-cl(K)) is gZ-closed in X and hence 

Z-cl(f
 -1

(K))  Z-cl(f
 -1

 (Z-cl(K)))  U. This shows that f
 -1

 (K) is  

gZ-closed in X. 

Corollary 4.16. If, f : X → Y is a closed  and a Z-irresolute functions, then f
 -1

(K) is gZ-closed in X, for each 

gZ-closed set K of Y. 

Theorem 4.17. If, f : X → Y is a bijective open  and a Z-gZ-continuous functions, then f 
−1

(K) is gZ-closed in X, 

for every gZ-closed set K of Y. 

Proof. Let K be a gZ-closed set of Y and U be an open set of X containing f
 -1

(K). Since, f is a surjective open 

function, then K = f(f
 -1

(K))  f(U) and f(U) is open. Therefore, Z-cl(K)  f(U). But, f is  an injective, hence f
 -

1
(K)  f

 -1
(Z-cl(K))  f

 -1
(f(U)) = U. Since, f is Z-gZ-continuous, then f

 -1
(Z-cl(K)) is gZ-closed in X and hence 

Z-cl(f
 -1

(K))  Z-cl(f
 -1

(Z-cl(K)))  U. Therefore f
 -1

(K) is gZ-closed in X.  

Definition 4.18. A space X is said to be Z-normal if, for any pair of disjoint closed sets A , B, there exist two 

disjoint Z-open sets U , V such that A  U and B  V . 

Theorem 4.19. Let f : X → Y be an injection closed and a Z-gZ-continuous functions. If Y is a Z-normal space, 

then X is  Z-normal. 

Proof. Let N1 , N2 be disjoint closed sets of X and  f be an injection closed function , then f(N1) , f(N2) are 

disjoint closed sets of Y. Hence by the Z-normality of Y, there exist disjoint  

V1, V2  ZO(Y) such that f(Ni)  Vi , for i = 1, 2. Since, f is Z-gZ-continuous, hence, f
 -1

)V1) , 

 f
 -1

 (V2)  are disjoint gZ-open sets of X and Ni  f
 -1

(Vi), for i = 1, 2.  Now, put Ui = Z-int(f
 -1

(Vi)) ,for i = 1, 2. 

Then, Ui  ZO(X, ),  Ni  Ui and U1  U2 = ∅. Therefore, X is Z-normal. 

Corollary 4.20. If, f: X→Y is an injection closed and a Z-irresolute functions and Y is a Z-normal space, then X 

is Z-normal. 

Proof. This is an immediate consequence since every Z-irresolute function is Z-gZ-continuous. 

Lemma 4.21. A surjection function f : X → Y is Z-gZ-closed if and only if, for each subset B of Y and each    Z-

open set U of X containing f
 -1

(B), there exists a gZ-open set of V of Y such that B  V and  f
 -1

(V)  U. 

Theorem 4.22. If, f : X→Y is a surjection continuous and a Z-gZ-closed functions and X is a Z-normal space, 

then Y is  Z-normal. 

Proof. Let A , B be any disjoint closed sets of Y. Then f
 -1

(A) , f
 -1

(B) are disjoint closed sets of X. Since, X is a 

Z-normal space, hence there exist two disjoint Z-open sets U , V such that f
 -1

(A)  U and f
 -1

(B)  V . Hence by 

Lemma 4.21, there exist  two gZ-open sets G , H of Y such that A  G, B  H, f
 -1

(G)  U and f
 -1

(H)  V. 

Since, U ,V are disjoint, then G , H are also disjoint. Hence by Theorem 3.2, we have A  Z-int(G), B  Z-

int(H) and Z-int(G)  Z-int(H) = ∅. Therefore, Y is  

Z-normal. 
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