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Abstract  

Precipitation estimates are an important component of water resources applications, example, in designing 

drainage system and irrigation. The amount of rainfall in Kenya fluctuates from year to year causing it to be very 

hard to predict it through empirical observations of the atmosphere alone. Our objective was to determine the 

forecasted values of precipitation in Mt. Kenya region and also to determine the accuracy of the SARIMA model 

in forecasting precipitation in the same region.  This research considers a univariate time series model to 

forecast precipitation in Mt. Kenya region. We fitted the SARIMA model to our data and we picked the model 

which exhibited the least AIC and BIC values. Finally, we forecasted our data after following the three 

Box-Jenkins methodologies, that is, model identification, estimation of parameters and diagnostic check. Having 

three tentative models, the best model had two highly significant variables, a constant and �� with p-values< 

0.01 respectively
.
 This model passed residual normality test and the forecasting evaluation statistics shows ME= 

-0.0053687, MSE=0.96794, RMSE=0.98384 and MAE= 0.75197. Indeed, SARIMA model is a good model for 

forecasting precipitation in Mt. Kenya region  
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1.0 Introduction 

Time series methods determines future trend based on past values and corresponding errors. Since a time series 

method only require the historical data, it is widely used to develop predictive models. A time series is simply a 

set of observations measured at successive points in time or over successive periods of time. Time series analysis 

is used to detect patterns of change in statistical information over regular interval of time. These patterns are 

projected to arrive at an estimate for the future. Time series forecasting methods are based on analysis of 

historical data. It makes the assumption that past patterns in data can be used to forecast future data points. 

Several methods have been used in forecasting weather. We have Non parametric Methods like the Artificial 

Neural Networks and parametric Methods. Some of the models under parametric are: Extrapolation of trend 

curves, Exponential smoothing, The Holt-Winters forecasting procedure and Box Jenkins procedure. 

 

 

1.2 Background Information 

Precipitation estimates are an important component of water resources applications, example, in designing 

drainage system and irrigation. Major sectors of economy in Kenya such as agriculture, livestock keeping, 

hydro-energy generation, transport, tourism, among others are highly dependent on climate. Severe weather and 

extreme climate events and other climatic fluctuations have been shown to have a high influence on the social 
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and economic activities of the country and the performance of the country’s economy KMD (2009). It has also 

been noted that the past development projects may not have taken into consideration the potential impacts that 

the climate has on their success. Due to the failures associated with lack of timely and effective forecasts, the 

agricultural activities in the country have been immensely affected causing massive losses to farmers who would 

have easily avoided these outcomes with prior notice; integration of technology in agriculture have brought with 

it crops that are rainfall specific. Traditionally, long rains occur from March through to May and short rains from 

October to December but because of climatic changes, this trend is somehow changing. These changes normally 

occur on aspects of weather such as wind speed, humidity, temperature , precipitation which occurs in a variety 

of forms; hail, rain, freezing rain, sleet or snow among others. Therefore, there is need more accurate forecasting 

techniques to be applied in predicting climatic patterns. Precipitation estimates being an important component of 

water resources applications, an accurate estimate of rainfall is needed. There are also concerns with producing 

valid estimates using appropriate methods. In order to develop a comprehensive solution to the forecasting 

problem, including addressing the issue of uncertainty in predictions, a statistical model must be developed.  

 

2.0 Literature Review  

Rainfall prediction is a challenging task especially in the modern world where we are facing the major 

environmental problem of global warming which has rendered the previously employed methods to redundant. 

Earlier forecasting methods such as simple quantitative precipitation forecasts used by Klein and Lewis 

(1970),Glahn and Lowry (1972) and Pankratz, 1983 have lost their edge due to the changing patterns and 

variability in rainfall that may be associated with global warming. However, the world of statistics has been 

evolving over time leading to creation of more efficient and effective methods allowing researchers to make 

enormous efforts in addressing the issue of accurate precipitation predictability. Borlando et al., 1996 used 

ARIMA models to forecast hourly precipitation in the time of their fall and the amounts obtained were compared 

with the data to measure rain. They came to the conclusion that with increasing duration of rainfall, the 

predictions were more accurate, and shorter duration of rainfall, rain rate difference will be more than the actual 

corresponding value. Yusof and Kane, 2012 analyzed the precipitation forecast using SARIMA model in 

Golastan province and found the seasonality measure in SARIMA to be highly useful in measuring precipitation.  

 

 

2.1 SARIMA Models theory  

Box Jenkins (1970) generalize ARIMA model to deal with seasonality. Autoregressive Integrated Moving 

Average (ARIMA) models are generalizations of a simple AR model that uses three tools for modeling serial 

correlation in disturbance. The first tool is an autoregressive, or AR term. Each AR term corresponds to the use 

of lagged value of the residual in forecasting equation for the unconditional residual. The AR model of order p, 

AR (p) has the following form: 

�� = ������ + ������ +⋯+��
���
 + ��      ……………………………………………………… (1) 

  With the use of a lag operator B, the equation becomes: 

�1 − ��� − ���� −⋯− �
�
��� = �
����� = ��   ………………………………………………..(2) 

  Where for B holds ���� = ���� 

 Next tool is integration of order term. Each integration order corresponds to the differentiation of the series 

being forecast. The first order differentiation component means that the forecasting model is designed for the 

first difference of the original series .The second order component corresponds to the second difference and so 

on. The third tool is a Moving Average, MA term. The MA forecasting model uses lagged values of a forecast 

error to improve the current forecast. The first order MA term uses the most recent forecast error. The second 
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term uses the forecast error from two most recent periods and so on. MA process of order q, MA (q) has the form: 

It is written as  

�� = �� − ������ −⋯− ������     …………………………………………………………………… (3) 

  Using lag operator, 

�� = �1 − ����� − ⋯− ������� = �������……………………………………………………….. (4) 

When modeling time series with systematic seasonal movements, Box-Jenkins recommended the use of seasonal 

autoregressive (SAR) and seasonal moving average (SMA) terms. The seasonal autoregressive process of order P 

can be written as:  

�� = Φ����� +Φ������ +⋯+Φ
����� + ��   …………………………………………………….. (5) 

Or 

  Φ������� = ��  ……………………………………………………………………………………… (6) 

 

 The seasonal MA of order Q can be written as 

�� = �� − Θ����� −⋯− Θ������  ………………………………………………………………… (7) 

  Or equivalently,  

�� = Θ�����	�� …………………………………………………………………………………….. (8) 

  In all the four components above, s denotes the length of seasonality. Finally, we can write the general 

SARIMA��, �, �� × �!, ", #�$with constant model as  

�
��	�Φ������1 − ��%�1 − ���&�� = �' + ���	��Θ�����	��  ………………………………  (9) 

Where the constant equals  

�' = ([�1 − ��−��−⋯− �
��1 − Φ�−Φ�−⋯−Φ��]  ……………………………………  (10) 

 

3.0 Materials and Methods 

3.1 Study Area 

The study concentrated on statistical modeling of precipitation in Mt. Kenya region in central Kenya. This region 

is predominantly agricultural dependent; its profitability would significantly increase if there was access to 

reliable and timely forecast of rainfall data. This region would benefit from the success of this study. The region 

also has other sectors that depend on reliable forecasts of climatic conditions such as tourism, some service 

industry such as electricity and water supply. Mount Kenya region is the source of major rivers in Kenya and the 

climatic conditions in this area are highly unpredictable. 

3.2 Study Data 

The data employed in this research comprises precipitation and wind monthly data collected from Kenya 

meteorological department covering a period of 1995 to 2010 for wind data and 1970 to 2011 for precipitation 

data but will be limited to the available wind data. This data is highly reliable as it is collected on a daily basis in 

the stations and therefore future data needs may be easily met from the station.  

 

4.0 Results 

4.1 Data Analysis Process 

Data was analysed using Gretl which has inbuilt functions like MLE to deal with ARIMA models. Preliminary 

data analysis was performed on hourly daily precipitation from 1995-2010 using Box-Jenkins modeling 

methodology. Time series plot was done using raw data to assess the stability of the data and the following time 

series plot was obtained. 
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4.2 Precipitation Time Series Plot 

Figure 1 plot show that our data is stationary. A non stationary series is the one in whose values do not vary with 

time over a constant mean and variance. 

 

4.3 ACF and PACF plots of precipitation 

 

Figure 2 show ACF and PACF plots of precipitation. The auto-correlation indicates that there is no seasonality. 

Seasonality normally causes the data to be non-stationary the average values because the average values at some 

particular times are different than the average values at other time 

 

4.4 SARIMA Forecasting Results 

SARIMA model was fitted after following Box-Jenkins four major steps in modeling time series and the 

appropriate model was obtained by choosing the model which yielded minimum AIC and BIC, Akaike (1979). 

After a series of model tests, the following models were obtained. 

4.4.1 Tentative seasonal ARIMA models  

There were three tentative models as shown in table 1. 

SARIMA (1, 0, 1) × (1, 0, 0)12 turns out to be the best model since it has the least values of the information 

criterions. The details of this model are shown in table 2. This model has two significant variables. The 

correlation matrix of this model was examined. The correlation between the parameters of the model was a 

weaker one. This implies that all the parameters are important in fitting the model. The fitted model is given by: 

��+��	����+Φ����� + ��Φ�������	 =	+� + ��+���…………………………………………………. (11) 

 

Upon replacing the coefficients of the model with real values, we get the follow: 

 

�� + 0.204���� + 0.464���� + 0.095������	 = 3.84 +	+� + 0.117+��� ……………………………………….. (12) 

 

4.4.2ACF and PACF plots of residuals 

Figure 3 show that the residuals are white noise as there are no significant spikes. 

4.4.2 Normality test of residuals 

Figure 4 show a histogram which has a bell shaped distribution with a p-value of 0.007 which is a good indicator 

of normality in the distribution.  

 

4.4.3 Residual Q-Q Plot 

The QQ plot in figure 5 approximately follows the QQ line visible on the plot. This is a good indicator of 

normality within the residuals 

 

5.0 Conclusion 

The main objective of this study was to forecast precipitation using SARIMA model and also to determine the 

accuracy of the SARIMA model in forecasting precipitation in Mt. Kenya region To avoid fitting over 

parametized model, AIC and BIC were employed in selecting the best model. The model with a minimum value 

of these information criterions is considered as the best (Akaike (1979); Akaike (1974)). In addition, ME, MSE, 

RMSE, MAE, MPE, MAPE were also employed. The ACF plots of the residuals two models were examined to 

see whether the residuals of the model were white noise. SARIMA model turns to be a good model for 

forecasting precipitation in Mt. Kenya region. 
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APPENDIX  

 AIC BIC 

ARIMA  (1,0,1)×(0,0,0)12 586.16 599.17 

ARIMA  (1,0,1)×(0,0,1)12 563.66 579.93 

ARIMA  (1,0,1)×(1,0,0)12 547.46 563.72 

Table1: Seasonal ARIMA models 

 

 Coeff. Std. error z p-value 

Const. 3.843 0.1753 21.91 1.99e-
106*** 

�� 0.2039 0.1828 1.116 0.2645 

Φ�	
 

0.4641 0.0670 6.924 4.38e
-012*** 

�� 0.1171 0.1806 0.6486 0.5166 

 Note: p-value <0.05 considered statistically significant 



Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.11, 2014 

 

55 

Table2: SARIMA model 

 

Performance  Statistics  

ME -0.0053687 

MSE 0.96794 

RMSE 0.98384 

MAE  0.75197 

AIC 549.2842 

BIC 565.5717 

Table 3: performance Statistics  

 

 

 

 

 

Figure 1: Precipitation Time Series Plot 
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Figure 2: ACF and PACF plots of Precipitation 

  

Figure 3: ACF and PACF plots of residuals 
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Figure 4: Normality test of residuals 

               

Figure 5: Residual Q-Q Plot 
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         Figure 6: Graph of Forecasts 

Nomenclature 

AIC: Akaike Information Criterion 

BIC: Bayesian Information Criterion 

SARIMA: Seasonal Autoregressive Integrated Moving Average 

ME: Mean Error 

MSE: Mean Squared Error 

RMSE: Root Mean Squared Error 

MAE: Mean Absolute Error 
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