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Abstract 
        The main objective of this paper is to find the order and its exponent, the general form of 

all conjugacy classes, Artin characters table and Artin exponent for the group of lower 

unitriangular matrices L(3,ℤp), where  p  is prime number. 
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Introduction 
        The group of invertible  n  n  matrices over a field F denoted by GL(n,F). Let G be a 

finite group, all characters of G induced from a principal character of cyclic subgroups of G 

are called Artin characters of G. Artin induction theorem [1] states that any rational valued 

character of G is a rational linear combination of the induced principal character of its cyclic 

subgroups. Lam [5] proved a sharp form of Artin's theorem, he determined the least positive 

integer A(G) such that A(G) is an integral linear combination of Artin character, for any 

rational valued character  of G, and he called A(G) the Artin exponent of G and studied it 

extensively for many groups. 

        In this paper we consider the group of lower unitriangular matrices L(3,ℤp) and we found 

that the order of this group is p
3
 as in theorem (2.2) and its exponent is  p  in theorem (2.4). 

Furthermore we found forms of all conjugace classes in theorem (2.8), the Artin character in 

theorem (2.12) and finally from the principal character of its cyclic subgroups we found the 

Artin exponent of this group and denoted by A(L(3,ℤp)) which is equal to  p
2
 in theorem 

(2.13). 

 

§.1 Preliminaries  
 

        In this section, we recall some definitions, theorems and proposition which we needed in 

the next section. 

 

Definition 1.1 : [4]    

        A rational valued character  of G is a character whose valued are in Z, that is (x)Z, 

for all xG. 

 

Definition 1.2 : [2]   

        Let H be a subgroup of a group G, and  be a class function of H. Then ↑
G
, the induced 

class function on G, is given by  

1

x G

1
(g) (xgx )

H





   , 

where ˚ is defined by ˚(h) = (h) if  h  H and ˚(y) = 0 if  y  H. 

Observe that ↑
G
 is a class function on G and ↑

G
(1) = [G:H] (1). 
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Another useful formula for computing ↑
G
(g) explicitly is to choose representatives                  

x1, x2, …, xm for the m classes of H contained in the conjugacy class cg in G which is given by 
m

G i
G

i 1 H i

(x )
(g) C (g)

C (x )


    

where it is understood that φ↑
G
(Cα) = 0 if  H  Cl(g)=. This formula is immediate from the 

definition of ↑
G
 since as x runs over G, xgx

 – 1
 =xi for exactly CG(g) values of x. If H is a 

cyclic subgroup then 

                                                                                 …(1.1) 

m
GG

i

i 1H

C (g)
(g) (x )

C (g) 

    

 

Definition 1.3: [5]  
        The character induced from the principal character of a cyclic subgroups of G is called 

Artin character. 

 

Definition 1.4 : [5]  

        Let G be a finite group and let  be any rational valued character on G. The smallest 

positive number n such that, 

c c

c

n a    

    where acZ and c is Artin character, is called the Artin exponent of G and denoted by 

A(G). 

 

Theorem 1.5 : [3]  

        Let 1 denote the principal character of G and dZ, then d is an Artin exponent of G if 

there exists (uniquely) integers akZ such that 
q

k k

k 1

d 1 a 


   

    where 1, …, k are the Artin characters. 

 

Theorem 1.6 : [3]   
        For a subgroup H in G, A(H) divides A(G). 

 

Proposition 1.7 : [5] 
        Let G be an arbitrary finite group, and {H1,H2,..,Hq} be a full set of non-gonjugate cyclic 

subgroups of G, then A(G) is the smallest positive integer  m  such that: 

kk

G

G k HH H
m 1 a 1


                                                                                               …(1.2) 

With each  ak ℤ. 

 

 

§.2  The Order and its Exponent, The Conjugacy Classes, Artin Character  

        and Artin Exponent of L(3,ℤp) 
 

        This section concerns on an important class of groups, the group of lower unitriangular 

matrices L(3,ℤp). After describing important features of this group and investigating their 
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conjugacy classes we move on to evaluate its Artin Exponent and constructing the table of its 

induced characters. 

 

 

Definition 2.1: [6]  

        Let 

1 0 0

* 1 0
L(n,F)

* * 1

 
 
 
 
 
 

 be the group of  nn  lower unit triangular matrices with 

entries in F under matrix multiplication, that is L(n,F) consists of matrices such that L(n,F) is 

a subgroup of GL(n,F). 

 

Theorem 2.2: 

        The order of the group L(3,ℤp) is  p
3
. 

Proof: 

1 0 0

L(3, ) x 1 0 ;x, y, z

y z 1

p p

  
  

   
    

 

Order of the group L(3,ℤp) depending on choices number of x, y and z. 

Since  x, y and z can be chosen arbitrary from ℤp,  p  choices for  x, p  choices for  y, and p  

choices for  z, thus L(3,ℤp) = ppp = p
3
. 

 

Theorem 2.3: 

        Every element, excepted identity element  e, in the group G = L(3,ℤp) has order  p, that 

is,  g  G, we have 
1 if g = e

o(g) =
if g ep





. 

Proof: 

If  g = e, then o(g) = 1. 

 e  g  G has the form  1

2 3

1 0 0

g = g 1 0

g g 1

 
 
 
  

 where g1, g2, g3  ℤp, and g1, g2, g3 are not all 

zero. 

2 3

1 1

2 1 3 3 2 1 3 3

1 0 0 1 0 0

g = 2g 1 0 , g = 3g 1 0

2g g g 2g 1 3g 3g g 3g 1

   
   
   
       

 

In general, 
r

1

r 1

2 1 3 32

1 0 0

g = rg 1 0

r(g g g ) rg 1


 
 
 
  

. 
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Let  m  be the order of  g, then  g
m

 = e      1

m 1

2 1 3 32

1 0 0 1 0 0

mg 1 0 0 1 0

m(g g g ) mg 1 0 0 1


   
   


   
      

 

We get,  mg1  0  mod  p 

              mg3  0  mod  p 

               
m 1

2 1 32
m(g g g


 )  0  mod  p 

Since ℤp is a field and g1, g2, g3 are not all zero, then  m = p. 

Theorem 2.4: 

        Exponent of the group G = L(3,ℤp) is  p, i.e. exp(G) = p. 

Proof: 

Let l.c.m(a,b) be the least common multiple of  a  and  b. 

By theorem (2.3), exp(G) = l.c.m(1,p) = p. 

 

Theorem 2.5: 

        The Center of the group G = L(3,ℤp) is the cyclic subgroup 

1 0 0

Z(G) 0 1 0 , r

r 0 1

p

  
  

   
    

 and Z(G) = p. 

Proof: 

Let  g, h  G, where 1

2 3

1 0 0

g = g 1 0

g g 1

 
 
 
  

 and 1

2 3

1 0 0

h = h 1 0

h h 1

 
 
 
  

. 

1 1 1 1

2 2 1 3 3 3 2 2 1 3 3 3

1 0 0 1 0 0

g h = h + g 1 0 , h g = h + g 1 0

h + g g h h + g 1 h + g g h h + g 1

   
   

 
   
       

 

 

If  g1 = g3 = 0, then   h  G, we have  gh = hg. 

Hence, g  Z(G) and 
2

2

1 0 0

Z(G) 0 1 0 ,g

g 0 1

p

  
  

   
    

. 

Since,  g2  ℤp, 

2

1 0 0

g 0 1 0

g 0 1

 
 


 
  

  Z(G)  and  ℤp = p, then Z(G) = p. 

So, any finite group of prime order is cyclic, then Z(G) is cyclic. 

 

Remark 2.6: 

        We classify the elements of the group L(3,ℤp) into three disjoint sets: 
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(1) Let 
x i

1 0 0

W x 0 1 0 ,i

i 0 1

p

  
  

    
    

 we called Wx set of all elements of kind  x, we note 

that Wx = Z(G). 

(2) Let 
y j

1 0 0

W y 0 1 0 , j 0; r, j

r j 1

p

  
  

     
    

 we called Wy set of all elements of kind  y. 

(3) Let 
z s,t

1 0 0

W z s 1 0 ,s 0; r,s, t

r t 1

p

  
  

     
    

 we called Wz set of all elements of kind  z. 

(4) Wx, Wy and Wz are disjoint sets, i.e., Wx  Wy = , Wx  Wz =  and Wy  Wz = . 

Proposition 2.7: 

        Let  1  m  p – 1, then 

(1)  i = 0,1,…, p – 1 ; (xi)
m

  are elements of kind  x, that is  (xi)
m

  Wx. 

(2)  j = 1,2,…, p – 1 ; (yj)
m

  are elements of kind  y, that is  (yj)
m

  Wy. 

(3)  s = 1,2,…,p – 1 and  t =0,1,…,p – 1; (zs,t)
m

  are elements of kind  z, that is  (zs,t)
m
Wz. 

Proof: 

(1) Since, Wx = Z(G) is cyclic, then  xi  Wx. 

(2) 
j

1 0 0

y 0 1 0

r j 1

 
 


 
  

 and 

m

m

j

1 0 0 1 0 0

(y ) 0 1 0 0 1 0

r j 1 mr mj 1

   
   

 
   
      

, where  mr, mj  ℤp. 

Since, m  0 and j  0 then  mj  0, therefore (yj)
m

  Wy. 

(3) 
s,t

1 0 0

z s 1 0

r t 1

 
 


 
  

 and 

m

m

s,t

m 1
2

1 0 0 1 0 0

(z ) s 1 0 ms 1 0

r t 1 m(r st) mt 1

  
  

 
  
      

. 

Since, m  0 and s 0 then  ms  0, therefore (zs,t)
m
Wz. 

 

Theorem 2.8: 

        The group G = L(3,ℤp) has exactly p
2
 + p – 1 conjugacy classes: 

(1)  i = 0,1,…, p – 1 ; we have classes of the form 
ix i

1 0 0

C x 0 1 0

i 0 1

 
 

 
 
  

 and 
ixC 1 . 

(2)  j=1,2,…,p–1; (yj)
m

;we have classes of the form 
iy j

1 0 0

C y 0 1 0 ;r 0,1,..., 1

r j 1

p

  
  

     
    

 

and 
jyC p . 
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(3)  s = 1,2, …, p – 1 and  t = 0,1,…, p – 1 ; we have classes of the form 

s ,tz s,t

1 0 0

C z s 1 0 ;r 0,1,..., 1

r t 1

p

  
  

     
    

 and 
s ,tzC p . 

Proof: 

(1) By theorem (2.5),  i = 0,1,…, p – 1 ; the elements xi  Z(G), then these elements form a 

conjugacy classes of their own, and 
ixC 1 . 

(2) To find a conjugacy classes of yj, we consider an arbitrary element  

1

2 3

1 0 0

g = g 1 0

g g 1

 
 
 
  

 G  and its inverse 
1

1

1 3 2 3

1 0 0

g = g 1 0

g g g g 1



 
 


 
   

.  

Then 
1

j

1

1 0 0

gy g = 0 1 0

r + jg j 1



 
 
 
  

. 

If  j  k and  yj  is conjugate to  yk, then  gyjg
 – 1

 = yk   

 

1

1 0 0 1 0 0

0 1 0 0 1 0

r + jg j 1 r k 1

   
   


   
      

  j = k; thus  j=1,2,…,p – 1, 
jyC  are all distinct. 

In  
jyC  , r = 0,1,…, p – 1 , 

jyC p . 

(3) To find a conjugacy classes of zs,t, we consider an arbitrary element  

1

2 3

1 0 0

g = g 1 0

g g 1

 
 
 
  

 G  and its inverse 
1

1

1 3 2 3

1 0 0

g = g 1 0

g g g g 1



 
 


 
   

.  

Then 
1

s,t

1 3

1 0 0

gz g = s 1 0

r + g t g s t 1



 
 
 
  

. 

If  s1  s2 , t1  t2; and  
1 1s ,tz  is conjugate to  

2 2s ,tz , then  g
1 1s ,tz g

 – 1
 = 

2 2s ,tz    

   1 2

1 1 3 1 1 2

1 0 0 1 0 0

s 1 0 s 1 0

r + g t g s t 1 r t 1

   
   


   
      

      s1 =s2  and  t1 = t2. 

Thus  s = 1,2, …, p – 1 and  t = 0,1,…, p – 1 ; 
s ,tzC  are all distinct. 

In  
s ,tzC , r = 0,1,…, p – 1, then 

s ,tzC p . 

 

To show that the conjugacy classes 
ixC , 

jyC  and 
s ,tzC  are distinct: 
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We have 
ixC   Wx, 

jyC   Wy and 
s ,tzC   Wz, then 

ixC 
jyC = , 

ixC 
s ,tzC =  and 

jyC 
s ,tzC = . Hence 

ixC , 
jyC  and 

s ,tzC  are distinct. 

To find the total number of the conjugacy classes: 

Number of conjugacy classes in (1) = p 

Number of conjugacy classes in (2) = p – 1 

Number of conjugacy classes in (3) = p(p – 1) 

Then the total number of the conjugacy classes is p + (p – 1) + p(p – 1) = p
2
 + p – 1. 

 

To show that these are all conjugacy classes of the group G = L(3,ℤp), we add up the elements 

contained in those conjugacy classes, we get: 

P(1) + (p – 1)( (p) + [p (p – 1)] (p) = p
3
 = G. 

Thus, this theorem gives all conjugacy classes of the group L(3,ℤp). 

 

Proposition 2.9: 

        The order of the centralizers, CG(g) of g in the group G = L(3,ℤp) are: 

(1)   i = 0,1,…, p – 1 ; CG(xi) = p
3
. 

(2)  j=1,2,…,p–1; (yj)
m 

; CG(yj) = p
2
. 

(3)  s = 1,2, …, p – 1 and  t = 0,1,…, p – 1 ; CG(zs,t) = p
2
. 

Proof: 

By theorem (2.10), G

g

G
C (g)

C
  and by theorem (2.2), G = p

3
. 

(1) By theorem (2.8),  i = 0,1,…, p – 1; 
ixC 1 , then 

i

3
3

G i

x

G
C (x )

1C

p
p   . 

(2) By theorem (2.8),  j = 1,2,…, p – 1; 
jyC p , then 

j

3
2

G j

y

G
C (y )

C

p
p

p
   . 

(3) By theorem (2.8),  s = 1,2, …, p – 1 and  t = 0,1,…, p – 1; 
s ,tzC p , then 

s ,t

3
2

G s,t

z

G
C (z )

C

p
p

p
   . 

 

Remarks 2.10: 

(1) Let 
i

1 0 0

x 0 1 0

i 0 1

 
 


 
  

, where i = 0,1,…, p – 1, we note that xi  Z(G), by theorem (2.5), 

Z(G) is cyclic group of order  p, and we have 

Z(G) = {e = x0, x1, 
2 3

1 1x , x ,…,(x1)
 p – 1

} = {x0, x1, x2, x3,…,xp – 1}. 

Since every element excepted  e  in Z(G) is generator, then  

Z(G) = <x1> = <x2> = … = <xp – 1>. 
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(2)  j = 1,2,…, p – 1; we take the first element in the conjugacy classes 
jyC  as a 

representatives and denoted it by  yi, then i

1 0 0

y 0 1 0

0 j 1

 
 


 
  

, so   m = 1,2,…, p – 1;              

(y1)
m

 = ym. Then <y1> = {e = x0, y1, 
2 3

1 1y , y ,…,(y1)
 p – 1

} = {x0, y1, y2, y3,…,yp – 1}. 

Since o(yj) = p, then every element in <y1> is generator, that is <y1> = <y2> =…= <yp – 1>. 

(3) In the same way, we can show that,  k = 0, 1,…, p – 1; we have 

<z1,k> = < z2,2k > = < z3,3k > = … = <zp – 1,( p – 1)k>. 

 

        Since conjugacy cyclic subgroups give the same Artin characters, then when we 

construct Artin characters table of L(3,ℤp) we need only to compute    induced from non-

conjugate cyclic subgroups and by remark (2.10) they are: <x0>, <x1>, <y1>, <z1,0>, <z1,1>, 

<z1,2>,…, and <z1, p – 1>. 

 

Proposition 2.11: 
        Intersection of non-conjugate cyclic subgroups <x0>, <x1>, <y1>, <z1,0>, <z1,1>, 

<z1,2>,…, and <z1, p – 1> with all conjugacy classes of the group L(3,ℤp) are: 

Let  i, t, k = 0,1,…, p – 1  and  j, s = 1,2,…, p – 1; then 

(1)  (i) 
i

0

0 x

{x } if i 0
x C

if i 0


    

 
       (ii)  

j0 yx C            (iii)  
s,t0 zx C     

(2)  (i) 
i1 x ix C {x }                            (ii)  

j1 yx C            (iii)  
s,t1 zx C     

(3)  (i) 
i

0

1 x

{x } if i 0
y C

if i 0


    

 
       (ii)  

j1 y jy C {y }       (iii)  
s,t1 zy C     

(4)  (i) 
i

0

1,k x

{x } if i 0
z C

if i 0


    

 
     (ii)  

j1,k yz C           

      (iii)  
s ,t1,k z

{1 element} if t sk
z C

if t sk


    

 
 

Proof: 

Let  i, t, k = 0, 1,…, p – 1  and  j, s = 1, 2, …, p – 1. 

(1) (i) Since <x0> = {x0} and 
ix iC {x } , then 

00 x 0x C {x }    and  i > 0, 

i0 xx C    . 

(ii) Since <x0>  Wx  and  
jy yC W , then 

j0 yx C    . 

(iii) Since <x0>  Wx  and  
s,tz zC W , then 

s,t0 zx C    . 

(2) (i) Since <x1> = {x0, x1,…, xp – 1}  Wx  and  
ix iC {x } , then 

i1 x ix C {x }   . 

(ii) Since 
jy yC W , then 

j1 yx C    . 

(iii) Since 
s,tz zC W , then 

s,t1 zx C    . 

(3) (i) Since <y1> = {x0, y1, y2, y3,…,yp – 1} then 
01 x 0y C {x }    and  i > 0, 

i1 xy C    . 
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(ii) From theorem (2.8), 
iy i

1 0 0

C y 0 1 0 ;r 0,1,..., 1

r j 1

p

  
  

     
    

.  

      Then 
1 2 p 11 y 2 y p 1 yy C , y C ,..., y C

    and thus 
j1 y jy C {y }   . 

(iii) Since <y1> have no elements of kind  z, then 
s,t1 zy C    . 

(4) (i) <z1,k> = {x0,z1,k,(z1,k)
2
,(z1,k)

3
,…,(z1,k)

p – 1
} and by proposition (2.7),(z1,k)

m
  Wz.  

Then 
01,k x 0z C {x }    and  i > 0, 

i1,k xz C    . 

(ii) <z1,k> have no elements of kind  y, then 
j1,k yz C    . 

(iii) From theorem (2.8), 
s ,tz s,t

1 0 0

C z s 1 0 ;r 0,1,..., 1

r t 1

p

  
  

     
    

 . 

And from proposition (2.7), 
m,mk

m

s,t z

m 1
2

1 0 0

(z ) m 1 0 C

m(r k) mk 1

 
 

 
 
  

. 

Then 
1,k 2,2k 3,3k 1,( 1)k

2 3 p 1

1,k z 1,k z 1,k z 1,k zz C ,(z ) C ,(z ) C ,..., (z ) C
p p 

    . 

Therefore,  s = 1,2,…, p – 1 ; 
s,sk1,k zz C {1element}   .  

Thus 
s ,t1,k z

{1 element} if t sk
z C

if t sk


    

 
. 

 

Theorem 2.12: 

        For any prime number  p, Artin characters table of the group G = L(3,ℤp) is: 

 

g  G 
0xC  

1xC  
1yC  

1,0zC  
1,1zC  

1,2zC  
1,3zC  … 

1,kzC  … 
1, 2zC

p
 

1, 1zC
p

 

Cg 1 1 p p p p p  p  p p 
CG(g) p

3 
p

3
 p

2
 p

2 p
2 p

2 p
2  p

2
  p

2 p
2 

0x  p
3
 0 0 0 0 0 0  0  0 0 

1x  p
2 p

2 0 0 0 0 0  0  0 0 

1y  p
2 0 p 0 0 0 0  0  0 0 

1,0z  p
2
 0 0 p 0 0 0  0  0 0 

1,1z  p
2 0 0 0 p 0 0  0  0 0 

1,2z  p
2 0 0 0 0 p 0  0  0 0 

1,3z  p
2 0 0 0 0 0 p  0  0 0 

             

1,kz  p
2
 0 0 0 0 0 0  p  0 0 

             

1, 2z p
  p

2 0 0 0 0 0 0  0  p 0 

1, 1z p
  p

2 0 0 0 0 0 0  0  0 p 

 

Proof: 
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The order of classes Cg and the order of the centralizers CG(g) following from theorem (2.8) and 

proposition (2.9) respectively. 

By proposition (2.11) the intersections of cyclic subgroups of L(3,ℤp) with its conjugacy classes are ({1e.} in the 

following table means set contain only one element) 

 

 0xC  
1xC  

1yC  
1,0zC  

1,1zC  
1,2zC  

1,3zC  … 1,kzC  … 1, 2zC
p

 
1, 1zC

p
 

<x0> {1e.}            

<x1> {1e.} {1e.}           
<y1> {1e.}  {1e.}          
<z1,0> {1e.}   {1e.}         
<z1,1> {1e.}    {1e.}        
<z1,2> {1e.}     {1e.}       
<z1,3 > {1e.}      {1e.}      

             

<z1,k > {1e.}        {1e.}    

             

<z1,p – 2> {1e.}          {1e.}  

<z1,p – 1> {1e.}           {1e.} 
 

Let  V = {x0,x1,y1,z1,0,z1,1,z1,2,...,z1,k,...,z1, p – 1}, from the intersection table above, we see that 

 h  V; 
0xh C {1 element}   . 

Also,  h  V and x0  g  V; g

{1 element} if h g
h C

if h g


    

 
. 

We using formula (1.1) to compute Artin characters, then we get: 

 

3
3

0

G 0G

h 0 3
2

0

(1) if h x
C (x ) 1

h V, 1 (x ) 1
h

(1) if h x

p
p

p
p

p

 


 


     

    


. 

 

3
2

1G 1G

h 1

1

(1) if h xC (x )
h V, 1 (x ) 1

h
0 if h x

p
p

p 


 

     
   

. 

 

2

1G 1G

h 1

1

(1) if h yC (y )
h V, 1 (y ) 1

h
0 if h y

p
p

p 


 

     
   

. 

  h  V and  k = 0, 1, …, p – 1; 
2

G 1,k 1,kG

h 1,k

1,k

C (z ) (1) if h z
1 (z ) 1

h
0 if h z

p
p

p
 


 

    
   

. 

 

Theorem 2.13: 

        For any prime number  p, Artin exponent of the group  G = L(3,ℤp) is A(L(3,ℤp)) = p
2
. 

Proof: 

From Artin characters table of the group G = L(3,ℤp) in theorem (2.12), we note that 
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Then 

0 1 1 1,k

2

G x x y z1 ( 1)
p-1

k =0

p p p p           

And by using (1.2) in proposition (1.7), Artin exponent of L(3,ℤp) is A(L(3,ℤp)) = p
2
. 
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(–(p+1)/p
2
)

0x  (–p+1)/p
2
) 0 0 0 0 0 0 … 0 … 0 0 

(1/p2
)

1x  1 1 0 0 0 0 0  0  0 0 

(1/p)
1y  p 0 1 0 0 0 0  0  0 0 

(1/p)
1,0z  p 0 0 1 0 0 0  0  0 0 

(1/p)
1,1z  p 0 0 0 1 0 0  0  0 0 

(1/p)
1,2z  p 0 0 0 0 1 0  0  0 0 

(1/p)
1,3z  p 0 0 0 0 0 1  0  0 0 

             

(1/p)
1,kz  p 0 0 0 0 0 0  1  0 0 

             

(1/p)
1, 2z p

  p 0 0 0 0 0 0  0  1 0 

(1/p)
1, 1z p

  p 0 0 0 0 0 0  0  0 1 

summation 1 1 1 1 1 1 1 … 1 … 1 1 
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