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Abstract 

In this paper, we proposed and study prey-predator model involving effect of transition different 

infectious diseases in prey population with the optimal harvesting for metapopulation, especially predator 

population, using dynamics programming. Sufficient conditions on the system parameters are derived which 

guarantee that the equilibrium points of the system are globally asymptotically stable while the harvesting which 

has an effect on the stability of this system satisfies certain conditions. Also, we discuss the existence of local 

bifurcation at each equilibrium point. Finally the effects both of the disease and harvest on the dynamical 

behavior the model are discussed numerically. 

Keywords: SIS epidemics disease, Predator-prey model, Harvest management; Global stability; Lyaponov 

function; local bifurcation.  

1. Introduction 

It is well known that in nature there is no species lived alone rather than that there are hundreds or thousands 

of species interact with each other in any given environment. On the other hand densely populated areas are a 

good incubator for the spread of infectious diseases. Therefore, there is increasing opportunity for the spread of 

diseases among the communities interacting with each other.  Many diseases are transmitted in the species not 

only through contact, but also directly from environment, such as, influenza, bird flu and others. Anderson and 

May [1] formulated a prey–predator model involving disease in prey species. Later on many researchers, 

especially in the last two decades, have proposed and studied different predator–prey models in presence of 

disease in one of the species see for example [2-11] and the references there in. The effect of constant-rate 

harvesting on the dynamics of predator-prey systems has been investigated by many authors, see, for example, 

Brauer and Soudack [12,13], Dai and Tang [14], Myerscough et al. [15], Xiao and Ruan [16], very rich and 

interesting dynamical behaviors have been observed see for example [17-23] and the references there in, such as 

the stability of the equilibria, existence of Hopf bifurcation, limit cycles, homoclinic loops, Bogdanov-Takens 

bifurcations, and even catastrophe. It is also observed that in some cases, before a catastrophic harvest rate is 

reached the effect of harvesting is to stabilize the equilibrium of the population system. On the other hand, many 

researchers proposed and study eco-epidemic model containing two disease strains in the same population. see 

for example [24,25] and the references there in. 

On contrast to all the above studies, in this paper a prey-predator model involving, in addition, harvest in 

predator species the two different SIS infectious diseases in prey species is proposed and analyzed. It is assumed 

that the both diseases spread within prey population by contact, between susceptible individuals and infected 

individuals. Furthermore, in this model, Holling type II as a functional response and linear disease incidence for 

describing the transition both of diseases are used.  
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2. Mathematical Model 

To describe the model for a prey-predator system, we consider the following notation:  

 Let    tptN and  be the population densities of the prey species and predator species at time t , 

respectively. 

 The prey grows logistically with intrinsic growth rate 01 h  and carrying capacity 02 h . 

 There is an two different SIS epidemic diseases spread among the prey population and it transmitted 

between the prey individuals (but not the predator) by contact, according to linear incidence rate with 

first and second infection rate constants 03 h  and 04 h , respectively. Therefore, the total prey 

population is divided into three classes: susceptible that is denoted by  tx , infected by first disease that 

is denoted by  ty  infected by second disease that is denoted by  tz . Hence at any time t  the total 

prey population is      tztytxtN  )( . 

 The predator preys upon only the susceptible prey according to Holling type-II functional response with 

maximum attack rate 05 h . Furthermore it is assumed that 0e  represent the conversion rate 

constant 

 Both of the infected prey can be recovered and become susceptible again with recovery rate constant 

06 h  and 07 h , respectively. 

 Furthermore it is assumed that there is disease induced mortality rate represented by 08 h  and 09 h , 

respectively. 

 The predator grows logistically with intrinsic growth rate 010 h  and carrying capacity 011 h . 

 Finally, 0q  is the catch ability co-efficient of the predator, 0E  is the harvesting effort and qEp  is 

the catch-rate function based on the CPUE (catch-per-unit-effort) hypothesis. 

Consequently, the model with the above assumptions can be written in the following form: 
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The system (1) has the following domain   00,0,0,,,,4  pandzyxpzyx . Moreover, the 

above four nonlinear differential equations are continuously differentiable on int.
4
  and hence they are 

Lipschizian on 4
 . Thus for each set of initial conditions, say     0,00,00  zyx  and   00 p , system (1) 

has a unique solution. Therefore, the domain 4
  is an invariant for the system (1). Further in the following 

theorem the sufficient condition for uniformly bounded of the solution of the system (1) is established. 

For later purposes, it is necessary to have the Jacobian of system (1) at hand, it is reported below. 
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Theorem (1): All the trajectories of system (1), which initiate in 4
  are uniformly bounded. 

Proof: From the first and four equations of system (1) we obtain that; 
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Clearly by solving the above differential inequalities we get  
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Now, by using Gronwall lemma [26], it obtains that: 

     tt eet 



   100  

which yields  






t

t
suplim  that is independent of the initial conditions. Thus the proof is complete. 

3. Equilibrium points 

System (1) has the following equilibrium: 

 The vanishing equilibrium point  0,0,0,00 E  always exists. 

 The axial equilibrium point on the x -axis  0,0,0,11 xE  where 21 hx  , 1E always exists. 
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 The axial equilibrium point on the p -axis  22 ,0,0,0 pE   where:  qEh
h

h
p  10
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2  exists if and 

only if qEh 10 . 

 The second disease and predator free equilibrium point  0,0,, 333 yxE   where: 
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exists uniquely in the interior of the first quadrant of xy plane under the following necessary and 

sufficient condition   23 hx  . 

 The first disease and predator free equilibrium point  0,,0, 444 zxE   where: 
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exists uniquely in the interior of the first quadrant of xz plane under the following necessary and 

sufficient condition   24 hx   

 The simple prey-predator equilibrium point  555 ,0,0, pxE   where: 
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 The second disease free equilibrium point  7777 ,0,, pyxE   where: 
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exists uniquely in the interior of the first octant of xyp plane under the following necessary and 

sufficient conditions: 
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 The predator free equilibrium point  0,,, 8888 zyxE   where: 
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and  8y  is any positive variable, 8E  exists uniquely in the interior of the first octant of xyz plane 

under the following necessary and sufficient conditions     97386428 ; hhhhhhhx  . and 

 82
2

81

2

81
88 xh

h

xh

h

xh
hy 













  

 The coexistence equilibrium point  99999 ,,, pzyxE   where 

  












































































 



2

91
9

2

91
89

9

95
92

2

91
9

9

95
10

10

11
9

4

97

3

86
9

1

1
;,

h

xh
h

h

xh
hy

x

ph
xh

h

xh
z

qE
x

xeh
h

h

h
p

h

hh

h

hh
x

                                                     (6) 

and  9y  is any positive variable, 9E  exists uniquely in the Int. 4
  if and only if the following 

conditions are hold. 
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4. Stability of the system 

At the vanishing equilibrium point 0E  the eigenvalues are     qEhhhhhh  1097861 ;;; , showing that it 

is an unstable saddle . 
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Proof: The Jacobian matrix of the system (1) at 1E  is given by: 
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So, the characteristic equation of 1J  can be written by  
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p  denote to the eigenvalues in the x direction, y direction, z direction and 

p direction, respectively. So, it is easy to verify that, all the eigenvalues have negative real parts if and only if 
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 . Furthermore, 
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Theorem (3): The equilibrium point 2E  is globally asymptotically stable in 4
  if and only if: 

  110
10

115 hqEh
h

hh
                                                                                                                                      (8) 

Proof: The Jacobian matrix of the system (1) at 2E  is given by: 

 

 
 

   

































qEhqEh
h

heh

hh

hh

hhqEh
h

hh
h

J

1010
10

115

97

86

7610

10

115
1

2

00

000

000

0

 

So, the characteristic equation of 2J  can be written by  

         

             08610
10

115
1

2
10

10

115
186

22

2
10

2
97






























































hhqEh
h

hh
hqEh

h

hh
hhh

qEhhh pz





 

From which, we obtain that: 

       

       

       





























8610

10

115
1

22

8610

10

115
1

22

10
2

97
2 ,,

hhqEh
h

hh
h

hhqEh
h

hh
h

qEhhh

yx

yx

pz







 

Here 
     222 ,, zyx   and 

 2
p  denote to the eigenvalues in the x direction, y direction, z direction and 

p direction, respectively. So, it is easy to verify that, in addition the condition of exist 2E  all the eigenvalues 

have negative real parts if and only if satisfies the condition (8) [27]. Therefore, the 2E  is locally asymptotically 

stable in 
4
 . Furthermore, it is a globally asymptotically stable too. 

Similarly, The second disease and predator free equilibrium point 3E  is locally and globally asymptotically 

stable if and only if the following conditions hold. 
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 







 





4

972
3

3

35
10 ,

2
min;

1 h

hhh
xqE

x

xeh
h  and 





























2

1
333

2
1

2
1

h

h
hyx

h
h                                             (9) 

The first disease and predator free equilibrium point 4E  is locally and globally asymptotically stable if and only 

if the following conditions hold. 

 







 





3

862
4

4

45
10 ,

2
min;

1 h

hhh
xqE

x

xeh
h  and 





























2

1
444

2
1

2
1

h

h
hzx

h
h                                           (10) 

The prey-predator equilibrium point 5E  is locally and globally asymptotically stable if and only if the following 

conditions hold. 

   

  






















 



















5
2

12
5

55

4

97

3

862
5

5

55
5

11
10

11
5

2
1

1

,,
2

min;
1

2
1;

2

x
h

h
x

ph

h

hh

h

hhh
x

x

xeh
p

h
hqE

h
p

                                              (11) 

Theorem (4): If the following conditions hold 

3

86
6

h

hh
x


                                                                                                                                              (12a) 

 26

65

2

1
466

2

1
1

2
1

x

ph

h

h
hzx

h
h






























                                                                                                     (12b) 

Then, the first disease free equilibrium point 6E  is a locally asymptotically stable. 

Proof: The Jacobian matrix of the system (1) at 6E  is given by: 

       

 

 

   





















6
44

6
41

6
31

6
22

6
14

6
13

6
12

6
11

6

00

000

000









J  

Where: 

 

 
   

       

 
 












































































qE
x

xeh
h

x

peh
zhhhxh

x

xh

hx
h

h
hxhx

h

h

x

ph

h

h
hzx

h
h

6

65
10

6
442

6

656
4164

6
318663

6
22

6

656
14

96
2

16
136636

2

16
122

6

65

2

1
466

2
1

6
11

1
;

1
;;;

1

;;;
1

2
1





 

So, the characteristic equation of 6J  can be written by  

              03
6

2

26
1

366
22

6 





  FFFy   

with 

                      6
44

6
31

6
133

6
31

6
13

6
41

6
14

6
44

6
112

6
44

6
111 ;;   FFF  

Here 
     666 ,, zyx   and 

 6
p denote to the eigenvalues in the x direction, y direction, z direction and 

p direction, respectively. The Routh-Hurwitz conditions require 01 F  and 0321  FFF , which reduces 

to condition (12b) and 03 F  is always positive, and in addition the negativity of the other eigenvalues, namely 
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condition (12a). So, according to Routh-Hurwitz criterion 6E  is locally asymptotically stable, it is a globally 

asymptotically stable too. 

Theorem (5): If the following conditions hold 

4

97
7

h

hh
x


                                                                                                                                             (13a) 

 27

75

2

1
477

2
1

1

2
1

x

ph

h

h
hzx

h
h






























                                                                                                     (13b) 

Then, the second disease free equilibrium point 7E  is a locally asymptotically stable. 

Proof: The Jacobian matrix of the system (1) at 7E  is given by: 

       

 

 

   





















7
44

7
41

7
33

7
21

7
14

7
13

7
12

7
11

7

00

000

000









J  

Where: 

 

 
   

       

 
 












































































qE
x

xeh
h

x

peh
hhxhyh

x

xh

hxhx
h

h
hx

h

h

x

ph

h

h
hyx

h
h

7

75
10

7
442

7

757
419774

7
3373

7
21

7

757
14

7747
2

17
1387

2

17
122

7

75

2

1
377

2
1

7
11

1
;

1
;;;

1

;;;
1

2
1





 

So, the characteristic equation of 7J  can be written by  

              03
7

2

27
1

377
33

7 





  FFFz   

with 

                      7
44

7
21

7
123

7
21

7
12

7
41

7
14

7
44

7
112

7
44

7
111 ;;   FFF  

Here 
     777 ,, zyx  and 

 7
p denote to the eigenvalues in the x direction, y direction, z direction and 

p direction, respectively. The Routh-Hurwitz conditions require 01 F  and  0321  FFF , which reduces 

to condition (13b) and 03 F  is always positive, and in addition the negativity of the other eigenvalues, namely 

condition (13a).So, according to Routh-Hurwitz criterion 7E  is locally asymptotically stable, it is a globally 

asymptotically stable too. 

Theorem (6): The predator free equilibrium point 8E  is locally asymptotically stable in 4
  if and only if: 










84

7

83

6
1182 ,min;;;

zh

zh

yh

yh
xhpxxhzyx   and  qE

h

p
h

x

xeh
















 11

10

8

85 1
1

                        (14) 

Proof: Since the equilibrium point 8E is non-hyperbolic equilibrium point, then consider the function  

e

p

z

z
zzz

y

y
yyy

x

x
xxxV 











































8
88

8
88

8
88

]8[ lnlnln  

Clearly, 
 


48 :V  and 

   08
8 EV  with   4

8
]8[ ,0  EEEEV . Hence it is positive definite 

function in 4
 . Also, the derivative of ]8[V  with respect to the time t  is given as follows. 
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       











































 


qE
h

p
h

x

xeh

e

p

xxxzhzh
x

xxxyhyh
x

xx
h

zyx
h

dt

dV

11

10

8

85

884788368

2

1

]8[

1
1

11
1

 

In addition condition (14) guarantee that 0
]8[


dt

dV
 on subregion of 4

 , then ]8[V  is a Lyapunov function on 

that subregion which satisfies condition (14). Therefore 8E  is a locally asymptotically stable but not globally.                                                                         

Theorem (7): the coexistence equilibrium point 9E  is locally asymptotically stable in 4
  if and only if: 

 









94

7

93

6
91192 ,min;,min;;

zh

zh

yh

yh
xphpxxhzyx and qE

h

p
h

x

xeh
















 11
10

9

95 1
1

              (15) 

Proof: Since the equilibrium point 9E is non-hyperbolic equilibrium point, then consider the function  


























































9

99

9

99

9

99

9

99
]8[ ln

1
lnlnln

p

p
ppp

ez

z
zzz

y

y
yyy

x

x
xxxV  

Clearly, 
 


49 :V  and 

   09
9 EV  with   4

9
]9[ ,0  EEEEV . Hence it is positive definite 

function in 4
 . Also, the derivative of ]9[V  with respect to the time t  is given as follows. 

       











































 


e

qE

h

p

e

h

x

xeh

e

p

xxxzhzh
x

xxxyhyh
x

xx
h

zyx
h

dt

dV

11

10

9

95

994799369

2

1

]9[

1
1

11
1

 

In addition condition (15) guarantee that 0
]9[


dt

dV
 on subregion of 4

 , then ]9[V  is a Lyapunov function on 

that subregion which satisfies condition (15). Therefore 9E  is a locally asymptotically stable but not globally. 

5. The local bifurcation analysis 

Theorem (8): the system (1) at the axial equilibrium point on the x -axis 1E  with the parameter  

 

2

251
10

1 h

heh
qEh


  has: 

 No saddle-node bifurcation. 

 No pitchfork bifurcation. 

 Transcritical bifurcation. 

Proof: According to the Jacobian matrix 1J  the system (1) at the equilibrium point 1E  has zero eigenvalue ( say 

  01  ) if and only if 
 1
1010 hh  . Now, let  TvvvvV ]1[

4
]1[

3
]1[

2
]1[

1
]1[ ,,, be the eigenvector corresponding to the 

eigenvalue 
  01  . Thus 

    
0

~ 11
1  VIJ   where 

  0
~ 1

11  JJ , then 
 

T

vv
hh

hh
V 

















 ]1[

4
]1[

4
21

25]1[ ,0,0,
1

 

where  ]1[
4v  represents any nonzero real number. And let  T]1[

4
]1[

3
]1[

2
]1[

1
]1[ ,,,  be the eigenvector 
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associated with the eigenvalue   01   of the matrix TJ1

~
, hence  T]1[

4
]1[ ,0,0,0   where ]1[

4  represents 

any nonzero real number. Now, we have       0, ]1[
10110

]1[  hEh

T
 where  1010

,hXh  represents the 

derivative of  10,hX  with respect to parameter 10h . 

Thus, according to Sotomayor's theorem[33], the saddle-node bifurcation cannot occur. While the first condition 

of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

     0, ]1[
4

]1[
4

]1[]1[
10110

]1[  vVhED h

T
 

where  1010
,hXD h  represents the derivative of  1010

,hXh  with respect to  TPzyxX ,,, . Moreover 

to the above, if  10,hXDJ   represents the general Jacobian matrix of system (1) at X , then 

     
 

  0
1

22
,, ]1[

4

2]1[
43

2

2
2
5

11

]1[
10]1[]1[]1[

101
2]1[ 
















 v

h

hhe

h

h
VVhED

T
 

Thus, the system (1) has transcritical bifurcation at 1E  with the parameter ]1[

1010 hh   while the pitchfork 

bifurcation does not occur. 

 Theorem (9): Assume that the following condition holds 

   52102 1 hheqEhh                                                                                                                         (16) 

Then the system (1) at the axial equilibrium point on the p -axis 2E  with the parameter 

   qEh
h

hh
h  10

10

1152
1  has: 

 No saddle-node bifurcation. 

 No pitchfork bifurcation. 

 Transcritical bifurcation. 

Proof: According to the Jacobian matrix 2J  the system (1) at the equilibrium point 2E  has zero eigenvalue ( 

say 
  02  ) if and only if 

 2
11 hh  . Now, let  TvvvvV ]2[

4
]2[

3
]2[

2
]2[

1
]2[ ,,, be the eigenvector corresponding to the 

eigenvalue 
  02  . Thus 

    
0

~ 22
2  VIJ   where 

  0
~ 2

22  JJ , then 
 

 

T

vv
he

qEh
V













 
 ]2[

4
]2[

42
1

10]2[ ,0,0,  

where  ]2[
4v  represents any nonzero real number. And let  T]2[

4
]2[

3
]2[

2
]2[

1
]2[ ,,,  be the eigenvector 
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associated with the eigenvalue   02   of the matrix TJ2

~
, hence 

   

T

hh

h

hh

h















 0,,, ]2[

1
97

7]2[
1

86

6]2[
1

]2[   

where ]2[
1  represents any nonzero real number. Now, we have       0, ]2[

121

]2[  hEh

T
 where  11

,hXh  

represents the derivative of  1,hX  with respect to parameter 1h . 

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While 

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

       0, ]2[
1

]2[
42

1

10]2[]2[
121

]2[ 


 v
he

qEh
VhED h

T
 

where  11
,hXD h  represents the derivative of  11

,hXh  with respect to  TPzyxX ,,, . Moreover to the 

above, if  1,hXDJ   represents the general Jacobian matrix of system (1) at X . Obviously, if the condition 

(16) holds then 

          
    0

1
2,, ]2[

1

2]2[
42

1

10
5

2

102]2[]2[]2[
102

2]2[ 













 v

he

qEh
h

he

qEhh
VVhED

T
 

Thus, the system (1) has transcritical bifurcation at 2E  with the parameter ]2[

11 hh   while the pitchfork 

bifurcation does not occur. 

Theorem (10): The system (1) at the second disease and predator free equilibrium point 3E  with the parameter  

 

3

353
10

1 x

xeh
qEh


  has: 

 No pitchfork bifurcation. 

 No transcritical bifurcation. 

 Saddle-node bifurcation. 

Proof: The Jacobian matrix of system (1) can be written as: 

 







































qE
x

xhe
h

hhxh

yh

x

xh
hxhx

h

h
hxhx

h

h
qEh

h

hh
h

J

3

35
10

9734

33

3

35
7343

2

1
6333

2

1
10

10

115
1

3

1
000

000

000

1

 

Clearly the characteristic equation of 3J can written as: 
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       

    






















































































83
2

1
333

2

1
33

2
1

323

3
9734

3

3

35
10

3

2
1

1

hx
h

h
yhy

h

h
hx

h
h

hhxhqE
x

xhe
hP zp





 

So, the system (1) at the equilibrium point 3E  has zero eigenvalue ( say   03  ) if and only if  3
1010 hh  . Now, 

let  TvvvvV ]3[
4

]3[
3

]3[
2

]3[
1

]3[ ,,, be the eigenvector corresponding to the eigenvalue   03  . Thus 

    
0

~ 33
3  VIJ   where   0

~ 3
33  JJ , then 

  

T

vv
hhxhx

xhh
V 

















 ]3[

4
]3[

4
82313

352]3[ ,0,
1

,0  where  ]3[
4v  

represents any nonzero real number. And let  T]3[
4

]3[
3

]3[
2

]3[
1

]3[ ,,,  be the eigenvector associated with the 

eigenvalue 
  03   of the matrix TJ3

~
, hence  T]3[

4
]3[ ,0,0,0   where ]3[

4  represents any nonzero real 

number. Now, we have        
0, 3

4
]3[

10310

]3[  hEh

T
 where  1010

,hXh  represents the derivative of 

 10,hX  with respect to parameter 10h . 

Thus, according to Sotomayor's theorem, both Transcritical and pitchfork bifurcation cannot occur. While the 

first condition of saddle-point is satisfied. Moreover to the above, if  10,hXDJ   represents the general 

Jacobian matrix of system (1) at X , then 

     
 
  0

2
,, ]3[

4

2]3[
4

11

3
10]3[]3[]3[

103
2]3[ 


 v

h

h
VVhED

T
 

Thus, the system (1) has saddle-node  bifurcation at 3E  with the parameter ]3[

1010 hh  . 

Theorem (11): the system (1) at the first disease and predator free equilibrium point 4E  with the parameter  

 

4

454
10

1 x

xeh
qEh


  has: 

 No saddle-node bifurcation. 

 No pitchfork bifurcation. 

 Ttranscritical bifurcation. 

Proof: The Jacobian matrix of system (1) can be written as: 



































































qE
x

xhe
h

zh

hhxh

x

xh
hx

h

h
hxhx

h

h
z

h

h
hx

h
h

J

4

45
10

44

8643

4

45
94

2

1
6434

2

1
4

2

1
44

2
1

4

1
000

000

000

1

2
1

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

13 

Clearly the characteristic equation of 4J can written as: 

       

    






















































































94
2

1
444

2

1
44

2
1

424

4
8643

4

4

45
10

4

2
1

1

hx
h

h
zhz

h

h
hx

h
h

hhxhqE
x

xhe
hP yp





 

So, the system (1) at the equilibrium point 4E  has zero eigenvalue ( say   04  ) if and only if  4
1010 hh  . Now, 

let  TvvvvV ]4[
4

]4[
3

]4[
2

]4[
1

]4[ ,,, be the eigenvector corresponding to the eigenvalue   04  . Thus 

    
0

~ 44
4  VIJ   where   0

~ 4
44  JJ , then 

  

T

vv
hhxhx

xhh
V 















 ]4[

4
]4[

4
92414

452]4[ ,
1

,0,0  where  ]4[
4v  

represents any nonzero real number. And let  T]4[
4

]4[
3

]4[
2

]4[
1

]4[ ,,,  be the eigenvector associated with the 

eigenvalue 
  04   of the matrix TJ4

~
, hence  T]4[

4
]4[ ,0,0,0   where ]4[

4  represents any nonzero real 

number. Now, we have       0, ]4[
10410

]4[  hEh

T
 where  1010

,hXh  represents the derivative of  10,hX  

with respect to parameter 10h . 

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While 

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

     0, ]4[
4

]4[
4

]4[]4[
10410

]4[  vVhED h

T
 

where  1010
,hXD h  represents the derivative of  1010

,hXh  with respect to  TPzyxX ,,, . Moreover 

to the above, if  10,hXDJ   represents the general Jacobian matrix of system (1) at X , then 

     
 

  0
2

,, ]4[
4

2]4[
4

11

4
10]4[]4[]4[

104
2]4[ 


 v

h

h
VVhED

T
 

Thus, the system (1) has transcritical bifurcation at 4E  with the parameter ]4[

1010 hh   while the pitchfork 

bifurcation does not occur. 

Theorem (12): the system (1) at the simple prey-predator equilibrium point 5E  with the parameter  

 

 
 

  






































































2
5

55
5

2
1

3
5

55
2
5

5

55

5
11

5
10

1

2
11

12
1

1

x

xh
x

h
hx

pxeh

x

xeh
qE

p
h

h  has: 

 No pitchfork bifurcation. 
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 No transcritical bifurcation. 

 Saddle-node bifurcation. 

Proof: The Jacobian matrix of system (1) can be written as: 

 

  



























































qE
x

xhe

h

ph
h

x

phe

hhxh

hhxh

x

xh
hxhx

h

h
hxhx

h

h

x

ph

h

x
h

J

5

55

11

510
102

5

55

9754

8653

5

55
7545

2

1
6535

2

1

2
5

55

2

5
1

5

1

2
00

1

000

000

11

2
1

 

Clearly the characteristic equation of 5J can written as: 

        

    

 

 

 

  






















































































































































3
5

55
2

5

5

55
5

11
102

5

55
5

2
1

5

55
5

11
102

5

55
5

2
1

525

5
9754

5
8653

5

11

2
1

1

2
1

1

2
1

1

2
1

x

pxhe
qE

x

xeh
p

h
h

x

ph
x

h
h

qE
x

xeh
p

h
h

x

ph
x

h
h

hhxhhhxhP zy





 

So, the system (1) at the equilibrium point 5E  has zero eigenvalue ( say 
  05  ) if and only if 

 5
1010 hh  . Now, 

let  TvvvvV ]5[
4

]5[
3

]5[
2

]5[
1

]5[ ,,, be the eigenvector corresponding to the eigenvalue 
  05  . Thus 

    
0

~ 55
5  VIJ   where 

  0
~ 5

55  JJ , then 

 

 

T

vv

x

peh

qE
x

xeh
p

h
h

V





















































 ]5[
4

]5[
4

2
5

55

5

55
5

11

5
10

]5[ ,0,0,

1

1

2
1

 

where  ]5[
4v  represents any nonzero real number. And let  T]5[

4
]5[

3
]5[

2
]5[

1
]5[ ,,,  be the eigenvector 

associated with the eigenvalue 
  05   of the matrix TJ5

~
, hence 

   
 

 

T

qE
x

xeh

h

p
h

x

peh

hhxh

hxhx
h

h

hhxh

hxhx
h

h














































































 ]5[
1

5

55

11

55
10

2
5

55

]5[
1

9754

7545
2

1

]5[
1

8653

6535
2

1

]5[
1

]5[

1

2
1

1
,,,    where 

]5[
1  represents any nonzero real number. Now, we have 

    
 

 

 

0

1

2
1

1
1

, ]5[
1

5

55
5

11

5
10

11

5

2
5

2
55

]5[
10510

]5[ 

















































 

qE
x

xeh
p

h
h

h

p

x

peh

hEh

T
 where  1010

,hXh  represents the derivative 

of  10,hX  with respect to parameter 10h . 

Thus, according to Sotomayor's theorem, both Transcritical and pitchfork bifurcation cannot occur. While the 

first condition of saddle-point is satisfied. Moreover to the above, if  10,hXDJ   represents the general 

Jacobian matrix of system (1) at X , then 
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       

 

  0

1

2
1

1

2

,, ]5[
1

2]5[
4

5

55
5

11

5
1011

2
5

55

]5[]5[]5[
105

2]5[ 
































 v

qE
x

xeh
p

h
hh

x

phe

VVhED
T

 

Thus, the system (1) has saddle-node  bifurcation at 5E  with the parameter ]5[

1010 hh   while the pitchfork 

bifurcation does not occur. 

Theorem (13): The system (1) does not occur any types of local bifurcation at the first disease free equilibrium 

point 6E  with the parameter    
   

 97

8646
3

hh

hhh
h




  

Proof: According to the Jacobian matrix 6J  the system (1) at the equilibrium point 6E  has zero eigenvalue ( 

say   06  ) if and only if 
 6
33 hh  . Now, let  TvvvvV ]6[

4
]6[

3
]6[

2
]6[

1
]6[ ,,, be the eigenvector corresponding to the 

eigenvalue 
  06  . Thus 

    
0

~ 66
6  VIJ   where 

  0
~ 6

66  JJ , then 

 
 

T

vv
hhxh

hhxh
V 

















 0,,,0 ]6[

3
]6[

3
8261

9261]6[  where  ]6[
3v  represents any nonzero real number. And let 

 T]6[
4

]6[
3

]6[
2

]6[
1

]6[ ,,,  be the eigenvector associated with the eigenvalue   06   of the matrix TJ6

~
, hence 

 T0,0,,0 ]6[
2

]6   where ]6[
2  represents any nonzero real number. Now, we have       0, ]6[

363

]6[  hEh

T
 

where  33
,hXh  represents the derivative of  3,hX  with respect to parameter 3h . 

Thus, according to Sotomayor's theorem, the saddle-node bifurcation cannot occur. While the first condition of 

transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

      
 

0, ]6[
2

]6[
3

8261

92616]6[]6[
363

]6[ 



 v

hhxh

hhxhx
VhED h

T
 

where  33
,hXD h  represents the derivative of  33

,hXh  with respect to  TPzyxX ,,, . Moreover to 

the above, if  3,hXDJ   represents the general Jacobian matrix of system (1) at X , then 

      0,, ]6[]6[]6[
36

2]6[  VVhED
T

 

Thus, according to Sotomayor's theorem for local bifurcation both of Transcritical and pitchfork bifurcation 

cannot occur. 

Theorem (14): The system (1) does not occur any types of local bifurcation at the second disease free 

equilibrium point 7E  with the parameter  
   

 86

9737
4

hh

hhh
h




  
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Proof: According to the Jacobian matrix 7J  the system (1) at the equilibrium point 7E  has zero eigenvalue ( 

say   07  ) if and only if  7
44 hh  . Now, let  TvvvvV ]7[

4
]7[

3
]7[

2
]7[

1
]7[ ,,, be the eigenvector corresponding to the 

eigenvalue   07  . Thus     
0

~ 77
7  VIJ   where   0

~ 7
77  JJ , then 

 
 

T

v
hhxh

hhxh
vV 

















 0,,,0 ]7[

2
9271

8271]7[
2

]7[  where  ]7[
2v  represents any nonzero real number. And let 

 T]7[
4

]7[
3

]7[
2

]7[
1

]7[ ,,,  be the eigenvector associated with the eigenvalue   07   of the matrix TJ7

~
, hence 

 T0,,0,0 ]7[
3

]7[   where ]7[
3  represents any nonzero real number. Now, we have       0, ]7[

474

]7[  hEh

T
 

where  44
,hXh  represents the derivative of  4,hX  with respect to parameter 4h . 

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While 

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

      
 

0, ]7[
3

]7[
2

9271

82717]7[]7[
474

]7[ 



 v

hhxh

hhxhx
VhED h

T
 

where  44
,hXD h  represents the derivative of  44

,hXh  with respect to  TPzyxX ,,, . Moreover to 

the above, if  4,hXDJ   represents the general Jacobian matrix of system (1) at X . Obviously, if the 

condition (16) holds then       0,, ]7[]7[]7[
47

2]7[  VVhED
T

 

Thus, according to Sotomayor's theorem for local bifurcation both of Transcritical and pitchfork bifurcation 

cannot occur. 

Theorem (15): The system (1) at the predator free equilibrium point 8E  with the parameter  

    
 97

109748
5

hhe

hqEhhh
h




  has: 

 No saddle-node bifurcation. 

 No pitchfork bifurcation. 

 Transcritical bifurcation. 

Proof: According to the Jacobian matrix 8J  the system (1) at the equilibrium point 8E  has zero eigenvalue ( 

say 
  08  ) if and only if 

 8
55 hh  . Now, let  TvvvvV ]8[

4
]8[

3
]8[

2
]8[

1
]8[ ,,, be the eigenvector corresponding to the 

eigenvalue 
  08  . Thus 

    
0

~ 88
8  VIJ   where 

  0
~ 8

88  JJ , then 
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 
 

 

T

vvv
x

xh
v

h

hhxh

hhxh

h
V



































 ]7[

4
]7[

3
]7[

4
8

85]7[
3

2

8281

8281

2]8[ ,,
1

,0  where  ]8[
4

]8[
3 vandv  represent any 

nonzero real number. And let  T]8[
4

]8[
3

]8[
2

]8[
1

]8[ ,,,  be the eigenvector associated with the eigenvalue 

  08   of the matrix TJ8

~
, hence 

 
 

T

hhxh

hhxh

















 ]8[

4
]8[

3
]8[

3
8281

9281]8[ ,,,0   where ]8[
4

]8[
3  and  represents 

any nonzero real number. Now, we have       0, ]8[
585

]8[  hEh

T
 where  55

,hXh  represents the derivative 

of  5,hX  with respect to parameter 5h . 

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While 

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

    
 

0
1

, ]8[
4

]8[
4

8

8]8[]8[
585

]8[ 


 v
x

ex
VhED h

T
 

where  55
,hXD h  represents the derivative of  55

,hXh  with respect to  TPzyxX ,,, . Moreover to 

the above, if  5,hXDJ   represents the general Jacobian matrix of system (1) at X . Obviously, if the 

condition (16) holds then         0
2

,, ]8[
4

2]8[
4

11

10]8[]8[]8[
58

2]8[ 


 v
h

h
VVhED

T
 

Thus, the system (1) has transcritical bifurcation at 8E  with the parameter 
]8[

55 hh   while the pitchfork 

bifurcation does not occur. 

Theorem (16): The system (1) does not occur any types of local bifurcation at the coexistence equilibrium point 

9E  with the parameter  
   

























































 9

2

1
49

2

1
39

2

1

9

2
99

5

2
1

1
z

h

h
hy

h

h
hx

h
h

p

x
h  

Proof: According to the Jacobian matrix 9J  the system (1) at the equilibrium point 9E  has zero eigenvalue ( 

say 
  09  ) if and only if 

 9
55 hh  . Now, let  TvvvvV ]9[

4
]9[

3
]9[

2
]9[

1
]9[ ,,, be the eigenvector corresponding to the 

eigenvalue 
  09  . Thus 

    
0

~ 99
9  VIJ   where 

  0
~ 9

99  JJ , then 

 
 

T

vv
hhxh

hhxh
V 

















 0,,,0 ]9[

3
]9[

3
8291

9291]9[  where  ]9[
3v  represents any nonzero real number. And let 

 T]9[
4

]9[
3

]9[
2

]9[
1

]9[ ,,,  be the eigenvector associated with the eigenvalue 
  09   of the matrix TJ9

~
, hence 

T

yh

zh












 
 0,,,0 ]9[

3
]9[

3
93

94]9[   where ]9[
3  represents any nonzero real number. Now, we have  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

18 

     0, ]9[
595

]9[  hEh

T
 where  55

,hXh  represents the derivative of  5,hX  with respect to parameter 

5h . 

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While 

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that 

     0, ]9[]9[
595

]9[  VhED h

T
 

where  55
,hXD h  represents the derivative of  55

,hXh  with respect to  TPzyxX ,,,   

Thus, according to Sotomayor's theorem for local bifurcation, at 9E  with the parameter ]9[
55 hh    both of 

transcritical and pitchfork bifurcation cannot occur. 

6. Numerical Simulations 

The system (1) is solved numerically for different sets of parameters and different sets of initial 

conditions, and then the time series for the trajectories of system (1) are confirm our obtained analytical results. 

By using   ,75.0,75.0,75.0,75.0   75.1,75.1,75.1,75.1  and  75.3,75.3,75.3,75.3  as initial points and 

predictor-corrector method with six order Runge-Kutta method, the numerical simulations are carried out in the 

following cases: 

Case I For the equilibrium point 1E , we choose the following parametric values : 

;6.0,1.0,7.0,40,4.0,09.0,02.0

,5.0,5.0,1.0,01.0,01.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                         (17) 

The conditions (7) of Theorem (2) are satisfied. Then, the equilibrium point 1E  of system (1) is globally 

asymptotically stable and is identical to  0,0,0,50  for any time. (See Fig. 1). 

Case II For the equilibrium point 2E , we choose the following parametric values : 

;1.0,1.0,7.0,40,4.0,09.0,02.0

,03.0,04.0,1.0,06.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                     (18) 

The conditions (8) of Theorem (3) are satisfied. Then, the equilibrium point 2E  of system (1) is globally 

asymptotically stable and is identical to  33,0,0,0  for any time. (See Fig. 2). 

Case III For the equilibrium point 3E , we choose the following parametric values : 

;6.0,1.0,7.0,40,4.0,09.0,02.0

,03.0,04.0,1.0,06.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                     (19) 

The conditions (9) are satisfied. Then, the equilibrium point 3E  of system (1) is globally asymptotically stable 

and is identical to  0,0,778.21,1  for any time. (See Fig. 3). 

Case IV For the equilibrium point 4E , we choose the following parametric values : 

;6.0,1.0,7.0,40,4.0,09.0,02.0

,03.0,04.0,1.0,2.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                       (20) 
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The conditions (10) are satisfied. Then, the equilibrium point 4E  of system (1) is globally asymptotically stable 

and is identical to  0,761.4,0,6.0  for any time. (See Fig. 4). 

Case V For the equilibrium point 5E , we choose the following parametric values : 

;6.0,1.0,7.0,40,4.0,09.0,02.0

,03.0,04.0,1.0,2.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                       (21) 

The conditions (11) are satisfied. Then, the equilibrium point 5E  of system (1) is globally asymptotically stable 

and is identical to  75.26,0,0,9.46  for any time. (See Fig. 5). 

Case VI For the equilibrium point 6E , we choose the following parametric values : 

;5.0,1.0,7.0,40,4.0,02.0,09.0

,04.0,03.0,1.0,06.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                     (22) 

The conditions (12a) and (12b) of Theorem (4) are satisfied. Then, the equilibrium point 6E  of system (1) is 

globally asymptotically stable and is identical to  5.5,139.14,0,1  for any time. (See Fig. 6). 

Case VII For the equilibrium point 7E , we choose the following parametric values : 

;5.0,1.0,7.0,40,4.0,09.0,02.0

,03.0,04.0,1.0,06.0,06.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                     (23) 

The conditions (13a) and (13b) of Theorem (5) are satisfied. Then, the equilibrium point 7E  of system (1) is 

globally asymptotically stable and is identical to  5.5,0,139.14,1  for any time. (See Fig. 7). 

Case VIII For the equilibrium point 8E , we choose the following parametric values : 

;6.0,2.0,9.0,40,4.0,02.0,25.0

,18.0,07.0,1.0,5.0,8.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                         (24) 

The conditions (14) of Theorem (6) are satisfied. Then, the equilibrium point 8E  of system (1) is locally 

asymptotically stable and is identical to  0,973.0,138.1,4.0  for any time. (See Fig. 8). 

Case IX For the equilibrium point 9E , we choose the following parametric values : 

;5.0,2.0,7.0,40,4.0,02.0,25.0

,18.0,07.0,1.0,5.0,8.0,50,8.0

111098

7654321





Eeqhhhh

hhhhhhh
                                                   (25) 

The conditions (15) of Theorem (7) are satisfied. Then, the equilibrium point 9E  of system (1) is locally 

asymptotically stable and is identical to  57.5,62.0,55.0,4.0  for any time. (See Fig. 9). 
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Fig.1: Time series of the trajectories of system (1) from different initial points for data given in Eq.(17) which 

show that  1E  is a globally asymptotically stable. 

 

Fig.2: Time series of the trajectories of system (1) from different initial points for data given in Eq.(18) which 

show that  2E  is a globally asymptotically stable. 
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Fig.3: Time series of the trajectories of system (1) from different initial points for data given in Eq.(19) which 

show that  3E  is a globally asymptotically stable. 

 

Fig.4: Time series of the trajectories of system (1) from different initial points for data given in Eq.(20) which 

show that  4E  is a globally asymptotically stable. 
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Fig.5: Time series of the trajectories of system (1) from different initial points for data given in Eq.(21) which 

show that  5E  is a globally asymptotically stable. 

 

Fig.6: Time series of the trajectories of system (1) from different initial points for data given in Eq.(22) which 

show that  6E  is a globally asymptotically stable. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

23 

 

Fig.7: Time series of the trajectories of system (1) from different initial points for data given in Eq.(23) which 

show that  7E  is a globally asymptotically stable. 

 

Fig.8: Time series of the trajectories of system (1) from different initial points for data given in Eq.(24) which 

show that  8E  is a locally asymptotically stable. 
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Fig.9: Time series of the trajectories of system (1) from different initial points for data given in Eq.(25) which 

show that  9E  is a locally asymptotically stable. 

7. conclusions and Discussion 

In this paper, an eco-epidemiological model has been proposed and analyzed. In order to study the effect of two 

infection diseases and harvesting on the dynamical behavior of the prey-predator system, the dynamical behavior 

of system (1) has been investigated locally as well as globally. In addition to assumed that the predator 

population is harvested at a constant rate the predator is harvested under optimal conditions, we used Holling 

type-II functional response with maximum attack rate  5h  and linear incidence rate for the diseases in prey 

species. The model included four non-linear autonomous differential equations that describe the dynamics of 

four different populations namely susceptible prey  x , infected prey  y  by first disease, infected prey  z  by 

second disease and predator  p . The boundedness of the system (1) has been discussed. The conditions for 

existence and stability for each equilibrium points are obtained. To study the stability at each equilibrium point 

we used Trce-Determent theorem, Routh-Hurwitz criterion and Lyapunov function. For different sets of 

parameters and different sets of initial conditions show that, for all equilibrium points except 8E  and 9E  the 

trajectory of system (1) approaches to globally asymptotically stable point in the 4. RInt as see Fig.(1-7), finally 

the trajectory of system (1) at each 8E  and 9E  approaches to locally asymptotically stable point in the 4. RInt , 

in Fig.(8-9).  Numerically, as well as theoretically, show that for different initial points the trajectory approaches 

to different equilibrium point. Also we can separate the system (1) to six models as following: 

 Epidemic model with first infection disease. 

 Epidemic model with second infection disease. 

 Simple prey-predator model with Holling type-II functional response.  

 Prey-predator model involving first infection disease. 

 Prey-predator model involving second infection disease. 

 Epidemic model with two different SIS infection diseases. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

25 

We prove theoretically that with different candidate bifurcation parameters each equilibrium points 

8421 ,, EandEEE  satisfy the Transcritical bifurcation and 53 , EE  satisfy the saddle-node bifurcation but 

976 , EandEE did not satisfy any types of bifurcation. Numerically, notice that when change the value of the 

bifurcation parameter the solution of system (1) approaches to another equilibrium point.  
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