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Abstract
In this paper, we proposed and study prey-predator model involving effect of transition different

infectious diseases in prey population with the optimal harvesting for metapopulation, especially predator
population, using dynamics programming. Sufficient conditions on the system parameters are derived which
guarantee that the equilibrium points of the system are globally asymptotically stable while the harvesting which
has an effect on the stability of this system satisfies certain conditions. Also, we discuss the existence of local
bifurcation at each equilibrium point. Finally the effects both of the disease and harvest on the dynamical
behavior the model are discussed numerically.
Keywords: SIS epidemics disease, Predator-prey model, Harvest management; Global stability; Lyaponov
function; local bifurcation.
1. Introduction

It is well known that in nature there is no species lived alone rather than that there are hundreds or thousands
of species interact with each other in any given environment. On the other hand densely populated areas are a
good incubator for the spread of infectious diseases. Therefore, there is increasing opportunity for the spread of
diseases among the communities interacting with each other. Many diseases are transmitted in the species not
only through contact, but also directly from environment, such as, influenza, bird flu and others. Anderson and
May [1] formulated a prey—predator model involving disease in prey species. Later on many researchers,
especially in the last two decades, have proposed and studied different predator—prey models in presence of
disease in one of the species see for example [2-11] and the references there in. The effect of constant-rate
harvesting on the dynamics of predator-prey systems has been investigated by many authors, see, for example,
Brauer and Soudack [12,13], Dai and Tang [14], Myerscough et al. [15], Xiao and Ruan [16], very rich and
interesting dynamical behaviors have been observed see for example [17-23] and the references there in, such as
the stability of the equilibria, existence of Hopf bifurcation, limit cycles, homoclinic loops, Bogdanov-Takens
bifurcations, and even catastrophe. It is also observed that in some cases, before a catastrophic harvest rate is
reached the effect of harvesting is to stabilize the equilibrium of the population system. On the other hand, many
researchers proposed and study eco-epidemic model containing two disease strains in the same population. see
for example [24,25] and the references there in.

On contrast to all the above studies, in this paper a prey-predator model involving, in addition, harvest in
predator species the two different SIS infectious diseases in prey species is proposed and analyzed. It is assumed
that the both diseases spread within prey population by contact, between susceptible individuals and infected
individuals. Furthermore, in this model, Holling type Il as a functional response and linear disease incidence for

describing the transition both of diseases are used.
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2. Mathematical Model
To describe the model for a prey-predator system, we consider the following notation:

e Let N(t) and p(t) be the population densities of the prey species and predator species at time t,
respectively.

e The prey grows logistically with intrinsic growth rate h, >0 and carrying capacity h, >0 .

e There is an two different SIS epidemic diseases spread among the prey population and it transmitted
between the prey individuals (but not the predator) by contact, according to linear incidence rate with
first and second infection rate constants hy; >0 and h, >0, respectively. Therefore, the total prey
population is divided into three classes: susceptible that is denoted by x(t), infected by first disease that
is denoted by y(t) infected by second disease that is denoted by z(t). Hence at any time t the total
prey population is N(t)=x(t) + y(t)+ z(t).

e The predator preys upon only the susceptible prey according to Holling type-Il functional response with
maximum attack rate hg>0. Furthermore it is assumed that e >0 represent the conversion rate
constant

e Both of the infected prey can be recovered and become susceptible again with recovery rate constant
hg >0 and h, >0, respectively.

e Furthermore it is assumed that there is disease induced mortality rate represented by hg >0 and hy >0,
respectively.

e The predator grows logistically with intrinsic growth rate h,, >0 and carrying capacity h;;>0.

e Finally, g>0 is the catch ability co-efficient of the predator, E >0 is the harvesting effort and gEp is
the catch-rate function based on the CPUE (catch-per-unit-effort) hypothesis.

Consequently, the model with the above assumptions can be written in the following form:

X+Y+12
Y ——)-hgy—h,

h
{hl(l— ii}hswhﬂ:Nl(x.y,z, p)

2

d
d>t/ y(h3x he — hs) (X: Y, Z, p)

i 1)
o (h4X h; — h9):N3(va,Z,p)

_p|:h10( hlJ ftjf —qE:l N4(X,y,z, p)
1

The system (1) has the following domain ®? ={(x,y,z,p), x>0,y>0,z>0 and p>0}. Moreover, the
above four nonlinear differential equations are continuously differentiable on int. *Ri and hence they are
Lipschizian on ®? . Thus for each set of initial conditions, say x(0)>0, y(0)>0,z>0 and p(0)>0, system (1)

has a unique solution. Therefore, the domain *J%i is an invariant for the system (1). Further in the following

theorem the sufficient condition for uniformly bounded of the solution of the system (1) is established.

For later purposes, it is necessary to have the Jacobian of system (1) at hand, it is reported below.
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Theorem (1): All the trajectories of system (1), which initiate in in are uniformly bounded.

Proof: From the first and four equations of system (1) we obtain that;
dx N p
—<hx1- and — < -—
dt g ( hy ] o p( hnj

Clearly by solving the above differential inequalities we get

limsupN(t)<h, and limsup p(t)<h;
t—o0 t—o0

Define the function M(t)= x(t)+ y(t)+ z(t)+%p(t) and then take its time derivative along the solution of

system (1), gives

th

<h1x+ p py—pz where ¢ =min{hg,hy }

dt
<(hy +¢)X+g((hlo ~QE)+4)p—¢M
<7 —¢M where ”:(h1+¢)h2+whll
Now, by using Gronwall lemma [26], it obtains that:

0<M()< MOk + Z-e*)

which yields tIim supM(t)s that is independent of the initial conditions. Thus the proof is complete.
—0

1
¢
3. Equilibrium points
System (1) has the following equilibrium:

e  The vanishing equilibrium point E, =(0,0,0,0) always exists.

e  The axial equilibrium point on the x -axis E; = (x,0,0,0) where x, = h,, E, always exists.
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The axial equilibrium point on the p-axis E,=(0,0,0,p,) where: p, :%[h10 —qE] exists if and
0

only if hy>0qE.

The second disease and predator free equilibrium point E; =(x3,y;,0,0) where:
+ X3(hy — X

X3: 6 h8 ad y3:hl3(2 3) (2)
hs (hahg + hyxs)

exists uniquely in the interior of the first quadrant of xy —plane under the following necessary and
sufficient condition x3 <h,.

The first disease and predator free equilibrium point E, = (x,,0,2,,0) where:

— hlx4(h2 — X4) (3)

:M and Zy =

hy (hhg + hyx,)

exists uniquely in the interior of the first quadrant of xz —plane under the following necessary and

X4

sufficient condition x, <h,

The simple prey-predator equilibrium point E5 =(xs,0,0, ps) where:

pszl(1+ xs N, —x5) while x; represents a positive root of the following second order
A
polynomial equation Aix2 + AXx+A; =0 where:
—h;h h,h;olh, =1 h,h
p =l . A2=(qE—th—eh5+ 1hio(h, )j A3=[qE—hlo+ 110}
hohshy hohghyy hshy

Therefore, straight forward computation shows that E; exists uniquely in the interior of the first

quadrant of xp — plane if and only if the following conditions are hold.

h
X5 <y, ﬁi(hsm—mqu and hy <hghy,

The first disease free equilibrium point Eg :(x6 ,0,2¢, pg) Where:

Xs{:l(hz —Xe)—ithps }
X
Xg _fMothy : p6=m I‘tm+—eh5x6 —QE|and zg = 2 % ()
h, o 1+ Xg h9+%
h2

exists uniquely in the interior of the first octant of xzp — plane under the following necessary and
sufficient conditions:

ehsXe and s P <ﬂ(h
1+ Xg 1+x5 hy

Xg <hy ; qE <hyo + 2_X6)

The second disease free equilibrium point E; =(x;,y,,0, p;) where:

X{:l(hz—xﬂ—lhsm}

X

X7:M;p7:m th+EhS_X7_qE and Y7 = 2 + X
hy hio 1+ X,

®)
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exists uniquely in the interior of the first octant of xyp —plane under the following necessary and

sufficient conditions:

esx; and hs p <i(h2
1+ %, 1+x, h

X; <hy;QE <hyy+ — ;)

e  The predator free equilibrium point Eg = (xg,Yg,25,0) where:

X = {%+% m+%}

feoan oy

and yg is any positive variable, Eg exists uniquely in the interior of the first octant of xyz —plane
under the following necessary and sufficient conditions xg <h,; h,(hg+hg)=hy(h, +hy). and
X X
[h8+h1 BJ h;]?,( —Xg)
2 2
e  The coexistence equilibrium point Eq =(Xy,Yg,Zg, Py) Where

he +hg hy+hg | . hyy ehsXg
Xg =4——20 L It-p, =1L + =2 _qE
’ { hs h, Po hio "o 1+ |

(6)
Zg = l:(f’?]:g( - X9)—lhi%9] yg(hs + f‘;l;(g ﬂ/[hg h;]):gj

and yy is any positive variable, Ey exists uniquely in the Int. ‘Rf; if and only if the following

conditions are hold.

X9 <hy 3 hy(hs+hg) = hg(hy +g);
qE <hyo+ ENe¥o . TPy ﬁ(hz—xg) and Y8(%+%J<%(hz—xs)

1+X 1+x by h, h,
4. Stability of the system
At the vanishing equilibrium point E, the eigenvalues are hy ; —(hg +hg); —(h; +hg); hyo —gE, showing that it
is an unstable saddle .

Theorem (2): The equilibrium point E; is globally asymptotically stable in in if and only if:

h2 < min{w : M} and (hw ehZhSJ qE (7)
h3 4 h2
Proof: The Jacobian matrix of the system (1) at E; is given by:
—hyhs
—h —h—hhs+hg —h —hh, +hy P
1+h,
1o 0 hyh, —h, —hg 0
eh,h
0 0 0 +—23 _qgE
Mo 1+h, a

So, the characteristic equation of J; can be written by
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(_ hy — /1[>:<L]X(h2h3 —hg —hg) - AB]X(th hy —hg)— 2 {(hlo + eh2h5 qE) - /I%]J =0

2
from which, we obtain that:

eh,hg

A=ty Al =thy—bg g, A <o, —hy g and A=+ 725
2

—-QE

Here zl}],z[;],ﬂ,[}] and /1[;] denote to the eigenvalues in the x—direction, y —direction, z —direction and
p —direction, respectively. So, it is easy to verify that, all the eigenvalues have negative real parts if and only if

the condition (7) holds. Therefore, the equilibrium point E; is locally asymptotically stable in *J%i. Furthermore,
it is a globally asymptotically stable too.

Theorem (3): The equilibrium point E, is globally asymptotically stable in iRi if and only if:

h
DS 1y, ) <ty ©
hio
Proof: The Jacobian matrix of the system (1) at E, is given by:
h
h g aE) g 0
0
5 0 —(hg +hg) 0 0
& 0 0 —(h; +hy) 0
eh
—riml (hm—qE) 0 0 _(h.LO_qE)
0

So, the characteristic equation of J, can be written by
( (h7+h9) X (hlo ) 2])
h h
( 2])2 [ he + hg) (hl _ﬂ(hlo - qE)J]ﬂ[z] _[hl _5—hll(h10 - qE)J(ha +hg)|=
hio hio
From which, we obtain that:
A =~y + o), 4} =—~(o — GE),

ﬂ[f]xz[i]=—[m—%<mo—qE>J(he +hy)
0

z&ﬂm@{m—%@o—qa—(m +h8)j
0

Here ﬂ&z],l[yz],ﬂ[f] and /1[5] denote to the eigenvalues in the x —direction, y —direction, z —direction and
p —direction, respectively. So, it is easy to verify that, in addition the condition of exist E, all the eigenvalues
have negative real parts if and only if satisfies the condition (8) [27]. Therefore, the E, is locally asymptotically
stable in SRﬁ . Furthermore, it is a globally asymptotically stable too.

Similarly, The second disease and predator free equilibrium point E; is locally and globally asymptotically

stable if and only if the following conditions hold.
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ho + <qE X3 <min and hy|1-—x; |<y3| hg+—= 9

The first disease and predator free equilibrium point E, is locally and globally asymptotically stable if and only

if the following conditions hold.

hl0+eh5 4 <qE X4<m|n{hz (h hShB)} nd hl[ 2X4]<24[h4+hﬁ] (10)

1+%, 2

The prey-predator equilibrium point E; is locally and globally asymptotically stable if and only if the following

conditions hold.

ps<%;qE<hw[1_hlip5j ehsXs . X mm{hzz (h6+h8)’(h7+h9)}
1

hs Ps 2
—22 _<h|l-—X
(1+X5)2 hl[ hy 5]

Theorem (4): If the following conditions hold

(11)

hg + hg (12a)
hy

_2 hy hs Pe
hl[l h, x6]<zf{h4 hzj+(l+x6)2 (12b)

Then, the first disease free equilibrium point Eg is a locally asymptotically stable.

Xg <

Proof: The Jacobian matrix of the system (1) at Eg is given by:

e
3|0 gAY o o
a0 0 0

9o ol

Where:

2 h
1[?] = hl(l_h_)(e)_ Ze(h4 _%J_ (1+5§:)2 ; 1312 = h_hlxe —hgXg +hg ; ﬁl[g] = —(ﬂxs + h9J

2 2 h2

ﬂl[i] 5% ﬁzz =hgXg =g —hg ; ,Bs['ﬁl] =hyzg ; ﬂALFl] :5—p62 ' ﬁ44 a (hlo -I-SX6 QE]

1+ Xg (1+xg) 6

So, the characteristic equation of Jg can be written by

Aol ﬂ;[_g][(/l[e])a + R (EIF + (A1) FJ 0

with

R =l ﬂ[ﬁl) R = A - AP - A A < F = A ALY

Here ﬂ,x A [26] and /l[g]denote to the eigenvalues in the x—direction, y —direction, z —direction and

p —direction, respectively. The Routh-Hurwitz conditions require F, >0 and A=FRF, — F; >0, which reduces

to condition (12b) and F; >0 is always positive, and in addition the negativity of the other eigenvalues, namely
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condition (12a). So, according to Routh-Hurwitz criterion Eg is locally asymptotically stable, it is a globally

asymptotically stable too.

Theorem (5): If the following conditions hold

&<D%?h (13a)
4

2 ) hsp
hl[l h, X7J < z{h4 h2J+ (1+ x7)2 (13b)

Then, the second disease free equilibrium point E; is a locally asymptotically stable.
Proof: The Jacobian matrix of the system (1) at E; is given by:

[7] 11 pl7]

11 ﬂl[;] 13 14
LA 0 0o
1o o g o

oo o gl

Where:
2 h -
ﬂl[;]:hl(l_h_x7J_y7[h3 WJ_%? 1[;]:—[hlx7+he} 1[§]=h—mx7—h4x7+h7 ;

) h, ) @1+ X7) h, b
ehsX; qu
1+x%;

—h h
/31[31] = 1—5)(7? 2[71] =My ; ﬁ3[73] =hyx7 —hy —hg ; ﬁﬂ] P 5p72 : ﬂﬂt] = _[hlo +
X 1+ %)

So, the characteristic equation of J, can be written by

(A7 —ﬂe[,é][(/lm)z +R(AF 4+, ()4 Fs} -0

with

Fu=~{all)+ AL) : 7, = AT - AL - AR < 7= AL

Here ig],ﬂ[;],ﬂ[z7]and /I[g]denote to the eigenvalues in the x—direction, y—direction, z —direction and
p —direction, respectively. The Routh-Hurwitz conditions require F, >0 and A=FF, — F; >0, which reduces
to condition (13b) and F; >0 is always positive, and in addition the negativity of the other eigenvalues, namely
condition (13a).So, according to Routh-Hurwitz criterion E; is locally asymptotically stable, it is a globally

asymptotically stable too.

Theorem (6): The predator free equilibrium point Eg is locally asymptotically stable in %% if and only if:

. | hyy hz eh: X p
X+y+z<h, ; Xx<X; p<hq;x<mind—=L =% and =328 +h |[1-— |<qE 14
y ) g s P<hy {h3y8 h428} 1+ % hlo[ huJ q (14)

Proof: Since the equilibrium point Eg is non-hyperbolic equilibrium point, then consider the function

VI = | x w3 I | y =y — yaInL | 4| 2= 25—z, In= |+ 2
[88)(8 yy8y8y8 8828e

Clearly, VEl:%* 5% and VEI(E;)=0 with VI(E)=0 VE=E,, EcR*. Hence it is positive definite

function in iRi . Also, the derivative of V& with respect to the time t is given as follows.

8
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dV[S] X z 1 1
hl[ —+hy i J(x - x8)+;(h6y —haxyg \x — X5 )+ ;(hﬂ —hyzg)x - Xg)
2

P | ehsXg p
| 2988 i | 1-— |—qE
e|:1+x8 |'ho£ hllj q }

In addition condition (14) guarantee that

[8]
<0 on subregion of %*, then V& is a Lyapunov function on

that subregion which satisfies condition (14). Therefore Eg is a locally asymptotically stable but not globally.

Theorem (7): the coexistence equilibrium point Eg is locally asymptotically stable in 9%1 if and only if:

. . | hyy hz ehe p
X+y+z<h ;X<Xy; p<minfh,, pot; x<mind—L  —=tand —=2 +h|1-— |<qE 15
y 7) 9, P {hn pg} {h3y9 h4zg} 1+ % hio( hnj q (15)

Proof: Since the equilibrium point Eg is non-hyperbolic equilibrium point, then consider the function

1 p
VI — x—xg —xg N2 || y = yg = Yo In-L | 4| 2= 2y — 29 In= |+ 2| p= py — pg IN-=
( 9~ Xg % Y=Y~ Yo Yo 9~ 29 )" e P— Py — Py By

Clearly, VEI:%* 5% and VI)(Eg)=0 with VI(E)%0 VE=E,, Ec®R*. Hence it is positive definite

function in in; . Also, the derivative of V! with respect to the time t is given as follows.

dv[9] X z 1 1
hl[ —+hy+ J(X_Xg)+;(h6y—h3xy9)(x—x9)+;(h7z—h4X29)(X—X9)
2

ehx9 hlo P 9E
1+x9 e h, e

In addition condition (15) guarantee that

[9]
<0 on subregion of R*, then V! is a Lyapunov function on

that subregion which satisfies condition (15). Therefore Eq is a locally asymptotically stable but not globally.
5. The local bifurcation analysis

Theorem (8): the system (1) at the axial equilibrium point on the x-axis E; with the parameter

eh5 h, has:
h

+hy

) e

e No saddle-node bifurcation.
e No pitchfork bifurcation.
e Transcritical bifurcation.

Proof: According to the Jacobian matrix J; the system (1) at the equilibrium point E; has zero eigenvalue ( say

A =0) if and only if hy,=hY. Now, let VI :(VF],VQ],VE],VE])T be the eigenvector corresponding to the
hsh '
eigenvalue A =0. Thus ( el )\/[1]:0 where leJl(ﬂ[l]=0), then VI :( —=2. 0,0 ,vﬂ”)

where vl represents any nonzero real number. And let ¥ —(y/[l] wiH yH, [l]) be the eigenvector
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associated with the eigenvalue A8 =0 of the matrix J; , hence ‘I’[l]—(o 0,0, z//[l]) where ! represents

.
any nonzero real number. Now, we have (‘P[l]) [Nhlo(El,hEl(],)]:O where Ny, (X ,h;o) represents the

derivative of N(X ,h,,) with respect to parameter h,,.

Thus, according to Sotomayor's theorem[33], the saddle-node bifurcation cannot occur. While the first condition

of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that
u
(#] [N, (B b W = 8,8 2 0
where DN hlo(x,hlo) represents the derivative of Nhlo(x,hlo) with respect to X =(x,y,z,P )T . Moreover

to the above, if J = DN(X , hlo) represents the general Jacobian matrix of system (1) at X , then

[1]
(\p[” )T [DZN(El, hglng[ﬂlv[ll )] - {Zhh_lllo i 2e h h, }( [1])2

1+h,)

Thus, the system (1) has transcritical bifurcation at E; with the parameter h;q = hgl(]) while the pitchfork

bifurcation does not occur.

Theorem (9): Assume that the following condition holds
(h, — 1 — GE )= ehyhs (16)

Then the system (1) at the axial equilibrium point on the p -axis E, with the parameter
h2l = halml( hyo —QE) has:

e No saddle-node bifurcation.
e No pitchfork bifurcation.
e Transcritical bifurcation.

Proof: According to the Jacobian matrix J, the system (1) at the equilibrium point E, has zero eigenvalue (

say A2 =0) if and only if h, = h2. Now, let V& = (V{Z],VEZ],VEZ],VLZ] )T be the eigenvector corresponding to the
(ho—gE) '
eigenvalue 42/ =0. Thus (3, - 211 v =0 where J, =3,(#2=0), then V& =| Yo" GE)\1a1 g o (L2
9 ( 2 >/ 2 2( ) _H_ehf 4 4

where VviZ represents any nonzero real number. And let ‘P[z]=(w{2],y/[ 1yl [2]) be the eigenvector

10
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:
. . . .o h h
associated with the eigenvalue A2)=0 of the matrix J} , hence W@ :(%[2] — T wl[z],oj
(h + ) (hy +hg)

.
where w2 represents any nonzero real number. Now, we have (‘P[Z]) [Nhl(Ez,hEZ])]:O where Ny, (X ,h;)

represents the derivative of N(X ,hl) with respect to parameter h; .

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that

T —qE
(] o e 7]

where DNy, (X, h, ) represents the derivative of Ny, (X,h, ) with respectto X =(x,y,z,P ). Moreover to the

above, if J = DN(X,hl) represents the general Jacobian matrix of system (1) at X . Obviously, if the condition

(16) holds then

(2] [p2N(E, 2 v 21 )] _{(hz ~1hyo —qE) h5} (hlé)

eh,

Pl -0

Thus, the system (1) has transcritical bifurcation at E, with the parameter h; = hgz] while the pitchfork

bifurcation does not occur.

Theorem (10): The system (1) at the second disease and predator free equilibrium point E; with the parameter

B g - 0% pgs;
"o =4 1+%

e No pitchfork bifurcation.
e No transcritical bifurcation.
e Saddle-node bifurcation.

Proof: The Jacobian matrix of system (1) can be written as:

hshy ¢ hy hy —hs X3
——=22(hg—0gE) ——Xs—hyXa+he ——=X;—h,X; +h —5
hy hl%(hlo Q) h23 3X3 + Mg h23 X3 + 1y 1+ %
Vs 0 0 0
Jy= 3
3 0 0 hyXs —hy —hg 0
ehe x
0 0 0 +-2%8 _qgE
o 1+ X5 q

Clearly the characteristic equation of J, can written as:

11
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p(¥))= {hl +eh5§3 GE - ﬂﬂ[h“xa hy —hy — A2

it g ol

So, the system (1) at the equilibrium point E; has zero eigenvalue ( say B =0) ifand only if h, = hl[%] Now,

let VB = (v[3] ViV v[3]) be the eigenvector corresponding to the eigenvalue A%'=0. Thus

.
~ ~ —h,hex

T, - Al WEl 0 where J,=3,(4B=0), then VB =| 0, 2573 VB0 VB where  VE!
( : >‘/ : 3( ) (1+X3)(h1X3+h2h8) ! !

represents any nonzero real number. And let W —(w[s] wi [3]) be the eigenvector associated with the
eigenvalue A%1=0 of the matrix J] , hence ‘P[3]:(0,0,0,1//£3]) where 1! represents any nonzero real

number. Now, we have (\P[S])T[I\Ihlo(E3,h[3]] w20 where N0 (X hyo) represents the derivative of

N(X ,hy4) with respect to parameter hy.

Thus, according to Sotomayor's theorem, both Transcritical and pitchfork bifurcation cannot occur. While the

first condition of saddle-point is satisfied. Moreover to the above, if J= DN(X,th) represents the general

Jacobian matrix of system (1) at X , then

e T e

1

Thus, the system (1) has saddle-node bifurcation at E; with the parameter h;q = hfg .

Theorem (11): the system (1) at the first disease and predator free equilibrium point E, with the parameter

[4]: E_Eh5_x4 has:
o' =d 1+%x,

e No saddle-node bifurcation.
e No pitchfork bifurcation.
e Ttranscritical bifurcation.

Proof: The Jacobian matrix of system (1) can be written as:

2 hy hy hy —hsx,
1-—x hy+—=1z2, ——X;—hgx,+hg ——=X%,—h ——
hl( h2 4] ( 4 th 4 h2 4 374 6 h2 4 9 1+X4
4=
h,z, 0 0 0
0 0 0 hyo+ 5% _ e
1+X%,

12
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Clearly the characteristic equation of J, can written as:

o) 25 oy~

4
x (/1[4])2—/1[4] h, 1—£x4 - h4+ﬂ Z, |+hyz4 ix4+h9
h2 h2 h2
So, the system (1) at the equilibrium point E, has zero eigenvalue ( say 4] =0) if and only if h= hl[f')]. Now,

let V[“]=(v{4],v£4],v£4],v£4])T be the eigenvector corresponding to the eigenvalue A*'=0. Thus

.
~ ~ h,h=x

3, - AN VBl Zo where J,=3,(A4=0), then V¥ =| 0,0, 2 574 v VL where VA
( ! » ¢ 4( ) (1+X4)(h1X4+h2h9) o )

\T' . . .
represents any nonzero real number. And let W = (1/11[4],1//£4],1//£4],1//£4]) be the eigenvector associated with the
. . ~ \T'
eigenvalue A1 =0 of the matrix JJ , hence ‘P[4]:(0,0,0,y/£4]) where " represents any nonzero real

number. Now, we have (‘I’[“])T [N th(E4’h£AE)])]:0 where Ny, (X ,hy) represents the derivative of N(X,h;,)

with respect to parameter hy,.

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that
\T
(#19] [DN (B4 I NET]= i1, 2 0
where DN, (X, hyo) represents the derivative of Ny, (X,hyo) with respect to X =(x,y,z,P ). Moreover

to the above, if J = DN(X , hlo) represents the general Jacobian matrix of system (1) at X , then

I L e
1

Thus, the system (1) has transcritical bifurcation at E, with the parameter th:hE)] while the pitchfork

bifurcation does not occur.

Theorem (12): the system (1) at the simple prey-predator equilibrium point Eg with the parameter

1 ehsX ehZ x5 p
hl[s]: qE — 5X5 5 A5 M5
2 (L+x5) 5 2 hex,
1-— 1 1-= __ 575
[ hys psj ) {hl[ h, XSJ L+ Xs)z}

e No pitchfork bifurcation.

has:

13
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e No transcritical bifurcation.
e Saddle-node bifurcation.
Proof: The Jacobian matrix of system (1) can be written as:

h{l—ﬁ]—m—psz —ﬂx5—h3x5+h6 —ixs—hllstrh7 —heXs

) L) h hy 1+ X5

3. = 0 hyxs —hg —hg 0 0

° 0 0 hyXs — hy —hg 0
L‘JSZ 0 0 h10_2hl_0p5+6h5_x5_q|5
(L+x5) hy 14X

Clearly the characteristic equation of Jg can written as:

P(280)=|hxs — s — g — 221 [nyxg — hy — by — B
BIR ) (1o 2y |- _NsPs _2 eNsXs _
(/1 )2 A [hl[l h, X5J (1+ x5)2 + hlo(l s p5j+ Tt v qE

; 2 |__hsps 2 ehgxs e<h5)2X5p5
+Hh{l h, XSJ (1+x5)2}{h10(1 hyy psJ+l+x5 qE}+ (1+x5)3J

So, the system (1) at the equilibrium point E; has zero eigenvalue ( say yis =0)ifand only if h,= hl[%] Now,

\T' R . .
let V[5]:(vfs],vgs],vgs],vﬂs]) be the eigenvector corresponding to the eigenvalue A% =0. Thus

]
o) e
~ ~ + X
(G-l VE =0 where Ty =35(#1=0), then V= 0.0,
5F5
1+ x5/

\T' .
where v represents any nonzero real number. And let \11[51:(W{SI,V/551,W551,W551) be the eigenvector

associated with the eigenvalue ABl-o of the matrix i hence
T
W =y 22 yo, L vl (L) w1 where
[h3X5 —hg - hs] [h4x5 —hy - hg] [5] 1_% N ehsXs oE
0 i) 1+%
://1[5] represents any nonzero real number. Now, we have
_ eh5(p5)2 [1_p5]
2
(\y[f’])T [N th(Es,hg'%])]z L+ %) My i =0 where Ny (X, hy,) represents the derivative

B4 2 ensxs
{hlo(l s P5J+1+X5 QE}

of N(X ,h,o) with respect to parameter h,.

Thus, according to Sotomayor's theorem, both Transcritical and pitchfork bifurcation cannot occur. While the

first condition of saddle-point is satisfied. Moreover to the above, if J = DN(X,th) represents the general

Jacobian matrix of system (1) at X , then

14
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Thus, the system (1) has saddle-node bifurcation at E; with the parameter hm:hfg while the pitchfork

bifurcation does not occur.

Theorem (13): The system (1) does not occur any types of local bifurcation at the first disease free equilibrium

Hls) _ ha(he +hs)

point Eg with the parameter hy>' = h h)
7 Ty

Proof: According to the Jacobian matrix Jg the system (1) at the equilibrium point Eg has zero eigenvalue (

say A°1=0) if and only if h, = hl*l. Now, let V® = (v{e],vgﬁl,vgs],v‘[f])T be the eigenvector corresponding to the

eigenvalue Al =o. Thus (3 5 — A8l )\/[6] =0 where I = J6(/1[6] = 0), then

.
V[G]:[o M viel vl OJ where vl represents any nonzero real number. And let
Xg + oy

\T' . . . . . T
w6l —(1//[6] w® EG]) be the eigenvector associated with the eigenvalue A%J=0 of the matrix JJ , hence

.
sl =(0,(//£6] , 0,0) where 1! represents any nonzero real number. Now, we have (‘P[G]) [N hg(E6 , hg‘ﬂ)]:o
where Ny, (X,h;) represents the derivative of N(X ,h) with respect to parameter hj .

Thus, according to Sotomayor's theorem, the saddle-node bifurcation cannot occur. While the first condition of

transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that

L6l T[DN E. ol [6]] — X[ + hohg yowe
( ) h3(6’ 3)\/ [h_I.X6+hh] #0

where DNhS(X,h3) represents the derivative of Nh3(x,h3) with respect to X =(x,y,z,P)" . Moreover to

the above, if J = DN(X,hg) represents the general Jacobian matrix of system (1) at X , then

(1] [D2N(Eq, e Y191, v | = 0
Thus, according to Sotomayor's theorem for local bifurcation both of Transcritical and pitchfork bifurcation

cannot occur.

Theorem (14): The system (1) does not occur any types of local bifurcation at the second disease free

7] _ he(hy +hy)
) (he +hs)

equilibrium point E; with the parameter h

15
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Proof: According to the Jacobian matrix J, the system (1) at the equilibrium point E, has zero eigenvalue (

say A1=0) if and only if h, =h"). Now, let VI = (v{”,vg],vg”,vf] )T be the eigenvector corresponding to the

eigenvalue Al-o. Thus (37 y/ur }/[7] =0 where J, = J7(/1[7] = 0), then

T
V[”:{O,vg] ,nyl ,O] where vg] represents any nonzero real number. And let
<h1X7+h2h9)

i —(1//[7] iyl [7]) be the eigenvector associated with the eigenvalue A7) =0 of the matrix J7 , hence
Wi =(0,0,pL7 0] where 1! t | number. N have (¥07] IN,,, (€, .h{1)|=0
vk ere wL1 represents any nonzero real number. Now, we have N, E7 hi1 )=
where Ny, (X ,h,) represents the derivative of N(X ,h ) with respect to parameter h, .

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that

(‘P[”)T [DNh h[7])\/[7]] X7 (hyxy +h2h8)v57]y/£7] 20
(hyxy +hohg

where DNh4(X,h4) represents the derivative of Nh4(x,h4) with respect to X =(x,y,z, P)T . Moreover to
the above, if J= DN(X,h4) represents the general Jacobian matrix of system (1) at X . Obviously, if the
condition (16) holds then (171 [D?N(E,, " Jv v |- 0

Thus, according to Sotomayor's theorem for local bifurcation both of Transcritical and pitchfork bifurcation

cannot occur.

Theorem (15): The system (1) at the predator free equilibrium point Eg with the parameter

higl = (hy +hy + h QE — hyo)

has:
° e(h7 + hg) ®

e No saddle-node bifurcation.
e No pitchfork bifurcation.
e Transcritical bifurcation.
Proof: According to the Jacobian matrix Jg the system (1) at the equilibrium point Eg has zero eigenvalue (

say A1=0) if and only if hs = hEl. Now, let VI = (v{s],vgg],vgg],v‘[f])T be the eigenvector corresponding to the

eigenvalue Al —o. Thus (38 iy Jr )\/[8] =0 where Jg = JS(}L[B] = 0), then

16
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.
i :[ 0 (hy hzh hg)((hlxgg hZhg)V:[a” + <1h5X8 vﬁ”J RV ,vfl} where V! and V¥ represent any

nonzero real number. And let WL —(y/ R Y 2 [8]) be the eigenvector associated with the eigenvalue

;
A8 =0 of the matrix JJ , hence \y[f*]:[o,%wm ,V/:[A,B],l/h[;s]] where I and /¥ represents
g +hy

.
any nonzero real number. Now, we have (\If[g]) [N hs(Eg,hgg])]zo where Ny, (X ,hs) represents the derivative

of N(X,h5) with respect to parameter h .

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that

(‘P[S])[ h[8])\,[8]] eXg V[S],//[B]io

where DNh5(X,h5) represents the derivative of Ny, (X,hs) with respectto X =(x,y,z,P )T. Moreover to

the above, if J= DN(X,hS) represents the general Jacobian matrix of system (1) at X . Obviously, if the
condition (16) holds then (1% [D2N(Eq, HE! v 181 v (81| = %‘w(vggl)zy/ggl 0
1

Thus, the system (1) has transcritical bifurcation at Eg with the parameter h5:h£8] while the pitchfork

bifurcation does not occur.

Theorem (16): The system (1) does not occur any types of local bifurcation at the coexistence equilibrium point

2
Ey with the parameter hg[g] :Mlih{uhix j (ha +ﬂjyg (h4 +hﬂ}9}

Py 7) h, 7

Proof: According to the Jacobian matrix Jq the system (1) at the equilibrium point E4 has zero eigenvalue (
say A°1=0) if and only if h = hl%). Now, let VI = (v{91,v591,vg91,v591)T be the eigenvector corresponding to the

eigenvalue Ao, Thus (39 O )\/[9] =0 where Jg= Jg(/l[g] = 0), then

;
V[9]:[0,_(r(]ll~llx9—j}]mh3)v£9],v£9] ,OJ where Vi) represents any nonzero real number. And let
X9 + 1

T . ) R ) R -~
whl :(y/1[91,y/591,y/591,.//59]) be the eigenvector associated with the eigenvalue A%/=0 of the matrix JJ , hence

;

-h,z

\P[glzio,#l//gﬂ,y/g’],o} where L1 represents any nonzero real number. Now, we have
3Y9

17
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(\P[91)T[1\1h5(59,hg91)]:o where Ny, (X ,hs) represents the derivative of N(X,hs) with respect to parameter
h5 .

Thus, according to Sotomayor's theorem for local bifurcation the saddle-node bifurcation cannot occur. While

the first condition of transcritical and pitchfork bifurcation is satisfied. Now, it is easy to observed that
(6] o, N9
where DNh5 (X,h5) represents the derivative of Nhs(x,hs) with respect to X :(x, y,z,P )T

Thus, according to Sotomayor's theorem for local bifurcation, at E, with the parameter hg = 5[,9] both of

transcritical and pitchfork bifurcation cannot occur.

6. Numerical Simulations

The system (1) is solved numerically for different sets of parameters and different sets of initial
conditions, and then the time series for the trajectories of system (1) are confirm our obtained analytical results.
By using (0.75,0.75,0.75,0.75), (1.75,1.75,1.75,1.75) and (3.75,3.75,3.75,3.75) as initial points and

predictor-corrector method with six order Runge-Kutta method, the numerical simulations are carried out in the
following cases:

Case | For the equilibrium point E; , we choose the following parametric values :

h =0.8,h,=50,h; =0.01,h, =0.01,h; =0.1, h; =0.5, h, =0.5, a7

hg =0.02,hy =0.09, h,=0.4,h,=40,9=0.7,e=0.1, E=0.6;

The conditions (7) of Theorem (2) are satisfied. Then, the equilibrium point E; of system (1) is globally
asymptotically stable and is identical to (50,0,0,0) for any time. (See Fig. 1).

Case 11 For the equilibrium point E,, we choose the following parametric values :

h,=0.8,h,=50,h, =0.06, h, =0.06, h; =0.1, hy =0.04, h, =0.03, 18)

hg =0.02,hy =0.09, hy=0.4,h,=40,9=0.7,e=0.1, E=0.1;

The conditions (8) of Theorem (3) are satisfied. Then, the equilibrium point E, of system (1) is globally
asymptotically stable and is identical to (0,0,0,33) for any time. (See Fig. 2).

Case 111 For the equilibrium point E;, we choose the following parametric values :

h, =0.8,h,=50,h; =0.06,h, =0.06, h; =0.1, hy =0.04, h, =0.03, (19)

hg =0.02,hy =0.09, h,=0.4,h,=40,9=0.7,e=0.1, E=0.6;

The conditions (9) are satisfied. Then, the equilibrium point E; of system (1) is globally asymptotically stable
and is identical to (1,21.778,0,0) for any time. (See Fig. 3).

Case 1V For the equilibrium point E,, we choose the following parametric values :

h, =0.8,h, =50, h;=0.06,h, =0.2, h; =0.1, hy =0.04, h, =0.03,

20
hg =0.02, hy =0.09, hy=0.4,h,=40,q=0.7,e=0.1, E =0.6; (20)

18
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The conditions (10) are satisfied. Then, the equilibrium point E, of system (1) is globally asymptotically stable
and is identical to (0.6,0,4.761,0) for any time. (See Fig. 4).
Case V For the equilibrium point E;, we choose the following parametric values :

h,=0.8,h,=50,h;=0.06,h, =0.2,h; =0.1, h; =0.04, h, =0.03, 1)
hg =0.02,hy =0.09,h,=04,h,;=40,9=0.7,e=0.1, E=0.6;

The conditions (11) are satisfied. Then, the equilibrium point Eg of system (1) is globally asymptotically stable
and is identical to (46.9,0,0,26.75) for any time. (See Fig. 5).

Case VI For the equilibrium point Eg, we choose the following parametric values :

h,=0.8,h,=50,h, =0.06, h, =0.06 , h; =0.1, hy =0.03, h, =0.04, 22
hg =0.09,hy =0.02, h,=0.4,h,=40,9=0.7,e=0.1, E=0.5;

The conditions (12a) and (12b) of Theorem (4) are satisfied. Then, the equilibrium point E; of system (1) is
globally asymptotically stable and is identical to (1,0,14.139,5.5) for any time. (See Fig. 6).

Case VII For the equilibrium point E,, we choose the following parametric values :

h, =0.8,h,=50,h; =0.06,h, =0.06, h; =0.1, hy =0.04, h, =0.03, 23)
hg =0.02,hy =0.09, h,=0.4,h,=40,9=0.7,e=0.1, E=05;

The conditions (13a) and (13b) of Theorem (5) are satisfied. Then, the equilibrium point E, of system (1) is
globally asymptotically stable and is identical to (1,14.139,0,5.5) for any time. (See Fig. 7).

Case V111 For the equilibrium point Eg, we choose the following parametric values :

h,=0.8,h,=50,h, =0.8,h, =0.5,h;=0.1, h; =0.07, h, =0.18, 24)
hg =0.25,hy =0.02,h;=0.4,h,=40,9=0.9,e=0.2, E=0.6;

The conditions (14) of Theorem (6) are satisfied. Then, the equilibrium point Eg of system (1) is locally
asymptotically stable and is identical to (0.4,1.138,0.973,0) for any time. (See Fig. 8).

Case I1X For the equilibrium point Eg, we choose the following parametric values :

hl:O.8,h2:50,h3:O.8,h4:O.5,h5:0.1,h6:0.07,h7:o.18,

25
hg=0.25,hy =0.02,hy=0.4,h,=40,¢q=0.7,e=02,E=05; (25)

The conditions (15) of Theorem (7) are satisfied. Then, the equilibrium point E; of system (1) is locally

asymptotically stable and is identical to (0.4,0.55,0.62,5.57) for any time. (See Fig. 9).
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Fig.1: Time series of the trajectories of system (1) from different initial points for data given in Eq.(17) which

show that E; is a globally asymptotically stable.
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Fig.2: Time series of the trajectories of system (1) from different initial points for data given in Eqg.(18) which

show that E, is a globally asymptotically stable.
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Fig.3: Time series of the trajectories of system (1) from different initial points for data given in Eq.(19) which

show that E; is a globally asymptotically stable.
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Fig.4: Time series of the trajectories of system (1) from different initial points for data given in Eqg.(20) which

show that E, is a globally asymptotically stable.
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Fig.5: Time series of the trajectories of system (1) from different initial points for data given in Eq.(21) which

show that E; is a globally asymptotically stable.
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Fig.6: Time series of the trajectories of system (1) from different initial points for data given in Eq.(22) which

show that Eg is a globally asymptotically stable.
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Fig.7: Time series of the trajectories of system (1) from different initial points for data given in Eq.(23) which

show that E; is a globally asymptotically stable.
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Fig.8: Time series of the trajectories of system (1) from different initial points for data given in Eq.(24) which

show that Eg is a locally asymptotically stable.
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Fig.9: Time series of the trajectories of system (1) from different initial points for data given in Eq.(25) which
show that Eq is a locally asymptotically stable.

7. conclusions and Discussion

In this paper, an eco-epidemiological model has been proposed and analyzed. In order to study the effect of two
infection diseases and harvesting on the dynamical behavior of the prey-predator system, the dynamical behavior
of system (1) has been investigated locally as well as globally. In addition to assumed that the predator
population is harvested at a constant rate the predator is harvested under optimal conditions, we used Holling
type-Il functional response with maximum attack rate (h5) and linear incidence rate for the diseases in prey
species. The model included four non-linear autonomous differential equations that describe the dynamics of
four different populations namely susceptible prey (x), infected prey (y) by first disease, infected prey (z) by
second disease and predator (p) The boundedness of the system (1) has been discussed. The conditions for
existence and stability for each equilibrium points are obtained. To study the stability at each equilibrium point
we used Trce-Determent theorem, Routh-Hurwitz criterion and Lyapunov function. For different sets of

parameters and different sets of initial conditions show that, for all equilibrium points except Eg and Eg the
trajectory of system (1) approaches to globally asymptotically stable point in the Int.Rj1 as see Fig.(1-7), finally

the trajectory of system (1) at each Eg and Eg approaches to locally asymptotically stable point in the Int.R?,
in Fig.(8-9). Numerically, as well as theoretically, show that for different initial points the trajectory approaches
to different equilibrium point. Also we can separate the system (1) to six models as following:

e  Epidemic model with first infection disease.

e  Epidemic model with second infection disease.

e  Simple prey-predator model with Holling type-1I functional response.

e Prey-predator model involving first infection disease.

e Prey-predator model involving second infection disease.

e Epidemic model with two different SIS infection diseases.
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We prove theoretically that with different candidate bifurcation parameters each equilibrium points

E,, E,, Ejand Eg satisfy the Transcritical bifurcation and E;, Eg satisfy the saddle-node bifurcation but

Es, E;and Egdid not satisfy any types of bifurcation. Numerically, notice that when change the value of the

bifurcation parameter the solution of system (1) approaches to another equilibrium point.
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