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ABSTRACT 

The paper is devoted to the analysis of logit models and their application in the market. A theoretical basis for 

logit models is determined. Equations for logit probabilities are derived and methods are applied in order to 

analyze real market situations. The real data set is analyzed to estimate 2 logit models, as well as a probit model. 

Obtained results are compared with experimentally calculated logit probabilities.  
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1. INTRODUCTION 

 Scientific research, as well as ordinary life situations, often involves choices and decisions. There are many 

directions of application for choice models, such as transport demand (Domencich & McFadden, 1975; 

McFadden, 1974), market research (Malhotra, 1984; Huang & Rojas, 2010), adoption decisions (Adeogun et al., 

2008), and so on. In particular, the analysis of demand for different goods is a popular direction. Statistics and 

probability theory are of great assistance in this type of situation. 

In principle, the decision makers (to be referred to as consumers in this paper) can be people, households or 

firms and the alternatives might be products or courses of action. It should be emphasized that choosing of one 

alternative implies not choosing any other alternatives. In addition, the number of alternatives is finite (Train, 

2003).  

Discrete choice models are usually derived under an assumption of utility-maximizing behaviour (Train, 2003). 

This means that the decision maker n  makes the decision j  if utility of choice is the largest: 

jiUU ninj  , . This utility is composed of two parts (Train, 2003): 

 

njnjnj VU  ,      (1) 

 

where nj  contains the factors that affect the utility, but are not included in njV . The problem with this type of 

discrete choice model is that nj  is not seen by the researcher. Decomposition (1) is fully general, since nj  is 

defined as a difference between the true utility njU  and the part of utility njV  captured by the researcher (Train, 

2003). Each characteristic of nj , such as its distribution, depends on researcher specifications. The aim of the 

researcher is to estimate the parameters of this distribution.  

In this paper we are going to examine the application of a logit model for discrete choice analysis. The goal of 

the paper is to estimate the coefficients of the logistic regression. The chosen estimation method for this purpose 

is a maximum likelihood estimator (MLE) (Myung, 2002), which is the most common method for a model 

estimation.  

The estimated logit coefficients will allow for calculation of the probability of making a particular decision. Such 

an obtained probability distribution would play a key role in the analysis of the demand for new goods on the 

market.  
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In addition to the standard logit model, which is used for the calculation of first choice probability for a given 

good among the choice set, the ordered probability can be useful. Such probability of the rankings can be 

obtained from the exploded or ordered logit model (Johnson et al., 2010; Kumar & Kant, 2007). The most 

important features of both logit and exploded logit models, as well as the methods of their estimation, are 

discussed in the next section. 

2. ANALYSIS OF LOGIT MODELS 

Logit or logistic distribution has a closed form of cumulative distribution function 

 

)Xexp(1
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Figure 1: Logit and probit cumulative distributions 

 

 

One can see from Figure1 that the logit cumulation distribution function (CDF) is similar to the common normal 

CDF; however, the tails of logit are heavier. The main advantage of the logit distribution is the simplicity of the 

CDF, while the normal CDF involves an unevaluated integral.  

 

In order to derive the choice probabilities for the logit model, we analyze N consumers and J possible choices. 

The utility of each choice is known only for the customer, but not for the researcher. This utility njU  can be 

presented as in (1). The first term in (1), njV , is usually decomposed into two parts njx  and jk . Term njx  

is vector of variables that relate to alternative j as faced by decision maker j, and jk  is a constant that is specific 

to alternative j. The researcher treats nj  as random. The joint density of the random vector nJnn  ...1  

is denoted as )( nf  . In this notation the probability that the consumer n chooses alternative j is 

 

     jiVVPjiUVPjiUUPP ninjnjninininjnjninjnj  ,  (3) 

 

This probability is a cumulative distribution; namely, the probability that each random term njni    is below 

the observed quantity ninj VV  . Using the density )( nf  , this cumulative probability can be rewritten as 

 

   nnninjnjninj dfjiVVIP  )(     (4) 
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Here )(I is indicator function, which is equal 1 if equation in the brackets is true. One should emphasize here 

that the choice probability njP depends only on the differences njni    and ninj VV  . 

The logit model is obtained by assuming that each nj  is an independent and identically distributed extreme 

value to each additional nj
 
value. Such specific distributions arise in the case of modeling of rare events. The 

generalized extreme value distribution (GEV) PDF is defined as 
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where  ,,k  are shape, scale and location parameters. Various values of shape parameter k  yield to extreme 

value type I, II, III distributions. Specifically, the three cases 0,0,0  kkk
 
correspond to Gumbel, 

Frechet and reversed Weibull distributions, respectively. GEV distributions are used in weather predictions, 

extreme floods and snowfalls, market crashes, and so on (Train, 2003). The main peculiarity of such 

distributions is that in the case where one generates N data sets from the same distribution, and creates a new 

data set that includes the maximum values from these N data sets, the resulting data set can only be described by 

one of the three above-mentioned distributions (Fisher & Tippett, 1928). 

In the case of the logit model, the density of unobserved utility nj  is Gumbel or type I extreme value (Persson 

& Rydén, 2007) 

 

))exp(exp()exp()( njnjnjf        (6) 

and CDF 

 

))exp(exp()( njnjF        (7) 

 

The differences between two terms are distributed logistic differences. That is ninjnji    follows the 

logistic distribution 
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At this stage, our goal is to derive the choice probabilities. We use (4) for the probability of choice: 

 

   jiVVPjiVVPP ninjnjnininjnjninj     (9) 

 

If nj  is considered given, then (9) is the cumulative distribution for each ni , which is defined as  
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))exp(exp( ninjnj VV    

As far as we can use the assumption of   independence, the CDF over all ji   is the product of individual 

CDFs: 

 





ji

ninjnjnjnj VVP ))exp(exp(|      (10) 

 

nj  are not given; therefore, the choice probability is the integral of (9) over all values of nj , weighted by its 

density 

 

njnjnj

ji
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  (11) 

 

After algebraic manipulations, one can obtain the closed form for the needed choice probability 
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It is evident that the choice probability is between 0 and 1 and that the normalization condition is fulfilled. This 

model will be estimated with MLE in the next section. 

Here, j  and j  is the average random coefficient and its standard deviation. These two parameters are 

important for the simulation of logit model and their influence will be tested in the next section.  

3. SIMULATION AND DISCUSSION 

 In this section, the analysis of a real dataset is accomplished. A market research firm collected this data as a part 

of research study to evaluate the demand for a new good. The consumers were asked to respond to several choice 

experiments. The experiment required that each consumer completely rank the goods that are preferred over 

outside goods. There were 10 price levels and 8 brands in the dataset. The price index “0” and brand index “0” 

corresponds to a hypothetical outside good.  

In each choice experiment the customer ranks only the goods that are preferred over outside goods. For instance, 

if for the given brand j  with price level jp  the utility 0UU j  , then the rank for this brand is assigned. 

Several choice experiments are performed with 170 independent customers. Therefore, in cases where when the 

current brand is ranked
 

 

0nnj UU 
,       (13)

 

 

where 0nU  is utility of the outside good for the 
thn  customer. In order to analyze the input dataset, it would be 

useful to calculate some quantitative dependencies. The histogram of prices frequencies is shown in Figure 2. It 

illustrates the number of experiments in which the particular price value was  used. 
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Figure 2: Price frequencies 

 

One can see from Figure 2 that the histogram is relatively flat, except for the number of experiments with the 

outside good as an input. Figure 3 illustrates the frequency of different rank assignments. 
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Figure 3: Frequency of assigned ranks 

 

If we recall to the initial conditions of the discrete choice experiment, one can make a conclusion that the outside 

good was often preferred to the examined brands. In other words, condition (16) was often not held. 

Figure 4 shows the distribution of how many times the customers did not choose any products. One can see that 

if we remove the first column, the distribution will be close to normal. 
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Figure 4: Frequency of assigned ranks 

 

One can calculate the experimental probability for the given brand to be ranked first for each price. This 

probability Pr  is defined as follows: 




B
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)Pr(       (14) 

 

where 
1
BN  is the number of times when the given brand with price was 1

st
 ranked, 


BN  - is the total number of 

experiments with given brand from price p. 
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Figure 5: Experimental probabilities  to be 1st ranked 

 

Figure 5 illustrates the calculated probabilities for all brands. One can observe the highest probabilities for 

brands with indexes 1 and 4. 2D plots of )Pr(p  for these brands are shown in Figure 6. 
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Figure 6: Experimental probabilities for brands 1 and 4 (x – price index, y - probability) 

 

In order to examine the demand for the outside good, the logit model estimation should be performed. One of the 

aims of this procedure is to compare the fixed effect and random coefficients logit models. The main difference 

between these two models is related to individual consumer taste for brands. In fixed effect or simple logit 

model, individual taste is accounted for in the logistic regression procedure. In contrast to this model, the random 

coefficients logit model is accomplished with consideration of all choice experiments, without any consideration 

of individual tastes.  

As a result of logit model estimation, price and brand coefficients can be obtained. Hence, the probability of 

given brand to be first ranked at given price can be calculated as follows:  



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e
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

,      (15) 

where jp  ,  are price and taste coefficients for the current brand. Here we have used the fact that the 

particular choice of consumer depends on the brand type and price. 

 After the logistic regression, one can obtain the list of estimated coefficients. The coefficients are 

usually presented in two ways. The first option is to estimate the coefficients in log-odds units. This means that  


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    (16) 

These estimates describe the relationship between the independent variables (brand and price) and the dependent 

variable rank, where the dependent variable is on the logit scale. These estimates tell us the amount of increase in 

the log odds of rank that would be predicted by a 1-unit increase in that predictor, holding all other predictors 

constant. Because these coefficients are in log-odds units, they can be difficult to interpret, so they are often 

converted into odds ratios. This conversion is performed via a simple exponentiation. The results of the 

estimation procedure for the logit and probit regressions with obtained odds ratios are illustrated in Table 1. 
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Table 1: Estimated odds ratios for two logit models and probit model 

Coefficientss 

 

Odds ratio (fixed -

effect) 
Odds ratio (simple logit) 

Odds ratio (ordered 

probit) 

1  25.675 0.069 0.353 

2  19.672 0.094 0.569 

3  18.909 0.100 1.324 

4  16.992 0.113 0.343 

5  14.173 0.124 0.609 

6  13.102 0.132 0.545 

7  13.570 0.127 0.612 

8  12.508 0.127 0.784 

9  12.324 0.130 0.834 

1  3.044 0.402 0.960 

2  1.839 0.670 1.071 

3  0.868 1.197 1.146 

4  2.972 0.423 1.098 

5  1.729 0.726 1.140 

6  1.600 0.637 1.140 

From Table 1, one can observe that odds obtained via a fixed-effect logit indicates higher probabilities than 

simple logit and probit models, suggesting that the fixed effect model best fits the solutions. 

After fitting data to the model, an odds ratio cross-tab can be generated in order to illustrate the odds product to 

be ranked first for particular scenarios, based on data. The crosstab is shown on Table 2. 

Table 2: Calculated odds ratios for particular scenarios (fixed-effect logit model) 

brand
price

 1 2 3 4 5 6 7 

1 78.01 47.06 22.14 76.49 44.31 41.10 25.68 

2 59.77 36.05 16.96 58.60 33.95 31.49 19.67 

3 57.45 34.66 16.31 56.33 32.63 30.27 18.90 

4 51.63 31.14 14.65 50.62 29.32 27.20 16.99 

5 43.06 25.97 12.22 42.22 24.46 22.69 14.17 

6 39.81 24.01 11.30 39.03 22.61 20.97 13.10 

7 41.23 24.87 11.70 40.43 23.42 21.72 13.57 

8 38.00 22.92 10.78 37.26 21.588 20.02 12.50 

9 37.44 22.58 10.63 36.71 21.27 19.73 12.32 
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One can observe from Table 2 that the highest odds ratios correspond to the brands 1 and 4. This means that 

according to the estimated model, the probabilities of these 2 brands being ranked first are the largest. It is 

important to emphasize that this result is correlated with the experimental probabilities obtained in this section.  

4. CONCLUSIONS  

 

The equations for logit model probabilities were derived and analyzed. The logit regression procedure was 

applied in order to estimate the demand for different goods in the market. The results have shown that the fixed 

effect logit model is more suitable than alternative models for analysis of real data. This is because this type of 

model accounts for individual tastes of consumers. The obtained odds ratios for the fixed-effect logit model 

show the correspondence with experimentally obtained probabilities. Obtained results can be used for price 

management in real markets, in order to increase the demand of a given product. 

 

APPENDIX  

DERIVATION OF LOGIT PROBABILITIES: This appendix shows how the logit probabilities (12) can be 

derived from (11). 
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where   nis  .  One can rewrite the multiplication of the exponents as a summation in the one resulting 

exponential term 
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One can make a substitution dtdssst  )exp(),exp( .  After such substitution (1) is easily evaluated 
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