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1. ABSTRACT: The purpose of this paper is to prove existence of common random fixed point in the setting of
partial cone metric space over the non-normal cones.
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2. INTRODUCTION AND PRELIMINARIES

Random nonlinear analysis is an important mathematical discipline which is mainly concerned with the study of
random nonlinear operators and their properties and is needed for the study of various classes of random
equations. The study of random fixed point theory was initiated by the Prague school of Probabilities in the
1950s [4, 13, and 14]. Common random fixed point theorems are stochastic generalization of classical common
fixed point theorems. The machinery of random fixed point theory provides a convenient way of modeling many
problems arising from economic theory and references mentioned therein. Random methods have revolutionized
the financial markets. The survey article by Bharucha-Reid [1] attracted the attention of several mathematicians
and gave wings to the theory. Itoh [18] extended Spacek's and Hans's theorem to multivalued contraction
mappings. Now this theory has become the full edged research area and various ideas associated with random
fixed point theory are used to obtain the solution of nonlinear random system (see [2,3,7,8,9 ]). Papageorgiou
[11, 12], Beg [5,6] studied common random fixed points and random coincidence points of a pair of compatible
random and proved fixed point theorems for contractive random operators in Polish spaces.

In 2007, Huang and Zhang [9] introduced the concept of cone metric space and establish some  fixed point
theorems for contractive mappings in normal cone metric spaces. Subsequently, several other authors [10, 17, ]
studied the existence of fixed points and common fixed points of pings satisfying contractive type condition on a
normal cone metric space. In 2008, Rezapour and Hamlbarani [17] omitted the assumption of normality in cone
metric space, which is a milestone in developing fixed point theory in cone metric space. In this paper we prove
existence of common random fixed point in the setting of cone random metric spaces under weak contractive
condition. Recently, Dhagat et al. [19] introduced the concept of cone random metric space and proved an
existence of random fixed point under weak contraction condition in the setting of cone random metric spaces.
The purpose of this paper to find common random fixed point theorems of contractions in partial cone metric
spaces over non normal cones.

Definition 2.1. Let X be a nonempty set and let P be a cone of a topological vector space E . A partial cone

metric on X isa mapping p:Qx Xx X — P such that, for each f (t),g(t),h(t) e X ,teQ,
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(pD) p(f(t),9(t) = p(f (), F(1))=p(g(t),9(D) < f(t)=g(),
(p2) p(f (1), 9(t)) = p(a(®), f (1)
(p3) p(f (), F (1)) < p(f(t),g(t)
(p3) p(f(t),g(t)) < p(f (t),h(t)) + p(h(t), g(t)) — p(h(t),h(t))
VteQ
The pair (X, p) is called a partial cone metric space over P.

Definition 2.2. A function f: Q@ — C is said to be measurable if f "(BNC) Y. for every Borel subset B of
H.

Definition 2.3. A function F :{Q2xC — C is said to be a random operator if F(.,X):€ — C is measurable
forevery XeC

Definition 2.4. A measurable ¢g:Q —Cis said to be a random fixed point of the random operator

F:QxC—>Cif F(t,g(t))=g(t) forall te

Definition 2.5. A random operator F: QxC — C is said to be continuous if for fixed teQ, F(t,.):C —>C
is continuous.

Lemma:2.6 Let P be solid cone of a topological vector space E and {fn (t)}, {gn (t)}, {hn (t)}c E.if
f.(t)<h (t)<g,(t) Vn, and there exists some o(t) € E Such that
f,)—>w(t) and g,(t)—>w(t) then h, (t)—=>w(t)

Lemma:2.7 Let P be solid cone of a normed vector space (E,”.”)then for each sequence {fn(t)}c E.
f (t)—Losa(t) implies f (t)—2>wo(t) moreover if P is normal, then f_(t)—2>w(t)

implies . (t)—L> w(t)

Lemma:2.8 Let P be solid cone of a normed vector space (E,||.||),{Kn}cé’and {f.@®)}cP.
f,(t)—2—>6 and sup, |K, | <+, then K f () —2—>6.

Theorem 2.9 Let (X x Q, p) be partial cone metric space. The mapping T,S : X xQ — X are called
contractions restricted with variable positive linear bounded mappings if there exist

L : XxX =& (1 =12,3,4) such that
p(T(F(t).1) < L (F(t), () p(f (t), 9(t)) + L, (£ (1), () p(F (1), T ( (1), 1))
+ L (f (1), 9®) p(a(t). S(g().1)
+L, (F(t), () p(f (1), S(a(t).t) + p(g (1), T( (t).1))
ft).,gt)eX ———(*)
In particular if (*) is holds with L(f(t),at)=A and A el (i=1234)

then T and S are called contractions restricted with positive linear bounded mappings

3. Main Result:
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Theorem 3.1. Let (X, p) be a 6-complete partial cone metric space over a solid cone P ofa normed vector

space (E, ||||) and let T,S : X x€2 — X be contractions restricted with variable positive linear bounded
random mappings. If

P(L(T(0), 9(®))+L,(T(1).9())) <1 and p(L,(T (1), (1) +L,(T (1), 9(1)) <1
v ft),gt)eX ————————————— @)

I, <1 andl, <oo,where p(.) denotes the spectral radius of linear bounded mappings,

L= sup [K (f(®),9(0)

f(t),0()eX

l,= sup [K,(f(®).9()]

f (),0()eX

= sup [Ky(f@.9O)] —= == mm oo e e (2)

Ky (F (1), 9(t) = L (F (), gL, (F (1), 9(0) + L, (F (1), 9(t) + L, (f (), 9 ()]

K, (f (), 9(1) = L(f @), gL (f (1), 91) +Ly(f (), 9() +L,(f @), g(®)]

Ky(f (1), 9) = L (f (£), g1+ Ly(F (), 9(1)) + L, (f (), 9(1))]

¥ F(0,9(1) € X —mmmm oo ©
where L (f (t), g(t)) and L, (f (t), g(t)) denote the inverse of

I-L,(f(t),9(t))—L,(f(t),g(t))and I-L,(f(t),g(t))—L,(f(t),g(t)) respectively, then T and S
have common random fixed point in X Moreover if

p(L(F (), g(®)+ L (T (©), 9(®)) + Ly (f (1), g(1) +2L,(f (1),9(1))) <1 V f(1),9(t) e X

then T and S have unique common random fixed point h(t) € X such that, for each
h,(t) € X, h (t)—=—h(t) where h, (t) is defined by
T(h,(t),t) ;n is even number

hn+l('[)Z{S(hn(t),t) 'n is odd number ©)

Proof. For each X, Yy € X by (1), the inverse of 1— L, (f(t), g(t))—L,(f (t),g(t))and
1-L, (f(t),g(t))—L,(f(t),g(t)) exist. then, it is clear that E and L_zare meaningful
and K, K,, K;are well defined.

L(f(),g@) = i[Ls (f (1), g@) + L, (f @), g()]

L (f(t),9(t) = i[Lz (f O, 9 +L(FO,9O)] ———-—--—————-————- (6)

X, y € X , which is together with L, : X x X — ¢ (i =2,3,4) implies that L, : X x X — ¢ (i=12)
and hence K; : X x X — & (1 =1,2,3).by(*).,5), (p4 L, : X x X > ¢
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P(foria (), Fao (1)) = PAT (4 (8),1), S (s (1) 1)
SL(Fo (1), Fa ) P(FL (1), Faa (1))
+ L, (f5 (1), Tors ) P(F2 (1), Fo1 (1)
+ Ly (F (1), Foa (D) P(Fa (), T (1)
+ Ly (Fou (1), Foca OIIP(Foic (1), Foea (1) + P(Foa (), s ()]
<L (o (1), Foa ) P(FL (1), Foia (1)
+L, (f (1), Foa ) P(F (1), Foa (1)
+ Ly (F (1), Foa () P(Fa (1), T2 (1)
+ L, (2 (0), Foa OIP(Fo (1), Foa (V) + P (1), T (1)) VK EN

——————— ™
[ =L, (0 (1), Fes () = Ly (£ (), T O)]IP(Foea (1), T ()
Ly (Fo (0, o0 (0) + L (T (1), o0 (1)
Andso < L L (F, O () :|p(f2k ), f )] vkeN
———————— ®

Act the above inequality with L, ( f,, (t), T, (t)); then, L : X x X — ¢

P(fa (O, Foa (1)) < K (F (1), o () P(Fo (1), Fopa (1), VkEN

Similarly ,by (*),(p3), (p4) and L, : X x X = &

p( f2k+2 (t)’ f2k+3 (t)) = p( f2k+3 (t), fzk+2 (t))
= p(T ( f2k+2 (t), t), S( f2k+1 (t),t)
<L (P (0, Faa () P(Fai0 (), Faea (1)
+ Ly (Fo00 (1), Foea @) P(Fora (1), i (1))
+ Ly (fo2 (8 Foraa (1) P(F o (1), Fop (1)

+ Ly (Foe2 (0, T ONIPCF o (0, Foria () + P(Fea (), Fois ()]
<L (P (0, Foa () p(Fa0 (), Fria (1)

+ Ly (Fo.0 (1), Foea ) P(Fou2 (1), Foii5 (1))

+ Ly (foi2 (8 Foaa (1) PCF 0 (1), Fri (1))

+ L4(f2k+2 (t)! f2k+1 (t))[p(f2k+2 (t)! 1:2k+1 (t)) + p(f2k+2 (t)’ f2k+3 (t))] Vk € N
—————————— (10)
And so
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[I - L2 ( f2k+2 (t)' f2k+1 (t)) - L4 ( f2k+2 (t)’ f2k+l (t))]p( f2k+2 (t)' f2k+3 (t))
< Ly (Fora () Fora () + L (Fon (1), Fopa (1)
- + L4 ( f2k+2 (t)1 f2k+1 (t))

P(fai2 (), Fa ()] Yk eN

Act the above inequality with L, ( f,,.,, (t), Fo, () ; then, by: L, 1 X x X —> ¢,
P(fac2 (), foea ) < Ky (foa (0, fs )P (a0, T (1) VK EN. - —— - ———— 12)
Moreover K, K, : X xX =,
P(Faa (8, Fareia (1) < Ky (T (1), Foiea () x Ky (T4 (0), Foea ()
........ K, (f, (), @) p(f, ), f, (1), vkeN———————————(13)

In the following, we will prove that
p(f,c®), f,A)——0-——"—-"—-—-————-———— (14)

For m>n, we have four cases
@Am=2p+1l,n=29+1;(2)m=2p+1,n=2q(3)M=2p,n=2q+1(4) m=2p,n=2q

Where p and g are two non negative integers such that p > Q. We only show that (14) holds for
case (1) the proof of three cases is similar. It follows for (p4) and (13) that

0 < p(f, () f, (1)

= P(foq (), f250 (1)

< P(Faqua (), Foqra )+ P(Foqa (), Frqua @)+ +p(f,p4 (1), f,, )+ p(f,, (1), f,,. (1)

< pK K (o (0), £, (1))

= Ky (Fq (1), Fq0 () x Ky (3 (1), T30 (0))-nnnnn Ky (£ (1), £(0)) P(Fo (1), £, (1)) By
Ko (Fagua () Foqua (D)K (T3 (0), Fogun () Ky (£ (1), Foqs (1)) Ky (£ (1), £1(0)) P(Fo (), £,(0)) + ...
Ky (Faqea (8): Foqa (D)X K, (T, (0), F5p5 (1) K (£ (0), £ (1)) p(f, (), (1))
Ko (Fp (0), foqa () % Ky (f25 5 (1), T (1) Ko (£ (1), £, () p(Fo (1), () V p>q

----- (15)
L1, <1,

| PK,K, (o), £,(0)]

= R A e PR S M P e P [ TG O A 9)

(Ii L) +1, D(01,) ]||p(f . 1,0

S(1+1|2)(|1|21 qIIIIOI(fo(t),fl(t))ll N (16)

Which implies that  p( f, (t), f, (t))—L>6 and hence p(f, (t), f, (t)) —2>6 by
lemma(2.7) Thus by (15) and lemma (2.6) p( f,, (t), f (t))—=— & ;that is (14) holds. It is prove that
{fn (t)}is a @ Cauchy sequence in (X, p),and so by the & completeness of (X, p), there exits h(t) e X
such that f, (t)—=—h(t)and p(h(t),h(t)) =0; thatis,
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- aper e nline j L[N
Vo oot e 3
p(f,@®),ht))y—9 -----------------—-——--——————~———— @an.
Forall k e N, by (*) and (p4),
p(T (h(t),t),h(t)) < p(T (h(t),1), h(t), f (1)) + P(F (1), N(E)
= p(T (n(t), 1), S( . ),1))+ P(fyi (), h(D))
<L (h(t), T () p(D(L), s ()
+ L, (h(t), f,, (1) p(h(t), T (h(t),1))
+ L (h(t), Fou 1 (1)) P(F 1 (1), (1))
+ Ly (h(t), f (0)[p(h(D), fh (1) + P(Fo; ), T (h(1).1))]
+ p(f (1), h (D))
<L (h(t), faa0)) p(h(t), f,, (1))
+ L, (h(t), f,5 ) p(h(t), T (h(t).t))
+Ly(h(t), ka—l(t))[p( fo (0, (1)) + p(h(t), f, (t))]
L, 1] POO T O p(f2k1<t),(h<t),t))}
+ p(h(®), T (h(t),1))+ p(f, (1), h(t)
+(M(®), T(MO,0)+ P(F (D) ~ === === oo (18)
And so
[1 =L, (h(t), f,s (1) = Ly (D), 5y (1)]P(T ((E), 1), (D))
<[L (), oy () + Ly (h(t), Ty (1) + Ly (h(t), Ty @) ]P(D(), 5, (1))
+[1+ Ly (h(0), £, (0)+ Ly (W), fo )] p(Foi (), h(E) VK e N
———————— 19)
Act the above inequality with L_z(h(t), f 4 (1)) sthen, E: XxX >
6< pT (), L1() < Ky ey P, Ty O +Kyey (0N €N ————— (20)

Where K2,2k—1 = K, p(h(t), f,,_,(t)) and K3,2k—1 =K, p(h(t), f, . (1)).
Itis clear that { K, ,, 4 }.{ K; ;; } subsets of £ andsup, HKZZHH < 400,5Up, HKS,ZHH <+ooby L1,

<land |3 < +00.then its follows from the lemma (3) and (17)that

Kz,zkfl p(h(t)r f2k71 (t) + K3,2k71 p(h(t)r f2k71 (t)L)H, ________________ (21)

Which together with lemma (2.6)and (20) implies that p(h(t),T(h(t),t))= 0
Therefore T (h(t),t) = h(t) by (p1) and( p3).similarly we can show that S(h(t),t) = h(t).
Hence h(t) is common random fixed point of T and
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Now we show the uniqueness of fixed point. Let f (t) and h(t) be two common random fixed point of T
and Sthenby (*)and (p3) L : X x X = ¢ (1=2,3)
p(h(t), (1)) = p(T(h(t).1)), S(f (t).,1))
<L (ht), F®)p(h(t), 1))+ L, (h(t), F () p(h(t), T(h(t), 1)+ Ly (h(t), T () p(f (1), SCF(t).1))
+L, (h(), FO)p(h®), S(F (1), 1)+ p(f (1), T (h(t).1)]
=[L.(h(t), f ©)+2L, (h(t), f E)]p(h(D), f (1)
+L, (h(t). £ (1)) p(h(t), h(t)) + Ly (h(t), (1)) p(f (1), f (1))

<[L, (h(t), f (1)) + L, (h(t), f 1))+ L (h(t), f(©)+2L,(h(t), F©)]p(h(t), f (). —--———- (22)
And so

[1-L(h@®), T () - L (h(t), f ©) - L (h), f (1)) - 2L, (h(t), F @)]p(h), f (), —————- (23)
It follow from (3) that the inverse of
[I =L (h(t), f (t))— L, (h(t), f (t))— L, (h(t), f (t))—2L,(h(t), f (t))] exists(denoted by)
[1 =L (h®), £ ()~ Lo (h(t), f (1) — Lo (h(t), f () —2L, (h(t), f ()] "and
[I — L, (h(t), f(t))—L,(h(t), f(t))—-L,(h(t), f(t))—2L,(h(t), (t))]_1 € ¢ by Neumann’s formula
with [1 - L, (h(t), f ©) — L, (h(t), f () Ly (h(t), f ©) —2L, (h(o), f )] ithen p(h(t), f (1)) =6

and hence h(t) = f (t) by (p1) and (p3)the proof is completed.
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