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ABSTRACT  

This paper proposes a statistical method for estimating the values, including the joint and marginal values of an 

outcome variable, using dummy variable multiple regression techniques. Estimates are also provided for the 

direct and indirect effects of a parent independent variable on a dependent variable through its representative 

dummy variables in the presence of other independent variables in the model. The proposed method is illustrated 

with some data.  

Keywords: Dummy Variables, Total Effect, Direct Effect, Indirect Effect, Parent Variables, Mediation Model, 

Joint Value, Marginal Value.   

 

INTRODUCTION  

The use of dummy variables in a regression model enables the researcher estimate the separate effects of the 

levels of a parent independent variable on an outcome or dependent variable. These effects may then be used to 

estimate the values of the dependent variables at various levels of specified independent variables of interest.  

In this paper we propose to use these techniques to provide estimates of the joint and marginal values of an 

outcome or dependent variable at various levels of given parent independent variable. Estimates of the so called 

“direct” and “indirect” effects of a given parent independent variable on a dependent variable are also provided.  

 

The Proposed Method  

To use the dummy variable approach in a multiple regression model we first partition each of the parent 

independent variables if not already categorical, into a set of mutually exclusive categories, levels or subgroups 

and then use dummy variables of 1’s and 0’s to represent these categories in a regression model. In such a 

regression model each parent independent variable is represented by one dummy variable of 1’s and 0’s less than 

the number of its categories. This is to avoid linear dependence among the columns of the deign matrix X of the 

regression model and hence ensure that X is of full column rank; r (Boyle 1970; Neter and Wasserman 1974; 

Oyeka 1992; Hardy 1993).  

Thus interest may be in determining the relationship between a dependent variable Y and a set of parent 

independent variables or factors A B C ….. with levels a b c … respectively. However for greater clarity, 

simplicity and ease of interpretation, but without loss of generality, we will here present the proposed method for 

only three parent independent variables A, B, and C, assumed to have levels a, b, and c respectively.  

Now let yi be the response or score of the ith randomly selected subject on the outcome or dependent variable Y 

for i = 1, 2 . . . n. To use the dummy variable Y for i = 1, 2, . . . n. To use the dummy variable multiple regression 

method to estimate the effects of the parent independent variables or factors A, B and C on the dependent 

variable Y we let  
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  1, if the observation on the ith subject is in level j xij;A  =  of factor A, j = 1, 

2 … a-1  

 0, otherwise 

  1, if the observation on the ith subject is in level j xij;B  =  of factor B, j = 1, 

2 … b-1  

 0, otherwise 

  1, if the observation on the ith subject is in level j xij;C  =  of factor C, j = 1, 

2 … c-1  

 0, otherwise 

 for i = 1, 2, … n – 1  

Any level of a parent variable that is not represented by a dummy variable is termed the “omitted” or “excluded 

level” for that parent variable. Thus levels a, b, and c are termed the omitted levels of variables A, B and C 

respectively.  

The dependence of yi on these dummy variables may be expressed by the dummy variable multiple regression 

model 

iCicCcCiCCiCBibBb

BiBBiBAiaAaAiAAiAi

exxxx

xxxxxy









;1;1;2;2;1;1;1;1

;2;2;1;1;1;1;2;2;1;10

......

..............





    

.  .  .  (2) 

for i = 1, 2, … n.  

where the j ’s are regression coefficients and ei’s are error terms uncorrelated with the dummy variables ijx ’s 

with   0ieE , for i = 1, 2, …, n.  

Note that the expected value of Equation 2 is  

  CicCcBiBAiaAaAiAAiAi xbxbxbxbxbbyE ;1;1;1;1;1;1;2;2;1;10 ..............   … (3) 

Equation 2 may alternatively be expressed in its matrix form as  

eXy           . .      .   (4) 

Where y is an nx1 column vector of response scores or observations, X is an n x r design matrix of 1’s and 0’s 

of full column rank r; 
 
is an r x 1 column vector of regression coefficients; and e

 
is an n x 1 column vector of 

error terms uncorrelated with X with E( e ) = O
 
where r is the rank of X or the number of parameters 

(regression coefficients) in the model.  
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  The method of least squares is used with either Equation 2 or 4 to obtain unbiased estimates of the regression 

co-efficient as   

   yXXXb 
1




       . .      .   (5) 

Where   1
XX  is the matrix inverse of  XX   

This yields the predicted dummy variable multiple regression model for y
 as

 

bXy 


       . .      .   (6) 

which may alternatively be expressed as  

CicCcCiCCiCBibBb

BiBBiBAiaAaAiAAiAi

xbxbxbxb

xbxbxbxbxbby

;1;1;2;2;1;1;1;1

;2;2;1;1;1;1;2;2;1;10

......

..............










.. .  (7) 

For i = 1, 2 … n 

To estimate the value of the dependent variable Y for given levels of a parent independent variable compared 

with its omitted or excluded level, we set the dummy variables representing the given levels of that parent 

independent variable equal to 1 and all dummy variables representing all other parent independent variables in 

the model equal to 0 in Equation 7. Thus the estimated value of the dependent variable Y at the a-1 levels of the 

parent independent variable A is obtained by setting.  

0............1....... ;1;2;1;1;2;1;1;2;1   CicCiCiBibBiBiAiaAiAi xxxxxxandxxx                

in Equation 7, yielding  

AaAAi bbbby ;1;2;10 ....... 


      .    .   .   (8) 

Note that Ajb ;  
is interpreted as the estimated effect on the dependent variable y of the jth level of factor A 

compared with the other levels of A when other independent variables in the model are held at constant levels for 

j = 1, 2 . . . a-1. Other estimated regression coefficients in Equation 7 are similarly interpreted.   

 Now the predicted joint value of Y at the hth level of A, jth level of B and lth level of C is obtained 

from Equation 7 by setting  

CilBijAih xxx ;;;  = 1 and all other 0' sxiv   

for all jhv , and  1......2,1;1...2,1;1...2,1  clbjahl  

yielding  

ClBjAhi bbbby ;;;0 


      . .   .   (8) 

For h = 1, 2 . . . a-1; j = 1, 2, . . . b – 1; and l = 1, 2 . . . c-1  

The estimated joint value of Y at the omitted level of A; The jth level of B and the lth level of C is obtained by 

setting.  

0; Aihx for all h = 1, 2 . . . a-1;  1;;  CilBij xx  and 
 

0;;  CivBiv xx for ljhv ,,   1......2,1;1...2,1;1...2,1  clbjah  
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in Equation 7 yielding  

ClBji bbby ;;0 


       .     .   .   (9) 

for j = 1, 2 . . . b-1; l = 1, 2, . . . c – 1 

Other estimated joint values of Y are similarly obtained  

The estimated marginal value of yi at the hth level of factor A and lth level of factor C for all levels of factor B is 

obtained by setting  

  0;1 ;;;;  CivAivCilAih xxxx  for lhv ,   1......2,1;1...2,1  clah  

and 1; Bijx  for all j = 1, 2 . . . b-1; in Equation 7 yielding  







1

1

;;;0

b

j

BjClAhi bbbby


        .    .   .             (10) 

for h = 1, 2 . . . a-1; l = 1, 2, . . . c – 1 

The marginal value of yi at the hth level of factor A and all levels of factors B and C is estimated by setting  

;1; Aihx  ;0; Aivx  hv    ;1...,,2,1  ah  and ;1;1 ;;  CivBiv xx   

For all ljv ,   1...,,2,1;1...,,2,1  clbj
 
in Eqn 7 giving  











1

1

;

1

1

;;0

c

l

Cl

b

j

BjAhi bbbby


      .    .   .    (11) 

h = 1, 2 . . . a-1;  

The marginal value of yi at the omitted value of A and lth level of C for all levels of B is estimated by setting  

;0; Aihx  for all h = 1, 2 . . . a-1; ;0;1 ;;  CvCl bb  lv    ;1...,,2,1  cl  and ;1; Bjb for all j = 1,2, 

. . ., b-1 in Eqn 7 giving  







1

1

;;0

b

j

BjCli bbby


       .    . . (12) 

The marginal value of yi at the omitted levels of factors A and C is estimated by setting  

0;;  CivAiv xx  for lhv ,   ;1...,,2,1;1...,,2,1  clah
 
and  

1; Bijx
 
for all j = 1, 2 . . . b-1 in Eqn 7 yielding  







1

1

;0

b

j

Bji bby


        .    . . (13) 

All other marginal values of yi are similarly estimated from Equation 7.  

Although it is highly illuminating to examine separately the effects of various levels of a parent independent 

variable through its representative dummy variables and the resulting values of the dependent variable itself, it 
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may also be of research interest to determine the absolute or total, direct and indirect effects of such a parent 

independent variable on the dependent variable.  

The total or absolute effect of a parent independent variable on a dependent variable is the regression coefficient 

obtained by fitting a simple linear regression of the dependent variable on the parent independent variable. The 

direct effect of a parent independent variable is the weighted sum of the partial regression coefficients or effects 

of its representative dummy variables on the dependent variable in the presence of other independent variables in 

the model. The corresponding indirect effect is a measure of the effect of the parent independent variable on the 

dependent variable through the mediation of other independent variables in the model and is measured as the 

difference between its total and direct effects (Wright 1960).  

Now to obtain the direct effect BA of a given parent independent variable A on a dependent variable Y, we treat 

the dummies representing the parent independent variable A as intermediate variables between A and y.  

Then following the method of path analysis (Wright 1960, Lyons 1971) we obtain the direct effect BA as a 

weighted sum of the partial regression co-efficients Ah; , h = 1, 2 . . . a-1;  from Equation 3.  

Specifically the weight Ah;
 
to be applied to Ah;

 
is obtained by fitting a regression line of Aihx ;  

on the parent 

variable A. Thus for the hth dummy variable Aihx ;  representing the parent variable A, we fit the regression line.  

AihAhAih eAx ;;0; 
     

. . . (14) 

Now taking the partial derivative of the expected value of Equation 14 with respect to A we obtain  

 
Ah

Aih

dA

xdE
;

; 
      

. . . (15) 

for h = 1, 2 . . . a-1 

Now the partial regression effect or the so called direct effect of the parent independent variable A through the 

effects of its representative dummy variables on the dependent variable y in the presence of other parent 

independent variables in the model is obtained by taking the partial derivative of the expected value of yi 

(Equation 3) with respect to A. That is  

 
A

yE i
A






       
. . . (16) 

Now  

 
Ah

Aih

i

dx

ydE
;

;


  

(see Equation 3); h = 1, 2 . . . a-1 

Hence using Equation 3 we have that  

   
  Aa

A

A

A

AA
dA

xdE

dA

xdE
;1

;2

;2

;1

;1 ...
     

...
;2

;2

;1

;1

;1




dA

xdE

dA

xdE

dA

xdE Bi

B

Bi

B

Aia
 

 
dA

xdE Cic

Cc

;1

;1



  

Now  

 
Ah

Aih

dA

xdE
;

; 
 

(see Equation 16) for h = 1, 2 . . . a-1                        and  
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   
0

;;


dA

xdE

dA

xdE
CilBij

 
for j = 1, 2 . . . b-1; l = 1, 2 . . . c -1  

for all parent variables B and C different from A.  

Hence the direct effect of the parent independent variable A on the dependent variable y through its 

representative dummy variables is given as  

0... ;1;1;2;2;1;1   AaAaAAAAA 
  

or 







1

1

;;

a

h

AhAhA

     

. . . (17) 

Whose sample estimate is  







1

1

;;

a

h

AhAhA b
     

. . . (18) 

The direct effects of B and C may be similarly estimated. 

The difference between the total regression effect BA that is the simple regression coefficient of y on the parent 

independent variable A and A , the direct effect of A on y through its representative dummy variables in the 

presence of other parent independent variables in the model provides a measure of the so called indirect effect of 

the parent independent variable A on y through the mediation of other parent independent variables in the model. 

That is  

AACBA B  ,/

     

. . . (19) 

estimated as  

AACBA bB 


,/

     

. . . (19) 

 

Illustrative Example  

Table 1 presents data on the Packed Cell Volume (PCV), Age Duration of infection and Gender of a random 

sample of 80 HIV positive patients from a certain community.  
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Table 1: Data on a Random Sample of HIV positive Patients  

S/No PCV Age (years)  Duration (years) Sex 

1 32 28 0.5 M 

2 27 27 1.3 F 

3 30 39 6.3 M 

4 32 40 5.3 F 

5 33 26 5.3 M 

6 36 31 0.5 M 

7 24 71 2.0 M 

8 29 58 2.0 F 

9 24 62 1.0 F 

10 27 63 2.6 F 

11 32 27 3.0 F 

12 27 61 7.0 F 

13 35 61 2.7 F 

14 36 32 1.8 F 

15 46 32 1.8 M 

16 27 26 1.7 F 

17 28 36 3.0 F 

18 30 35 2.4 M 

19 35 45 3.8 M 

20 38 33 2.2 M 

21 28 39 2.5 F 

22 30 39 0.4 M 

23 30 45 2.0 M 

24 28 32 0.1 F 

25 32 40 0.3 M 

26 42 32 0.6 M 

27 36 57 0.4 M 

28 31 29 0.2 F 

29 24 27 0.7 F 

30 34 46 0.3 F 

31 27 45 0.6 M 

32 35 32 5.0 F 

33 34 32 2.5 M 

34 17 28 0.2 F 

35 40 38 3.5 M 

36 30 30 1.7 F 

37 38 28 4.4 F 

38 37 28 2.2 M 

39 26 45 2.8 F 

40 35 30 1.6 M 

41 34 27 3.1 M 

42 34 30 0.2 F 

43 28 25 4.1 F 

44 27 25 0.5 F 

45 31 20 0.1 F 

46 30 65 0.4 M 

47 27 52 4.1 M 

48 28 36 1.1 F 

49 34 24 1.9 F 

50 33 60 2.6 F 

51 36 33 1.9 M 

52 29 31 0.1 F 

53 41 31 0.9 M 

54 40 30 2.6 M 
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55 35 36 2.6 F 

56 34 42 2.1 F 

57 37 25 2.6 F 

58 29 31 1.9 F 

59 33 23 1.4 F 

60 24 32 0.3 F 

61 38 28 0.4 F 

62 29 38 0.1 F 

63 33 37 1.8 M 

64 32 37 0.2 F 

65 40 36 0.1 M 

66 31 38 0.9 M 

67 25 35 0.4 F 

68 29 43 0.5 M 

69 39 42 1.7 M 

70 31 36 0.9 F 

71 24 32 2.0 F 

72 28 29 4.0 F 

73 36 25 1.6 F 

74 37 47 2.2 M 

75 14 27 0.6 F 

76 41 40 3.3 M 

77 31 30 2.4 F 

78 32 38 2.3 M 

79 33 28 2.8 F 

80 28 35 5.4 F 

 

Interest is fitting a dummy variable multiple regression model with Packed Cell Volume (PCV) as the dependent 

variable and age, duration of infection and sex of HIV positive patients as parent independent variables and 

using the results obtained to illustrate the proposed method. To do this we here classify age in years into five 

groups or levels namely (1) less than 30 years (2) 30 – 34 years (3) 35 – 39 years (4) 40 – 49 years and (5) 50 

years or more. Duration of infection in years is also classified into four groups namely (1) less than 1 year; (2) 1 

year or more but less than 2 years; (3) 2 years or more but less than 3 years and (4) 3 or more years. Sex is 

classified into two levels namely (1) male and (0) female.  

This means that in the dummy variable representation of parent variables and consistent with Equation 1 age (A) 

which has five levels would be represented by four dummy variables namely ,,, ;3;2;1 AiAiAi xxx  and ,;4 Aix for 

age levels (1) less than 30 years, (2) 30 – 34 years; (3) 35 – 39 years and (4) 40 – 49 years respectively. Duration 

of infection (B) with four levels will be represented by three dummy variables namely (1) ,;1 Bix  (2) ,;2 Bix  and 

(3) ,;3 Bix  for durations of infection levels (1) less than 1 year, (2) 1 – 2 years (3) 2 – 3 years respectively. Sex 

(C) which has two levels will be represented by 1 dummy variable, Cix ;1 for the male sex. Thus age level 50 

years or more, duration level 3 years or more and the female gender are treated as the ‘omitted’ levels for age 

(A), duration of infection (B) and sex (C) respectively.  

Using these specifications in Equation 1 for the data of Table 1 we obtain an 80 x 9 design matrix X of 1’s and 

0’s using this design matrix and y to represent the dependent variable PCV in a dummy variable multiple 

regression model we obtain the fitted regression equation  

Ci

BiBiBiAiAiAiAii

x

xxxxxxxy

;1

;3;2;1;4;3;2;1

96.4

69.081.020.165.233.152.4,14.23.27






…(21) 

Note from Equation 21 that with an estimated partial regression coefficient of 14.2;1 Ab
 
for age group less 

than 30 years for example indicates that for a given duration of infection and sex a randomly selected HIV 
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positive patient aged less than 30 years is on the average likely to have a PCV level of 2.14 higher than the PCV 

level of a randomly selected patient in other age groups.  

Setting 1;1;2  CiAi xx
 
and all other 0' sxij  in Equation 21 yields  

78.3696.452.43.27 iy


 

Interpreted, this means that a randomly selected male HIV patient age 30 – 34 years with a duration of infection 

of three or more years is estimated to have a PCV level of 36.78. A female HIV positive patient of the same 

characteristics is likely to have a PCV level of 82.3152.43.27   

Now to estimate the joint PCV level of for example a male patient aged less than 30 years who has had the 

infection for less than one year, following Equation 8, we set  

1;1;1;1  CiBiAi xxx
 
and all other 0' sxij  in Equation 21 giving  

2.3396.420.114.23.27 iy


 

The corresponding joint value for female patients is estimated by also now setting 0;1 Cix  in Equation 21 

obtaining 

24.2820.114.23.27 iy


. Thus a male HIV positive patient aged less than 30 years is likely to have 

a PCV level of 33.2 – 28.24 = 4.96 higher than the PCV level of his female counterpart.  

The estimated joint PCV level of a male patient aged 50 years or more with a duration of infection of less than 

one year is obtained following Equation 9 by setting.  

 

0;3;2;4;3;2;1  BiBiAiAiAiAi xxxxxx  and 1; ;1;1 CiAi xx
 
in Equation 21 yielding  

06.3196.420.13.27 iy


 

The corresponding value for his female counterpart is 1.2696.420.13.27 iy


. Thus a female HIV 

Positive patient aged 50 years or over with a duration of infection of less than one year is likely to have a PCV 

level of 4.96 less than that of her male counterpart  

Similarly the point PCV level of a male patient aged fifty years or more with a duration of infection of 3 years or 

more is estimated using Equations 9 and 21 as 26.3296.43.27 iy


. The corresponding value for the 

female counterpart is 27.3, resulting in a male-female PCV difference of 4.96  

The estimated marginal PCV level for a randomly selected male HIV positive patient aged less than 30 years no 

matter the duration of infection is obtained following Equation 11 by setting 

0;1 ;4;3;2;1;1  AiAiAiCiAi xxxxx  

1;3;2;1  BiBiBi xxx
 
in Equation 21 yielding  

7.3496.469.081.020.114.23.27 iy


 

The corresponding PCV value for the female counterpart is obtained from Equation 21 by further setting 

0;1 Cix  giving  
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7.3496.469.081.020.114.23.27 iy


, resulting in a male-female difference of estimated 

marginal PCV level of 4.96. 

The estimated marginal PCV level for a randomly selected male HIV positive patient irrespective of duration of 

infection is obtained following Equation 12 by setting.   

0; Aihx  for all h = 1, 2, 3, 4 1;1 Cix
 
and 1; Bijx  for j = 1, 2, 3 in Equation 21 giving  

56.3296.469.081.020.13.27 iy


 

The corresponding value for the female patients is obtained by further setting  in Eqn 21 giving  

6.2769.081.020.13.27 iy


 

Other marginal PCV values are similarly estimated and the results are shown in Table 2 below.  

 

Table 2: Estimated Joint and Marginal PCV values of a sample of HIV positive patients by Age, Duration of 

Infection and Sex   

Duration of Infection 

 

Age 

< 1 year (-

1.20) 

1- 2 years 

(0.81) 

2 – 3 years 

(0.69) 

3 years or more 

(27.3) 

Total 

Male 

(4.96) 

Female Male 

(4.96) 

Female Male 

(4.96) 

Female Male 

(4.96) 

Female Male 

(4.96) 

  

(margina

l  

Female  

for 

age) 

< 30 years 

(2.14)  

33.2 28.24 35.21 30.25 35.09 30.13 34.4 29.44 34.7 29.74 

30 – 34 yrs 

(4.52)  

35.58 30.62 37.59 32.63 37.47 32.51 36.78 31.82 37.08 32.42 

35 – 39 yrs 

(1.33)  

32.39 27.43 34.40 29.44 34.28 29.32 33.59 28.63 33.89 28.93 

40 – 49 yrs 

(2.65)  

33.71 28.75 35.72 30.76 35.60 30.64 34.91 29.95 35.21 30.25 

50 yrs + (27.3)  31.06 26.10 33.07 28.11 32.95 27.99 32.26 27.30 32.56 27.6 

Total (Marginal 

for Duration)  

41.70 36.74 43.71 38.75 43.59 38.63 42.90 37.94 32.26 27.30 

 

Now to estimate the direct and indirect effects of age, A; duration of illness B and sex C on PCV levels y, we as 

indicated above first regress each  4,3,2,1; hx Aih on A; each  3,2,1; jx Bij on B; Cijx ;  on C and yi on A, 

B and C. These will yield the estimated regression coefficient:  

;084.0;045.0;076.0;229.0 ;4;3;2;1  AAAA


 

;434.0;140.0;00.1;106.0;042.0;311.0 ;1;3;2;1  BACBBB


 and 

;84.4C


 

Using these results in Equation (18) together with the estimated partial regression coefficient in Equation 21 we 

obtain the estimated direct effect of A on PCV levels y through its representative dummy variables as  
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            552.0084.065.2045.033.1076.052.4229.014.2 Ab  

Furthermore the indirect effect of A on y through the mediation of other independent variables in the model is 

estimated from Equation 19 as  

  412.0552.0140.0,/ CBAB


 

These results show that in the absence of other independent variables in the model age has a subtractive effect on 

PCV level with its absolute effect estimated as  

140.0ˆ A . This means in this case that for every one year increase in the age of HIV patient the PCV level 

is on the average expected to reduce by 0.140 units. An estimated direct effect of age of 5521.0Ab on PCV 

level through its four representative dummy variables holding duration of infection and sex at constant levels, 

that is at specified levels of these two independent variables means that on the average, patients’ PCV level is 

reduced by 0.552 units for every one year increase in age. However the indirect effect of age on PCV level 

through the mediation of duration of infection and sex at 412.0,/ CBA


 is rather additive.  

The direct and indirect effects of duration of infection B and sex C on PCV levels are similarly calculated and 

the results are presented in Table 4.  

 

Table 3: Estimates of Absolute, Direct and Indirect Effect of Selected factors on PCV levels.  

Estimated Effects 

Factor 

(Parent Variable) 

Absolute 

(Total) 

Direct Indirect 

Age (years)  -0.140 -0.552 0.412 

Duration of Infection  0.434 0.412 0.022 

Sex  4.84 4.96 -0.12 

 CONCLUSION  

In this paper, statistical methods are presented for estimating the values as well as the joint and marginal values 

of an outcome variable using dummy variable multiple regression techniques. Estimates are also provided for the 

absolute, direct, and indirect effects of a parent independent variable on a dependent variable through the effects 

of its representative dummy variables in the presence of other independent variables in the model.  

The illustrative example used shows that the proposed method can highly illuminate and clearly discriminate 

between the effects of various levels of a parent independent variable on a dependent variable in the presence of 

other independent variables in a regression model. 
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