Study On Feebly Lambda – Functions

Yiezi Al-Talkany

College of education for pure science , Babylon university, Iraq

* E-mail of the corresponding author: yiezi.kadhem@gmail.com

Abstract

in this research we study a several characterization of feeby λ-functions and investigate the relationship between such functions .

Keywords: feeby open set , λ-open set , feeby continuous function , feeby open mapping , feeby closed mapping , feeby λ- continuous function , feeby λ-open mapping , feeby λ-closed mapping , perfectly continuous function , feeby λ-perfectly continuous function .

1. Introduction

The notion of feeby open set introduced by S. N. Maheshwari and P. C. Jain [1982] , after that some mathematician uses this definition in a topological space (X,T) , Dalal ibraheem in [2012] study feeby continuous and proved several results in her paper . Some Results of Feebly Open and Feebly Closed Mappings in introduced by dalal [2009] . Dalal ibraheem[2007] define the feeby generalized closed set also sina greenwood and ivan L. reilly [1986] introduced the feeby closed mappings with some result on It .S . Pious Missier and E. Sucila [2013] introduced the perfectly continuous function. Yiezi Al-talkany [2007] in this previous research we are define the λ-open set in bitopological space after that , H. shaheed and S. Kadham [2006] introduced the λ- continuous function in bitopological space. Now in this paper we define some feeby function by using the λ-open set and study some theorems.

2. Preliminaries:

A subset A of a topological space X is said to be feeby open [S. N. Maheshwari and P.C. Jain 1982] if there exists an open set U such that U ⊆ A ⊆ cl(U) , Jankovic D. S. , Reidly I. L. [1985] proved that the complement of feeby open set is feeby closed set

For a subset A of a space X the closure and interior of A with respect to a topological space T are denoted by cl(A) and int(A). Some basic theorems and definitions we needed in this paper we give it now:

2-1 Definition [Dalal Ibraheem 2007]

A function F:X→ Y is called feeby closed function if the image of each closed set in X is feeby closed set in Y.

2-2. Definition [Dalal Ibraheem 2009]

A function F: X → Y is called feeby open function if the image of each open set in X is feeby open set in Y.

2-3. Theorem [Dalal Ibraheem 2007]

Every feeby open mapping is feeby open mapping.

2-4 Definition [H. Shaheed and S. Kadham2006]: a function f:(X,T,Tα)→(Y,V,V α) is called λ-continuous function if the inverse image of each open set in X is λ-open set in Y.

2-5 Definition [S. N. Maheshwari and P.C.Jain1982]: a function f:(X,T)→(Y,V) is said to be feeby continuous if the inverse image of each open set in Y is feeby open set in X.

2-6 Definition [yiezi AL-talkany 2007]: let (X,T,T α) be a bitopological space a subset A in X is said to be λ-open set if there exist U∈ T α such that A⊆ U and A⊆ int T(U)

2-6 Remark: [Dalal Ibraheem 2009]

1- Every open set is feeby open set

2- Every closed set is feeby closed set
2-7 **Theorem:** [Yiezi AL-Talkany2007] every open set is λ-open set

2-8 **Theorem** [H. Shaheed and S. Kadham 2006] every continuous function is λ-continuous

2-9 **Theorem** [S. N.Maheshwari and P.C.Jain 1982] every continuous mapping is feebly continuous mapping.

Dalal Ibraheem in her research proof the following theorems:

2-10 **Theorem:**[Dalal Ibraheem 2009] every closed mapping is feebly closed mapping.

2-11 **Theorem:**[Dalal Ibraheem 2009]: every open mapping is feebly open mapping.

2-12 **Theorem:** [Dalal Ibraheem 2009] the composition of two closed function is feebly closed function.

all the above theorems are not exist in our research.

3 **Feebly λ-continuous function**

Definition: a function $f:(X,T,T^a) \rightarrow (Y,V,V^a)$ is said to be feebly λ-continuous iff the inverse image for every λ-open set in Y is feebly open set in X.

3-1 **Theorem:** [Saad Naji Al-Azawi, Jamhour Mahmoud AL-obaidi, Aco Saied2008]

Every continuous function is feebly continuous function

3-2 **Theorem:** if the function $f:(X,T,T^a) \rightarrow (Y,V,V^a)$ is feebly λ-continuous then

$f:(X,T) \rightarrow (Y,V)$ is feebly continuous.

Proof: let H be open set in Y, by remark (1-5) H is λ-open set, since f is feebly λ-continuous then $f^{-1}(H)$ is feebly open set and then f is feebly continuous.

3-3 **Theorem:**

Let $f:(X,T,T^a) \rightarrow (Y,V,V^a)$ is feebly λ-continuous and $g:(Y,V,V^a) \rightarrow (Z,W,W^a)$ is λ-continuous then gof is feebly λ-continuous

Proof: let A be open set in Z, since g is λ-continuous then $g^{-1}(A)$ is λ-open set in Y and since f is feebly λ-continuous then

$f^{-1}(g^{-1}(A))=(gof)^{-1}(A)$ is feebly open set in X.

3-4 **Theorem:** Let $f:(X,T,T^a) \rightarrow (Y,V,V^a)$ is feebly λ-continuous and $g:(Y,V,V^a) \rightarrow (Z,W,W^a)$ is λ-continuous then gof is feebly λ-continuous

Proof: exist by definitions

3-6 **Theorem:** Let $f:(X,T,T^a) \rightarrow (Y,V,V^a)$ be a map then the following are equivalent:

1- f is feebly λ-continuous
2- The inverse image of each λ-closed set in Y is feebly closed set in X
3- $Cl(f^{-1}(A)) \subseteq f^{-1}(cl(A))$ for each A in Y
4- $f(cl(A)) \subseteq cl(f(A))$ for each A in X
5- $f^{-1}(int(B)) \subseteq int(f^{-1}(B))$ for each B in Y

Proof: (1)\Rightarrow (2) obvious by definition
(2)\Rightarrow(3) let A is subset of Y, then $cl(A)$ is closed set in Y and then it is λ-closed set in Y, by (2) $f^{-1}(cl(A))$ is feebly closed set in X.

Since $f^{-1}(A) \subseteq f^{-1}(cl(A))$ then $cl(f^{-1}(A)) \subseteq cl(f^{-1}(cl(A))= f^{-1}(cl(A))$.

(3)\Rightarrow(4) let A is closed set in X, then by (3) we get $cl(A) \subseteq cl(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A)))$ then $f(cl(A)) \subseteq cl(f(A))$.

(4)\Rightarrow(5) let B is any subset of Y, by (4) $f(cl(X-f^{-1}(B))) \subseteq cl(f(X-f^{-1}(B)))$ and then $f(X-int(f^{-1}(B)) \subseteq cl(f(X-f^{-1}(B)))$ then we get that $X-int(f^{-1}(B)) \subseteq f^{-1}(Y-int(B))$ and then $f^{-1}(int(B)) \subseteq int(f^{-1}(B))$.

(5)\Rightarrow(1) let A is λ-open set in Y, then by (5) $f^{-1}(int(A)) \subseteq f^{-1}(A)$ and then $f^{-1}(A) \subseteq int(f^{-1}(A))$, from that we get $f^{-1}(A)$ is feebly open set in X.

3-7 **Example:**
4 -feitly \(\lambda \)-open function and feitly \(\lambda \)-closed function

4-1. Definition: A function \(f:(X,T^a) \rightarrow (Y,V^a) \) is said to be feitly \(\lambda \)-open function if \(f(G) \) is feitly open set in \(Y \) foe every \(\lambda \)-open set \(G \) in \(X \).

4-2. Definition: A function \(f:(X,T^a) \rightarrow (Y,V^a) \) is said to be feitly \(\lambda \)-closed if \(f(G) \) is feitly closed set in \(Y \) for every \(\lambda \)-closed set \(G \) in \(X \).

4-3. Theorem: Let \(f:(X,T^a) \rightarrow (Y,V^a) \) is feitly \(\lambda \)-open and bijective function then \(f \) is feitly \(\lambda \)-closed function.

Proof: Let \(H \) is \(\lambda \)-closed set in \(X \) then \(X-H \) is \(\lambda \)-open set, since \(f \) is bijective then \(f(X-H)=Y-f(H) \) is feitly open set in \(Y \) and then \(f(H) \) is feitly closed set in \(Y \).

4-4. Theorem: Let \(f:(X,T^a) \rightarrow (Y,V^a) \) and \(g:(Y,V^a) \rightarrow (Z,W^a) \) are two function such that \(Gof \) is \(\lambda \)-open function and \(g \) is feitly \(\lambda \)-continuous injective function then \(f \) is feitly \(\lambda \)-open function.

Proof: Let \(A \) is \(\lambda \)-open set in \(X \), then \((gof)(A) \) is feitly open function, since \(g \) is feitly \(\lambda \)-continuous then \(g^{-1}(gof)(A)=f(A) \) is feitly open set in \(Y \), and then \(f \) is feitly \(\lambda \)-open function.

4-5. Theorem: Let \(f:(X,T^a) \rightarrow (Y,V^a) \) and \(g:(Y,V^a) \rightarrow (Z,W^a) \) are two function such that \(Gof \) is feitly \(\lambda \)-open function and \(f \) is feitly \(\lambda \)-continuous surjective function then \(g \) is feitly \(\lambda \)-open function.

Proof: Let \(B \) is \(\lambda \)-open set in \(Y \), since \(f \) is feitly \(\lambda \)-continuous then \(f^{-1}(B) \) is feitly open set in \(X \), and since \(g \) is feitly open function then \((gof)(f^{-1}(B))=g(B) \) is feitly open set in \(Z \).

4-6. Theorem: Let \(f:(X,T^a) \rightarrow (Y,V^a) \) and \(g:(Y,V^a) \rightarrow (Z,W^a) \) are two function such that \(Gof \) is \(\lambda \)-closed function and \(g \) is feitly \(\lambda \)-continuous injective function then \(f \) is feitly \(\lambda \)-closed function.

Proof: Let \(H \) is \(\lambda \)-closed set in \(X \), then \((gof)(H) \) is \(\lambda \)-closed set in \(Z \), since \(g \) is feitly \(\lambda \)-continuous then \(g^{-1}(gof)(H)=f(H) \) is feitly closed set in \(Y \), \(f \) is feitly \(\lambda \)-closed map.

4-7. Theorem: Let \(f:(X,T^a) \rightarrow (Y,V^a) \) and \(g:(Y,V^a) \rightarrow (Z,W^a) \) are two function such that \(f \) is \(\lambda \)-closed function and \(g \) is feitly \(\lambda \)-closed function then \(gof \) is feitly \(\lambda \)-closed function.

Proof: Let \(H \) is \(\lambda \)-closed set in \(X \), then \(f(H) \) is \(\lambda \)-closed set in \(Y \) and then \(g(f(H))=gof(H) \) is feitly closed set in \(Z \), then \(gof \) is feitly \(\lambda \)-closed function.

5- Feitly \(\lambda \)-perfectly continuous function

5-1. Definition [S.Pious Missier and E. Sucila, 2013]:
A mapping \(f:(X,T) \rightarrow (Y,V) \) is said to be perfectly continuous if the inverse image of each open set in \(Y \) is both open and closed in \(X \).

5-2. Definition: A function \(f:(X,T^a) \rightarrow (Y,V^a) \) is said to be feitly \(\lambda \)-perfectly continuous function if the inverse image of each \(\lambda \)-open set in \(Y \) is feitly open set and feitly closed set in \(X \).

5-3. Theorem: Every feitly \(\lambda \)-perfectly continuous function is feitly continuous function.

Proof: Let \(A \) is open set in \(Y \), and then it is \(\lambda \)-open set since \(f \) is feitly \(\lambda \)-perfectly continuous, then \(f^{-1}(A) \) is feitly open set in \(X \) and then \(f \) is feitly continuous.

5-4. Theorem: Every feitly \(\lambda \)-perfectly continuous function is feitly \(\lambda \)-continuous function.

Proof: Exist by definitions.

References

Sin Greenwood and Ivan L.Reilly (1986). on feebly closed mapping:. Indian J.pure appl.math ,17(9)

S.Pious Missier and E. Sucila (2013).on ū-irresolute functions in topological space. Ultra Scientist , vol.25(2)A,

Perfectly continuous $\xrightarrow{\text{feebl}}$ feebly continuous $\xleftarrow{\text{feebl}}$ feebly λ-perfectly continuous

\begin{align*}
\lambda\text{-continuous} & \quad \rightarrow \quad \text{continuous} \\
\text{feebl }\lambda\text{- continuous} & \quad \leftarrow \quad \text{feebly continuous}
\end{align*}
The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:
http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar