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Abstract 

Numerical methods form an important part of options pricing and especially in cases where there is no 

closed form analytic formula. We discuss two of the primary numerical methods that are currently used by 

financial professionals for determining the price of an options namely Monte Carlo method and finite 

difference method. Then we compare the convergence of the two methods to the analytic Black-Scholes 

price of European option. Monte Carlo method is good for pricing exotic options while Crank Nicolson 

finite difference method is unconditionally stable, more accurate and converges faster than Monte Carlo 

method when pricing standard options.  
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1.  Introduction 

Black-Scholes published their seminar work on options valuation (Black and Scholes 1973) in which they 

described a mathematical frame work for finding the fair price of a European option by the use of a 

non-arbitrage argument to describe a partial differential equation which governs the evolution of the option 

price with respect to the time to expiry and the price of the underlying asset. Numerical techniques are 

needed for pricing options in cases where analytic solutions are either unavailable or easily computable 

(Hull 2003). Now, we present an overview of two popular numerical methods available in the context of 

Black-Scholes (Merton 1973) for vanilla and path dependent options valuation which are finite difference 

method for pricing derivative governed by solving the underlying partial difference equation which was 

considered by (Brennan and Schwarz 1998) and Monte Carlo approach introduced by (Boyle 1997) is used 

for pricing European option and path dependent options. The sufficient conditions for dynamic stability and 

convergence to equilibrium of the growth rate of the function of stock shares were given by (Osu 2011) and 

binomial model for pricing options based on risk-neutral valuation was derived by (Cox et al. 2003). These 

procedures provide much of the infrastructure in which many contributions to the field over the past three 

decades have been centered. 

2.  Numerical Methods for Pricing European Option 

This section presents two numerical methods for pricing options namely: 
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• Monte Carlo method. 

• Finite difference method. 

2.1 Monte Carlo Method. 

(Boyle 1997) was the first researcher to introduce Monte Carlo method into finance. Monte Carlo method is 

a numerical method that is useful in many situations when no closed form solution is available. This 

method is good for pricing both vanilla and path dependent options and uses the risk valuation result. 

The expected payoff in a risk neutral world is calculated using a sampling procedure. The main procedures 

are followed when using this method: 

• Simulate a path of the underlying asset under the risk neutral condition within the desired time 

horizon. 

• Discount the payoff corresponding to the path at the risk free interest rate. 

• Repeat the procedure for a high number of simulated sample paths. 

• Average the discounted cash flows over sample paths to obtain option’s value. 

A Monte Carlo method followed the geometric Brownian motion for stock price 

)(tSdWSdtdS σµ +=
              (1) 

Where )(tdW a Brownian motion or Wiener process and S is the stock price. If S∆  is the increase in 

the stock price in the next small interval of time t∆  then, 

tzSdt
S

S ∆+=∆ σµ               (2) 

Where z is normally distributed with mean zero and variance one, σ is the volatility of the stock price 

and µ  is the expected return in a risk neutral world, (2) is expressed as 

tztSttStSttS ∆+∆=−∆+ )()()()( σµ             (3) 

It is more accurate to estimate InS thanS , we transform the asset price process using Ito’s lemma. 
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tztSttS ∆+−=∆+ σσµ           (4) 

This method is particularly relevant when the financial derivatives payoff depends on the path followed by 

the underlying asset during the life of the option (Weston et al. 2005). 

The fair price for pricing option at maturity date is given by 

])2exp[(
2

TzTSS j
T σσµ +−=            (5) 

Where Mj ,...,2,1= and M denotes the number of trials. The estimated European call option value is  
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Similarly, for a European put option, we have 
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(7) 

Where tS  is the strike price determined by either arithmetic or geometric mean. 

2.2 Finite Difference Method. 

(Brennan and Schwartz 1978) first applied the finite difference method to price option for which closed 

form solutions are unavailable and considered the valuation of an American option on stock which pays 

discrete dividends. The finite difference method attempts to solve the Black-Scholes partial differential 

equation by approximating the differential equation over the area of integration by system of algebraic 

equations (Tveito and Winther 1998). 

The most common finite difference methods for solving the partial differential equations are: 

• Explicit scheme. 

• Implicit scheme. 

• Crank Nicolson scheme. 

These schemes are closely related but differ in stability, accuracy and execution speed, but we shall only 

consider Crank Nicolson scheme. In the formulation of a partial differential equation problem, there are 

three components to be considered. 

• The partial differential equation. 

• The region of space time on which the partial differential is required to be satisfied. 

• The ancillary boundary and initial conditions to be met.  

2.3 Discretization of the Black-Scholes Equation 
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The finite difference method consists of discretizing the partial differential equation and the 

boundary conditions using a forward or a backward difference approximation. The Black-Scholes partial 

differential equation is given by 

),(
2

),(
22

tSS

t

Sttt Strff
S

frSStf
ttt

=++ σ
        (8) 

We discretize (8) with respect to time and to the underlying price of the asset. Divide the ),( tSt plane into 

a sufficiently dense grid or mesh and approximate the infinitesimal steps t∆  and 
tS∆ by some small 

fixed finite steps. Further, define an array of 1+N equally spaced grid points Ntt ,...,0 to discretize the 

time derivative with tnn N

T
tt ∆==−+1 . Using the same procedures, we obtain for the underlying price 

of the asset as follows: 

tSMM M

S
SS ∆==−+

max
1 . This gives us a rectangular region on the ),( tSt plane with sides 

),0( maxS  and ),0( T . The grid coordinates ),( mn  enables us to compute the solution at discrete points. 

We will denote the value of the derivative at time step nt  when the underlying asset has value mS  as 

                           ),(),(),(, tmnnm StfStfSmtnff ==∆∆=                                      

(9) 

Where n  and m  are the numbers of discrete increments in the time to maturity and stock price 

respectively. 

2.4 Crank Nicolson Finite Difference Equation 

In finite difference method, we replace the partial derivative occurring in the partial differential equation by 

approximations based on Taylor series expansions of function near the points of interest (Travella and 

Randall 2000). Expanding ),( SStf +∆  and ),( SStf ∆−  in Taylor series we have the forward and 

backward difference respectively with ),( Stf represented in the grid by mnf ,  (Ames 1997) 
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Also the first order partial derivative results in the central difference given by 
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And the second order partial derivative gives symmetric central difference approximation of the form 

2
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Similarly, we obtained forward difference approximation for the maturity time given by 

t
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Substituting equations (12), (13) and (14) into (8), we have 

           mnmnmmnmmnm ffff ,11,3,21,1 ++− =++ ρρρ                                                          

(15) 

Where 
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 (15) is called a finite difference equation which gives equation that we use to approximate the solution 

of ),( Stf  (Boyle et al 1997). Similarly, we obtained for the Crank Nicolson finite difference method 

which is the average of the explicit and implicit schemes given by. 

1,13,121,111,3,21,1 ++++++− ++=++ mnmmnmmnmmnmmnmmnm ffffff ϕϕϕννν                        

(16) 

For 1,...,1,0 −= Nn  and 1,...,1,0 −= Mm . Then the parameters 
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2.5 Stability Analysis 

The two fundamental sources of error are the truncation error in the stock price and time discretization. The 

importance of truncation error is that the numerical schemes solve a problem that is not exactly the same as 

the problem we are trying to solve (Smith 1985). The three fundamental factors that characterize a 

numerical scheme are consistency, stability and convergence. These three factors are linked by Lax 

equivalence theorem which state as follows: 

• Lax Equivalence Theorem (Merton 1973) 

Given a well posed linear initial value problem and a consistent finite difference method, stability 

is the necessary and sufficient condition for convergence. 
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Generally, a problem is said to be well posed if the following holds: 

• A solution to the problem exists. 

• The solution is unique when it exists. 

• The solution depends continuously on the problem data. 

3.  Numerical Example                                                                                                  

  We consider the performance of the two methods against the analytic Black-Scholes price for a European 

put with the following parameters: 

0.3,25.0,05.0,50 ==== TrK σ . 

The results obtained are shown in the Table below: 

4.  Discussion of Results 

The Table 1 below shows the variation of the option price with the underlying price S. The results 

demonstrate that the two schemes perform well, are consistent and agree with the Black-Scholes value. 

However, finite difference method is the most accurate and converges faster than Monte Carlo method 

when pricing European option.  

5. Conclusion 

In general, each of the two numerical methods has its advantages and disadvantages of use: finite difference 

method converges faster and more accurate, they are fairly robust and good for pricing vanilla option. They 

can also require sophisticated algorithms for solving large sparse linear systems of equations and are 

relatively difficult to code. 

Moreover, Monte Carlo method works very well for pricing both European and exotic options, it is flexible 

in handling varying and even high dimensional financial problems, hence despite its significant progress, 

early exercise is problematic. 

Finally, we conclude that Crank Nicolson method is unconditionally stable, more accurate and converges 

faster than Monte Carlo method when pricing European option. 
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Table 1. A Comparison with the Black-Scholes Price for a European Put Option.  

Stock price S. Black-Scholes Analytic 

Price 

Crank Nicolson  

Method 

Monte Carlo Method 

10 33.0363 33.0362 33.0345 

15 28.0619 28.0616 28.0595 

20 23.2276 23.2271 23.2291 

25 18.7361 18.7350 18.7339 

30 14.7739 14.7734 14.7748 

35 11.4384 11.4390 11.4402 

40 8.7338 8.7334 8.7374 

45 6.6021 6.6019 6.6014 

50 4.9564 4.9563 4.9559 

55 3.7046 3.7042 3.7076 

60 2.7621 2.7613 2.7602 

65 2.0574 2.7613 2.7602 

70 1.5328 1.5326 1.5324 

75 1.1430 1.1427 1.1407 

80 0.8538 0.8537 0.8543 

85 0.6392 0.6391 0.6405 

90 0.4797 0.4795 0.4790 

95 0.2501 0.2490 0.2487 

100 0.2319 0.2315 0.2318 
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