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Abstract

In this paper we apply He’s variational iteratioethod to find out an appropriate solution to a laé
singular differential equation under imposed cdodg by introducing and inducting in a polynomigiro
satisfying the given subject to conditions at théset as selective function to the solution exingct
process. As for as application part is concernkgtiative examples from the available literaturben
treated all over reveal and out show that the smiuleduced by proposed method is exact and again
polynomial. Overall, a successful produce of exsealutions by proposed process itself justify the
effectiveness and efficiency of the method so veugh.

Keywords: He's variational iteration method, Lane-Emden ddfdgial equation, exact solution,
polynomial, Lagrange multiplier.

1. Introduction

The universe is filled with numerous scientific adees and full off due observations that had techatel
motivated to ponder on with outmost concern andosity all about. So happened realised seriously,
considered accordingly, analysed with all efforthef implicitly or explicitly to the field of
multi-disciplinary sciences through modelling irgoitable mathematical preposition like in the foofna
singular second order differential equation endowitti known boundary or other subject to conditions
Further onwards for the sake of convenience armbremning definiteness to not only systematic
characteristics but also to the corresponding preplition out of these prolific existing thoughbpoking
spectral problems of science thoroughly, the afdéaterest and investigation into such variety object
matter is constricted and limited to only some &f tphenomenon occurring in mathematical
physics ,astrophysics, biological science of huplaysiology and chemical kinetics inter alia theottyeof
stellar structure , the thermal behaviour of a sphkcloud of a gas , the isothermal gas sphdtes,
thermionic emission of currents , the degeneradiowhite-dwarf of a star, the thermal distributiprofile

in a human head , the radial stress within a circplane , the elastic pressure under normal preske
oxygen tension in a spherical cell with MichaelisetMbn oxygen uptake Kkinetics, the reactants
concentration in a chemical reactor, the radi@sstion a rotationally symmetric shallow membranme tee
temperature  present in an anti-symmetric circularlatep and many more like
problems[3,4,5,9,11,12,13,18,25,40] .Thereupon tumsidered range of mathematically modelled
problems may be affined to the a special class lcine-Emden differential equation for apropos
interpretation and comprehensive investigation. thetLane-Emden differential equation considereith wi
composite imposed condition be

v (x) + E}-"(x} +fley) =g(x), 0cx<1 (1.1)

Subject to conditions ¥(0) = A , ¥(1) =&
or
_1}."{[]:] = o ., J_'I:]_:] =0
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Where f(x, y) is a real valued continuous functig¢(x) € C [0 1] and A, B, C, D are real constant.

The parameter ‘K’ is a real number greater thaequal to one. If k =1 or k=2 the problem (1.1) reghkito
cylindrical or spherical type by virtue of corrolating perspective symmetries properly. To begirn wlie
mode of analytical realisation, as of now, we agajrt to restrict the domain of class of differehtia
equation (1.1) in the larger interest of findingyasuitable, simple and effective methodology emapli
some better and appropriate much needed solutithetoorresponding accustomed and coherent subclass
of problems. Subsequently as to the sufficientredetowards such class of problems a sincere pttEm
made ahead via the technique of variational itenathnethod successfully.

Now consider a specific subclass of problems deviol
y (x) + E_}-‘l (x) + aplx)yv™(x) = g(x) Dcx=1 . .melt (1.2)

Subject to conditiongy(0) = A , y(1) = B
Or
y@= ¢ ,y0) =D
where A, B, C and D are real constants and thenpetex k1.

However, p(x) and g(x) are polynomials of suitathegree and ‘a’ is any real number. Solution todllass

of problems (1.1) exists and is unique as well @%,38]. The point x=0 is a singular point of greblem
may offer a peculiar behavior to the solution ie theighborhood of that point like out showing aidap
change, partly skeptical and chaotic towards sooietisn procuring process making one unable to
understand about the behavior of the solution dhere at ‘x'(=0)equals to zero. However, due to
singularity to the extreme of the solution domairy af the numerical scheme may again face convesgen
problem. However, the singular behavior could mopéde the keen interest of researchers relateleto t
field of study of such kind of thought provokingoptems any more.

In recent past, with regard to finding the solutiorthe Lane-Emden equation so far several oth¢nads

like B-Spline method, Homotopy method, Finite elatmethod, Lie group analysis, Modified Variatignal
iteration method, Adomian method, Modified AdomiBecomposition method, Multi-integral method,
Differential method, Projection method, Legendrevelats method, Taylors series method, Rational
Chebyshev collocation method ,Pseudo spectral mdsthave had been discussed and applied gracefully
[2,7,8,10,14,16,17,23,27,28,34,36,37,42,43].

The method under consideration that is to be pwdod and proposed to be applied upon, is a method
none other than the He’s variational iteration rodtloften ascribed to and eulogised for solving fasno
subtle and meticulous problems like Autonomous radi differential system, Nonlinear oscillations,
Nonlinear relaxation phenomena in polycrystallimdids, Nonlinear thermo elasticity, Cubic nonlinear
Schrodinger equation, lon acoustic plasma wave JiNear oscillators with discontinuities, non-Newitm
flows, Burger's and coupled Burger’s equation, Gaeh®&iccati equation, Multispecies Lotaka —\olterra
equations, Rational solution of Toda lattice equatiHelmholtz equation ,Generalized KdV equatiod an
Nonlinear differential equations of fractional orde6,20,21,29,30,31,32,35,39,40].

2. He's Variational Iteration Method (V | M)

Variational iteration method may be understood Bk@ultaneous toning up of Lagrange multiplier and
variational theory complimenting each other in onisin as much as the type of such consequentialahu
indiscrete coexistence happen to be deduced outvof different mathematical concepts altogether
sometimes also referred to as modified Lagrangetiptisl method previously put forward by Inokuti
Sakine and Mura[19] and later on envisioned andrawiped by Chinese mathematician J.H. He have
outreached and surpassed a milestone for knowrate Bolved plenty of challenging problems with
perfection, accuracy and great efficiency.Wich tsatvthat itself speaks the volumes of its abildyeticit
solution out of a diversifying class of problems.drder to incorporate and treat on by this veryhoe
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further on consider a general differential equatioaperator form as

Dy(x) =glx) .xelI<R  where Dis the usual ifential operator (2.11)

y(x) is twice continuously differentiable functiam a domain and g(x) is real valued inhomogeneewuns.t
The relation (2.1) may be decomposed as follows

Ly(x) + Ny(x) = g(x) relcR (2.12)
where L and N are linear and nonlinear differertiarators respectively.

The variation iteration method acquires high efficly and real potential to the required procedsding
solution systematically by successive generatiorregursive relations of correctional functional twit
respect to (2.12) via variational theory. Obsenrvimg success and usefulness of the proposed variast
many other intrigue solution desired problems ieigpedient to introduce and treat the given cldss o
problems similarly. It is important to note thatetlvariation iteration method accumulates its inne
efficiency and enough potential needed for the temiuexhibiting procedure with regard to (2.12)big
virtue of successive generation of recursive coioaal functional systematically with the help oklv
thought exotic concept of variational theory. Evetly, therefore for finding a just and acceptatéution

to the class of the problems (1.1) we adhere tstcoct a sequence of integral equations also calted
correctional functional to the problems (2.12) alfofvs

Vo1 (®) = 3,(®) + J7 ) (L (0,(9)) +N (,(5) - 9 @) ds O (2.13)

Where i(s) is Lagrange multiplier determined optimally satisf all stationary conditions after

variational method is applied to (2.3).Howeverréhexists one more important feature responsibledse
and utility of the proposed method realized sooakr is the assumption and choice of considerirg th
inconvenient highly nonlinear and complicated dejeen variables as restricted variables so as to
minimizing the magnitude of the undesired erroreeping into the susceptible solution finding psxe

I

of the general problem(1.1).The emblem aforemestio’ f is the restricted variation, which means

&%,=0.Eventually, after ‘1’ is determined , a proper and suitable selectivection may it be a linear one

or appropriately nonlinear with respect to (2.2)agsumed as an initial approximation for findingttne
successive iterative function by recursive sequesfceorrection functionals anticipating to satigfye
given boundary conditions. On few occasions it imessed that finally or preferably the limitinglva

(asn — w]) of sequential approximations incurred after duecpss of iteration leads to exact solution.

However, to our class of problems we consider gruohial pre satisfying either boundary condition or
initial condition corresponding to the problem a&destive function that is likely to produce wellsited
exact solution.

2.1Variational Method and generalized Lagrange Multiplier

In order to avert the inconvenience caused by thegmce of singularity the model (1.2) is requiedbe
treated by modifying the problem without changihg status of referred physical phenomenon.
Accordingly, the modified imposed value problem is
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xy"(x) + ky'(x) + axp(x)y™(x) = xq(x) for  all*x belonging to [0 1] (2.11)

Thus the sequential correctional funtionals comesiing to (2.11) may be defined as follows

Verr @) = 3.0 +f;.1{s] (sy"(5) + ky'(s) + asp(s) (=) — sq(s) Jds =0 (2.12)
where y,(x) is the initial selective function ang, (x]}is n'* jterate of the correctional functional. Now
optimal value ofi(s) is identified naturally by taking variation Wwitrespect toy,(x) and subject to

restricted variation of unpleasing termspf(x) i.e. §3%,(x) =0. Consequently to embark on the relation

Gy 21 (X) =8y, (X) +4 f:.l(s)(S}r" (s) + ky'(s)+a s p(s)y (5) — sq(s))ds , =0 (2.13)

Further on by virtue of integrating ( ) by partslasubject to the restricted variationyqf i.e. §%;,=0) we

have then for n= 0

Vs () = (1 +r-1)AGE) — 52'(5) 6%, () + S(A(S) 5v.(5)) [s=x + [, (s2'(s) +(2 —)A'(s)) 6y, ()ds,

This mathematical variational equation assertstti@stationary conditions are

1+ (r—1)a(s) —sa'(s) =0 (2.14)
A(x)=0 (2.15)
st(s)+(@2-ri=)=0 (2.16)

The relations (2.14), (2.15) and (2.16) altogetimplies that
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(2.17)

Henceforth, the sequence of correction functioaadsnow given by

Yup1 () =¥, (X) SUNELT Jf,.(.tﬁds’) (sy" (&) + ky' (+a sp(shyff BT —sq(s))ds  nz 0  (2.18)

Moreover, the relation (2.18) can be rewritten as
, =y Foof L Ky k=1 k() v (5] — sk
Vo1 00 =3,00 + Jy (i 70 Sy () + ks 1y (s)+a s ps) v () - s*q(s))ds  nz0  (2.19)

In view of (2.11), (2.18) and (2.19) it is plaugiblo observe that by variational theory the proagfss

optimization self endeavors to multiply the relatifl.2) by % ‘power of the variable ‘X’ to come to

succor and modify the considered model problemhi& neighborhood of singular point so that the
proposed method becomes expedient and can be teghetkgantly to conclude about innate and cohesive
grid scientific behavior of hitherto discussed wadfined class of applied nature of problems.Agen,
also observe that the execution process carrieth@utvay facilitate to express all the derivatieems as a
total differential of some function henceforth nfasting the differential equation like semi-exabsthich is
why, we can visualize the Lagrange multiplier amisategrating factor for our model problems.

Also clearly would it be deduced from (2.19) thae timit of the convergent iterative sequencg; 1 ,._1
satisfying given conditions is the desired exatttsan to (1.1).

2.2 Convergence of Iterative Sequence

Essentially our prime motive in this section isestablish the convergence of the considered sequanc

correctional functionals generated out after VIMeiecuted onto the class (1.1) with regard to éstab
(2.19) observe that

Yprt (0= ¥,(2) +ZE:;[1:,{_1}-'H1 () — ¥,(x) is the 7™ partial sum of the infinite series

Yol(x) + EFso(¥es1 (00— (x)) (2.21)

Then necessarily the convergence of infinite sgfie®1) implies the convergence of intermediaryaitiee

sequence ﬁrn{x}}il of partial sums  of the auxiliary series (2.2%)well. Supposes,(x) be the
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initial selective function of polynomial functioroosuming the given conditions in the problem.
Then the first successive variational iterate i@giby

7. =y (%) + [} 1) ((5y;(9) ) + s*(ap)y — g(s)) ds (2.22)

On integration by parts and erstwhile appliancthefproper stationary conditions we have

1,09 = 30 0 I=lp Org(s) +2(5) s (ap () 38" - q(s)dis| (2.23)

This implies that

| 3G = w0y U @) 12 ) 1 (2 lips]i @] +lae)hds (2.24)
Similarly, the relation (2.19) on carrying out siamisimplifications and using stationary conditipimsply

X
e — y (@) = | f 1(E)s* ap(S)(™(s) — yP(s) ds]
or, iy, (x) — %, 001= [; (lal| A(s)ps)D (| 77 () — ¥ (=) |) ds

S lall a@pD (v, (8) - yy(6)] [Erstyr =1y ()] ds

IN

[Emlal 2©p) ]y, () — vy Iy, ™ ds (2.25)

IN

And, above all

1,00 G = 3, 00121 as*4(s) p(s) 07 () — ¥, () ds|

on 1 () = v, 0912 J; 1al| A)p(S)|(l ¥ () = yos D DIETEG 372 () yi_i ()| ds % m =2
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-1
< [ mlalla@p@ |y, () =y, Oy, ) ds, vmeIN | s=x<1

(2.26)
Now, choose

M =sup () H1AG) 1 (| a [1p(s) [l (1™ + lg(s)ly , mlal [A(s)p(s)l Iy ()™ ) (2.27)
v Ox<x=1 nelN

Then, again observe and proceed to establish duygiatity

anFl o+l

Wos(S) =M@ = 05 vn € IN (2.28)

Obviously, relations (2.24), (2.25), (2.26) an®@. together imply that

| 700700 | =fMds =M @)2
Aswellas, ,(x) —y, XM f[f (v, ( =)) — ¥p(s) )lds (2.30)
Hr=1

Using (2.29) in (2.30) we find that

Mt

() =y I Mg Msds =

gxr=1

Thus, the statement (2.28) is true for natural nemms=1
As usual, suppose that

3,(S) —yna() = 5 holds  for  some, n elIN (2.31)

Then, again relations (2.24) and (2.27) altogeiiety that

B0 — 3, 0012 FmlaliEp@1 By, @ I,(e) —yu_s(s) lds
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sx<LnelN
or, by 00 =300 < mlal sup 2GRy (™ g Iyn &) — i —1 ()10

sx=1lnelN

That implies by (2.27) and (2.31)

MM ML

X g
Fpsn ) —300] £ MJy —rds=—

Therefore, by Principle of Induction

n+l n+
b S

n+1!

Ve () = 3, () |2 holds Wxe [01] and ¥n € IN (2.32)

Now we claim that the series (2.21) converges bb#olutely and uniformly for alk [0 1] using (2.32)

+1 e
T 1_

sSince Jo(IE 0 17,109 —3m(IlE bp(IMEEe i

—o =) (I (€ —1) wx [01] (2.33)

Therefore the serieg,(x) +Z§=D{yi_+1(x) —v,(x)) converge uniformly ¥x € [01] and by virtue of

(2.33) sequence of its partial sunﬂgn{x:]}f_nconverges to solution function of the given clags o

problems.

3. lllustrative Problems

The proposed method is justified by successful @amgntation of VIM on some of the specific problewfis
linear and nonlinear type often referred, discusaed had been attempted to solve by other different
methods in literature available so far.

3.1Examplel:
Consider the following boundary value problem [2],3

H
i

+
I

Y0+ Ty () +yG) = (3.11)

b
y
=g
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Subjectto ¥'(@ =0 |, y(1) = 2

16

Solution:  To solve (5.1) we construct correctionctional as follows
X . ] ot 52
Yoyt (®) = ¥, (0) + Jy A (Gey(s) + sy(s) - s+ ) ds m0

Where ‘(s)’ is optimally identified Lagrange multipliermsilar to (2.27).Then the first iterative solutian i

] o 2
71 = 7,00 + [ AE) (596N + sy (5) - sE+D)ds
Let ¥, (x) be the selective polynomial function satistyithe given boundary conditions. We may simply
choose selective function as
17 n
() =a +(;-ax
Then the first iterate is as follows
7 . . ] g z

v ) =a+(-ax" + [A6) (syp(s) + sy () - sC+I))ds
Now on performing simplifications, we get

¥ 0= a + (5 —a )x* + 3@ 1)x%+ fa-1)rt

Further onwards imposition of boundary condition r{x) asserts that ‘a=1'enabling;, (x) = x

as the produced exact solution to the problem.

3.2Example2:
Considetthe boundaryalue probleni7, 34,35]

—y"(x) — i}rr{x:] £l —xYypla) =x*— 2x2 47 (3.21)

y©o=1 , y(@)=0

Solution: The correction functional for the problem (3.21) is

Y10 23,00+ 206) (=25 = 21 = )y, (8) - (5 =25 + 75%)) ds (3.22)
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‘A(s) ’is usual optimally identified Lagrange multigi

Let y,(x) =a (2=x%) as selective initial approximation function to iroe successive first iterate as

) =a st —T@-Ds+ -1 —axt - —(a— 1)

Since solution to (1.2) type of boundary value peots are unique, therefore upon matching the baynda

condition we get ‘a=1'rendering y(x} = ¥,(x) = (1-x") as the exact solution to (3.21)

3.3Exampl €3:

Let the nonlinear boundary value problem [42]
¥ (x) +%y' () + v (x)=x*+x" +18x+4 (3.31)
y(0) =2, »'(0)=0

Solution: The correctiondlinctional with respect to (3.31) is given by

Y p1 (¥) =1,(X) +f;.1{:s:} {{s“yln:]' + 543?12,_{:5:}— s*(sf+ 45+ 185+ 4))ds  for n=0,1... (3.32)

Let, y,(x) = y(x) = 2+ax® + bx? be the selective initial approximation functiomen by VIM,

First iterative approximate solution to (3.32) slifigs to

BPNNPSN DI R S RO NS T S I S S S .
¥ (X)=2+x S ox m{h 1 S0 x ]iahx BB{EJ 1)x (3.32)

Then on matching the given initial condition angblgjmg unique feature of solution again impliesttha0

and b=1, exhibitingy(x) =y, (x)= 2+x, the exact solution to the problem.

However if we consider differential equation (3.219ng boundary conditions(0}=2 and y(1) =3 then

(3.33) similarly provides exact solution to the hdary value problem as well.
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3.4 Example4:

Consider the boundary value problem [17, 42]

YO+ 2y ) 4y ) =6rxf (3.41)

Subjectto  ¥(0}=0 ,y(1)=1

Solution The correctional functional for boundary value pewb (3.41) is as follows

V1 (0 =3, (%) + f[f A=) ((SPy, () + 5%y (s) —s2(s5+ 6)) ds forn=0,1,2...... (3.42)

Let y(x) = yy(x)=a+ (1-aX* be the selective function satisfying the given ktamg condition then
Then the first iterate by variation iteration meadtfoom (3.42) is given by

_1}:1{:_1-:} =a+(1-gx* - %a{:az +6)7 + % a(a — 1)x* — 11—4 ala — 1:]2.1'5 + __Lza{az —3(a— 1))t

Now matching the conditions at the end points efgblution domain and using the fact that the smiub

such boundary value problem are unique wemet,0. Hence the method producing the exact solution

y(x) = () = % .

3.5Example5

Consider the problem[10,33]
v (x) + E_}-‘l (x) + xy(x) = x® —x* + 44x — 30x (3.52)

Subject to y0y=0 ., ¥y{(0=0

Solution: If ‘A 'is the Lagrange multiplier then the first coriieaal functional is given by
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¥y (x) = yplxd + f:.l'[:s:} {{55}:'[){5:]:]' +s° {_)-‘u (=) — (s® — s* 4 445 — 305) ):] ds

(3.52)

Let us considey(x} = v, (x) = ax® + bx* as selective function

Then on inserting the value ¢f(x} in (3.52) we get

7)== + bt — - (a+ Dx® - (6 - D& (3.53)

Hence upon imposing the given initial condition(B153) and using the criterion of uniqueness of the

solution we have a=-1 and b=1 felicitating y(x}-%2 + x*.

Moreover, if we again consider the problem (3.9bp@ with condition y{0)= v(1)=0 then on the basis

of similar logic on (3.53) we get an exact solutiorthe considered boundary value problem.
4. Conclusions

This is pertinent to note that He’s variation iteva method applies successfully to a linear ad alto a
nonlinear class of boundary or initial value prabgeof type (1.2). Frontier examples of relevaned trave
had occurred time and again and had been deatirhg sther method of solution are taken and solvied
focus and assert that a proper selection of setedtinction and henceforth imposition of boundary o
initial condition as we please on iterative coni@tal function may lead to an exact solution. Hoarev
sometimes necessity of uniqueness of solutiorsis assumed during solution maneuvering process.
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