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Abstract 

In this paper, we obtain a unique common fixed point theorem for two self maps satisfying psi - varphi 

contractive condition in partial metric spaces by using rational expressions. 
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1. Introduction 

The notion of partial metric space was introduced by S.G.Matthews [3] as a part of the study of denotational 

semantics of data flow networks. In fact, it is widely recognized that partial metric spaces play an important 

role in constructing models in the theory of computation ([2, 5, 7 -12], etc). 

S.G.Matthews [3], Sandra Oltra and Oscar Valero[4] and Salvador Romaguera [6]and I.Altun, Ferhan Sola, 

HakanSimsek [1] prove fixed point theorems in partial metric spaces for a single map. 

In this paper, we obtain a unique common fixed point theorem for two self mappings satisfying a 

generalized ψ -φ contractive condition in partial metric spaces by using rational expression.  

First we recall some definitions and lemmas of partial metric spaces. 

 

2. Basic Facts and Definitions 

Definition 2.1. [3].A partial metric on a nonempty set X is a function p :X × X → R+ such that for all x, y, z 

∈ X: 

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y), 

(p2) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y), 

(p3)  p(x, y) = p(y, x), 

(p4)  p(x, y) ≤ p(x, z) + p(z, y) − p(z, z). 

(X, p) is called a partial metric space. 

It is clear that |p(x, y) − p(y, z)| ≤ p(x, z)  for all x, y, z ∈ X. 
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Also clear that p(x, y) = 0 implies x = y from (p1) and (p2). 

But if x = y, p(x, y) may not be zero. A basic example of a partial metric space is the pair (R+, p), where  

p(x, y) = max{x, y} for all x, y ∈ R+. 

Each partial metric p on X generates τ0 topology τp on X which has a base the family of open p - balls  

{B p(x, ε) / x ∈ X, ε > 0} for all x ∈ X and ε > 0, where Bp(x, ε)= {y ∈ X / p(x, y) < p(x, x) + ε}  

for all x ∈ X and ε > 0. 

If p is a partial metric on X, then the function ps : X × X → R+ given by 

Ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)          (2.1) 

is a metric on X. 

Definition 2.2. [3]. Let (X, p) be a partial metric space. 

(i) A sequence {xn} in (X, p) is said to converge to a point x∈ X if and only if p(x, x) =  lim
n ∞→

p(x, xn). 

(ii) A sequence {xn} in (X, p) is said to be Cauchy sequence if 
∞→n m,

lim p(xm, xn) exists and is finite . 

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, w.r.to τp, to a point  

x ∈ X such that  p(x, x) = 
∞→n m,

lim p(xm, xn). 

Lemma 2.3. [3].Let (X, p) be a partial metric space. 

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps). 

(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore, 

 lim
n ∞→

 

ps(xn, x) = 0 if and only if p(x, x) =  lim
n ∞→

 

p(x, xn) = 
∞→n m,

lim
 

p(xm, xn). 

 

3. Main Result 

Theorem 3.1. Let (X, p) be a partial metric space and let T, f : X → X be mappings such that 

(i) ψ(p (Tx, Ty)) ≤ψ (M (x, y)) − φ (M (x, y)) , ∀  x, y ∈ X, 

where M (x, y) = max








+
+

fy)p(fx,  ,
fy)p(fx,1

Tx)p(fx,1
 Ty)p(fy,  and ψ: [0, ∞)  → [0, ∞) is continuous, 

non-decreasing with ψ (t) = 0 if and only if t = 0 and φ:[0, ∞) → [0, ∞) is lower semi continuous with  

φ(t) = 0 if and only if t = 0, 

(ii)  T(X) ⊆ f(X) and f(X) is a complete subspace of X and 

(iii)  the pair (f, T) is weakly compatible. 

Then T, f have a unique common fixed point of the form α in X. 

Proof: Let x0∈ X. From (ii), there exist sequences {xn} and {yn} in X such that 

yn = fxn+1 = Txn, n = 0, 1, 2,3,  · ·  · 

Case(a): Suppose yn = yn+1 for some n. 

Then fz = Sz , where z = xn+1. Denote fz = Tz = α. 

ψ(p(Tα, α))  = ψ (p(Tα, Tz)) 

 ≤ ψ(M(α, z)) − φ(M(α, z)). 
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  M(α, z)  = max








+
+

fz),p(f  ,
fz),p(f1

)T,p(f1
 Tz)p(fz, α

α
αα

 

 = max








+
+

),p(T  ,
),p(T1

)T,p(T1
 ),p( αα

αα
αααα  

 = p(Tα, α),  from (p2). 

Therefore 

ψ(p(Tα, α))  ≤ ψ(p(Tα, α)) − φ(p(Tα, α)) 

 < ψ(p(Tα, α)). 

It is a contradiction. 

Hence fα  = Tα = α. 

Hence  α is a common fixed point of f and T. 

Let β be another common fixed point of  f  and T such that α ≠ β. 

   ψ(p(α, β)) = ψ(p(Tα, Tβ)) 

   ≤ 





















+
+

 ) ,p(,
) ,p( 1

) ,p( 1
),p(max ψ βα

βα
ααββ

 






















+
+

−  ) ,p(,
) ,p( 1

) ,p( 1
),p(max   βα

βα
ααββϕ  

= ψ(p(α, β)) – φ(p(α, β)),  from (p2) 

< ψ(p(α, β)). 

It is a contradiction. Hence α = β. 

Thus α is the unique common fixed point of  T  and  f. 

Case(b): Suppose yn≠ yn+1for all n. 

ψ(p(yn, yn+1)) = ψ(p(Txn, Txn+1)) 

   ≤ ψ(M(xn, xn+1)) − φ(M(xn, xn+1)) 

   = ψ(max{p(yn, yn+1), p(yn, yn-1)}) − φ(max{p(yn, yn+1), p(yn, yn-1)}). 

If p(yn, yn+1)is maximum, then 

ψ(p(yn, yn+1)) ≤ ψ(p(yn, yn+1)) - φ(p(yn, yn+1)) 

   < ψ(p(yn, yn+1)). 

It is a contradiction. 

Hence p(yn, yn-1) is maximum. 

Therefore 

ψ(p(yn, yn+1)) ≤ ψ(p(yn, yn-1)) - φ(p(yn, yn-1))           (3.1) 

 ≤ ψ(p(yn, yn-1)). 

Since ψ is non – decreasing, we have  p(yn, yn+1) ≤ p(yn, yn-1)  

Similarly p(yn+2, yn+1) ≤ p(yn, yn+1). 

Thus p(yn, yn+1) ≤ p(yn, yn-1), n = 1, 2, 3, … 

Thus { p(yn, yn+1) } is a non - increasing sequence of non-negative real numbers and must converge to a real 

number, say, L ≥  0. 

Letting n→ ∞  in (3.1), we get 

ψ(L) ≤ ψ(L) - φ(L) so that φ(L) ≤ 0. Hence L = 0.  
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Thus  

 lim
n ∞→

 

p(yn, yn+1) = 0.          (3.2) 

Hence from (p2), 

 lim
n ∞→

 

p(yn, yn) = 0.           (3.3) 

By definition of ps, we have ps(yn, yn+1) ≤ 2p(yn, yn+1). 

From (3.2), we have 

 lim
n ∞→

ps(yn, yn+1) = 0.          (3.4) 

Now we prove that {yn} is Cauchy sequence in metric space (X, ps). On contrary suppose that {yn} is not 

Cauchy. Then there exists an ε> 0 for which we can find two subsequences {ym(k)}, {y n(k)} of {y n} such that 

n(k) is the smallest index for which n(k) > m(k) > k, 

ps(ym(k), yn(k)) ≥ ε           (3.5) 

and 

ps(ym(k), yn(k)-1) < ε.           (3.6) 

From (3.5) and (3.6), 

ε ≤ ps(ym(k), yn(k)) 

 ≤ ps(ym(k), yn(k)-1) + ps(yn(k)-1, yn(k)) 

 < ε + ps(yn(k)-1, yn(k)) 

Letting k → ∞ and using (3.2), we have 

∞→k
lim ps(ym(k), yn(k)) = ε.          (3.7) 

From (p2), we get 

∞→k
lim p(ym(k), yn(k)) = 

2

ε
.         (3.8) 

 

Letting k → ∞ and using (3.2) and (3.7) in the inequality  

 | ps(ym(k )-1, yn(k)) – ps(ym(k), yn(k)) | ≤ p
s(ym(k), ym(k)-1)   

we get  

∞→k
lim ps(ym(k )-1, yn(k)) = ε.         (3.9) 

From (p2), we get 

∞→k
lim p(ym(k )-1, yn(k)) = 

2

ε
.         (3.10) 

 

Letting k → ∞ and using (3.2) and (3.7) in the inequality  

 | ps(ym(k ), yn(k)+1) – ps(ym(k), yn(k)) | ≤ ps(yn(k), yn(k)+1)   

we get  

∞→k
lim ps(ym(k ), yn(k)+1) = ε.         (3.11) 
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From (p2), we get 

∞→k
lim p(ym(k ), yn(k)+1) = 

2

ε
.         (3.12) 

ψ(p(ym(k ), yn(k)+1)) = ψ(p(Txm(k ), Txn(k)+1)) 

≤ ψ(M(xm(k ), xn(k)+1)) – φ(M(xm(k ), xn(k)+1))  

= 


























+
+

+  )y ,p(y,
)y ,p(y 1

)y ,p(y 1
)y,p(ymax ψ n(k)1-m(k)

n(k)1-m(k)

m(k)1-m(k)
1m(k)m(k)  

     - 


























+
+

+  )y ,p(y,
)y ,p(y 1

)y ,p(y 1
)y,p(ymax n(k)1-m(k)

n(k)1-m(k)

m(k)1-m(k)
1m(k)m(k)ϕ . 

Letting k → ∞ and using (3.12), (3.2), (3.10) and (3.8), we get 

     






<






−






≤








2222

ε
  ψ  

ε
    

ε
 ψ  

ε
ψ ϕ   

It is a contradiction. 

Hence {yn} is Cauchy sequence in (X, ps).  

Thus  lim
n m, ∞→

 ps(yn, ym) = 0. 

By definition of ps and from (3.2), we get 

 lim
n m, ∞→

 ps(yn, ym) = 0.        (3.13) 

Suppose f(X) is complete. 

Since {yn} ⊆ f(X) is a Cauchy sequence in the complete metric space (f(X), ps), it follows that {yn} 

converges in (f(X), ps). 

Thus 
∞→n

lim ps(yn, α) = 0 for some α ∈ f(X). 

There exists w∈ X such that α = fw. 

Since {yn+1} is Cauchy in X and {yn} → α, it follows that {yn+1} → α. 

From Lemma 2.3(b) and (3.13), we have 

p(α, α) =  lim
n ∞→

 p(yn, α) =  lim
n ∞→

 p(yn+1, α) =  lim
n m, ∞→

 p(yn, ym) = 0.      (3.14) 

p(Tw, α) ≤  p(Tw, Txn+1) + p(Txn+1, α) – p(Txn+1, Txn+1) 

  ≤  p(Tw, Txn+1) + p(Txn+1, α). 

Letting n→∞, we have 

     p(Tw, α) ≤  lim
n ∞→

 p(Tw, Txn+1). 

Since ψ is is continuous and non - decreasing, we have 

ψ(p(Tw, α)) ≤  lim
n ∞→

 ψ(p(Tw, Txn+1)) 
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 =  lim
n ∞→ 






















+
+

+  )y ,p(,
)y ,p( 1

Tw) ,p( 1
)y,p(ymax ψ n

n
1nn α

α
α

 

    -  lim
n ∞→ 






















+
+

+ )y ,p(,
)y ,p( 1

Tw) ,p( 1
)y,p(ymax n

n
1nn α

α
αϕ  

 = ψ(0) – φ(0) = 0. 

It follows that Tw = α. Thus Tw = α = fw. 

Since the pair (f, T) is weakly compatible, we have fα = Tα. 

As in Case(a), it follows that   α  is the  unique common fixed point of  T  and  f. 

Example 3.2. Let X = [0, 1] and  p(x, y) =  max{x, y} for all x, y∈ X .  Let  T, f : X → X, f(x) = x/3 

and T(x) = x2/6,  ψ : [0,∞) → [0,∞) by  ψ(t) = t and  φ: [0,∞) → [0,∞) by φ(t) = t/2 . Then the conditions 

(ii) and (iii) are satisfied and 

ψ(p(Tx, Ty)) = p(Tx, Ty) 

 = max








6

y
,

6

x 22

 

 ≤ max








6

y
,

6

x
 

 = 
2

1
p(fx, fy) ≤ 

2

1
max 









+
+

fy)p(fx,  ,
fy)p(fx,1

Tx)p(fx,1
 Ty)p(fy,  

 =  ψ(M(x, y)) – φ(M(x, y)). 

Where M(x, y) = max 








+
+

fy)p(fx,  ,
fy)p(fx,1

Tx)p(fx,1
 Ty)p(fy,  

Thus (i) is holds. 

Hence all conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of  T and f. 
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