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Abstract

In this paper we have introduced intuitionisticZyalmost - generalized semi continuous mappings and
intuitionistic fuzzy almost contrar- generalized semi continuous mappings and soméheif basic
properties are studied.
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1. Introduction

The concept of intuitionistic fuzzy sets was inwodd by Atanassov[l] and later Coker[4] introduced
intuitionistic fuzzy topological spaces using thetion of intuitionistic fuzzy sets. In this paperew
introduce intuitionistic fuzzy almosir- generalized semi continuous mappings, intuitionigizzy almost
contra 7T- generalized semi continuous mappings and stustiede of their basic properties. We provide
some characterizations of intuitionistic fuzzy abnhar- generalized semi continuous mappings and
intuitionistic fuzzy almost contrez- generalized semi continuous mappings.

2. Preliminaries
Definition 2.1:[1]  An intuitionistic fuzzy set (IFS in short) i X is an object having the form

A 1a(X), va(x) ) / X0 X}

where the functionga(x): X — [0, 1] andva(X): X - [0, 1] denote the degree of membership (namely
ua(x)) and the degree of non-membership (namg(x)) of each element XIX to the set A, respectively,
and 0<  pa(X) +va(x) <1 for each Xd X. Denote by IFS(X), the set of all intuitionistiezzy sets in X.

Definition 2.2:[1] Let A and B be IFSs of the form

A={{X ta(X), va(X) ) / xOX } and B = {{ X, ug(X), vg(X) Y / x O X }. Then
(&) AOBifand only ifua(x) < pg (X) andva(x) > vg(x) for all x OX

(b) A=BifandonlyifAD Band BO A

© A ={{xva(9), ma(x))/ xOX}

(d) AnB={{X pa(x) Ope (), va(x) Ova(x) ) / x T X}

(e) ADB={{X pa(Xx) Opg (x), va(x) Ove(x) ) /x0 X}

Forthe sake of simplicity, we shall use the nota#ton ( x, pa, va) instead of A = { X, pa(X), va(X) ) / x
0 X }. Also for the sake of simplicity, we shall use the notattos { ( X, (ua, us ), (va, vg) ) } instead of
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A = (X, (Alua, Blug), (Alva, Bivg) ).The intuitionistic fuzzy sets.G= { (x, 0, 1) / xOX}and 1
={(x,1,0)/x0OX} are respectively the empty set and the wiseleof X.

Definition 2.3:[3] An intuitionistic fuzzy topology (IFT in shorpn X is a familyr of IFSs in X satisfying
the following axioms.

i 0,107
(i) Gin GOzforany G G,01
(i) OGOrforanyfamily{G/ i0J}0O .

In this case the pair (X) is called an intuitionistic fuzzy topological ga(IFTS in short) and any IFS1in
is known as an intuitionistic fuzzy open set (IFl@Short) in X. The complement“sf an IFOS Ain IFTS
(X, ) is called an intuitionistic fuzzy closed set (5@ short) in X.

Definition 2.4:[3] Let ( X,1) be an IFTS and A £€X, pua, va) be an IFS in X. Then the intuitionistic
fuzzy interior and intuitionistic fuzzy closure atefined by

intftA) = O{G/GisanlIFOSin Xand GA},
cl(A) = n{K/KisanIFCSinXand AlK}.

Definition 2.5:[9] A subset of A of a space (X) is called:
() regular open if A = int (cl(A)).
(i) ™ openifAis the union of regular open sets.

Definition 2.6:[8] AnIFS A= {{X, pa,va) }inanIFTS (X,7) is said to be an
(i) intuitionistic fuzzy semi open g8ESOS in short) if AT cl(int(A)),

(ii) intuitionistic fuzzwi-open setlFaOS in short) if AT int(cl(int(A))),

(iii) intuitionistic fuzzy regular open set (IFRQS short) if A = int(cl(A)).

The family of all IFOS (respectively IFSOS,d®S, IFROS) of an IFTS (X5) is denoted by IFO(X)
(respectively IFSO(X), I8O(X), IFRO(X)).

Definition 2.7:[8] An IFS A ={ X, pa, va ) in an IFTS (X;t) is said to be an
(i) intuitionistic fuzzy semi closed g8ESCS in short) if int(cl(A)J A,
(ii) intuitionistic fuzzw--closed sefIFaCS in short) if cl(int(cl(A))d A,
(iii) intuitionistic fuzzy regular closed set (IFFdn short) if A = cl(int(A)).

The family of all IFCS (respectively IFSCS,dES, IFRCS) of an IFTS (Xr) is denoted by IFC(X)
(respectively IFSC(X), I&8C(X), IFRC(X)).

Definition 2.8:[11] Let A be an IFS in an IFTS (X). Then scl(A) = n {K/Kis an IFSCS in X and
AOK}

Definition 2.9:[10] An IFS A=(X, ua, va y in an IFTS (Xy) is said to be amtuitionistic fuzzyy closed
set(IFYCS in short) if int(cl(A))n cl(int(A)) OA.
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Definition 2.10:[6] An IFS A of an IFTS (X7z) is an

(i) intuitionistic fuzzy pre closed set (IFPCS imost) if cl(int(A)) O A,
(i) intuitionistic fuzzy pre open set (IFPOS inost) if A O int(cl(A)).

Definition 2.11:[9] AnIFSAinan IFTS (Xg) isan

(i) intuitionistic fuzzy generalized closed set@€S in short) if cl(AXJ U whenever Al U and U is an
IFOS in X,

(ii) intuitionistic fuzzy regular generalized clakset (IFRGCS in short) if cl(A)) U whenever A1 U and
Uis an IFROS in X,

(iii) intuitionistic fuzzy generalized pre closedtgIFGPCS in short) if cl(AJ U whenever Al U and U
is an IFOS in X.

Definition 2.12:[12] An IFS A is said to be an intuitionistic fuzajpha generalized open setdlEOS in
short) in X if the complementAs an IKGCS in X.

The family of all IkGCSs (IlKGOSs) of an IFTS (X) is denoted by IEGC(X) (IFaGO(X)).

Definition 2.13:[9] An IFS A in an IFTS (X;) is said to be an intuitionistic fuzzy -generalized semi
closed set (ITGSCS in short) if scl(A U whenever AU and Uis an IEOS in (X,1). An IFS Ais
said to be an intuitionistic fuzzif - generalized semi open set@ESOS in short) in X if the complement
Afis an IFTGSCS in X. The family of all ITGSCSs of an IFTS (%) is denoted by ITGSC(X).

Result 2.14:[9] Every IFCS, IFGCS, IFRCS, ticS , IiGCS IFGSCS is an ¥GSCS but the converses
may not be true in general.

Definition 2.15:[6] Let f be a mapping from an IFTS (%) into an IFTS (Y,0). Then f is said to be
intuitionistic fuzzy continuous (IF continuous inast) if f (B) O IFO(X) for every B o.

Definition 2.16:[10] Let f be a mapping from an IFTS (¥,into an IFTS (Yo). Then fis said to be
(i)intuitionistic fuzzy semi continuous (IFS contious in short) if f(B) O IFSO(X) for every B o,
(i)intuitionistic fuzzy a-continuous (I continuous in short) if $(B) O IFaO(X) for every BO ©.

Definition 2.17:[10] Let f be a mapping from an IFTS (X, into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzyy-continuous (I§ continuous in short) if #(B) O IFyCS(X) for every IFCS Bin Y.

Definition 2.18:[11] Let f be a mapping from an IFTS (¥),into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzy generalized continuous (IFGnéiauous in short) if f(B) O IFGCS(X) for every
IFCSBinY.

Definition 2.19:[11] Let f be a mapping from an IFTS (¥),into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzya-generalized semi continuous @ES continuous in short) if{B) O IFaGSCS(X) for
every IFCSBinY.

Definition 2.20:[11] Let f be a mapping from an IFTS (¥),into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzy generalized semi continuou§@®S continuous in short) if §B) O IFGSCS(X) for
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every IFCSBinY.

Definition 2.21:[14] Let f be a mapping from an IFTS (X), into an IFTS (Y,0). Then f is said to be
intuitionistic fuzzy almost continuous (IFA contiows in short) if f(B) O IFC(X) for every IFRCS Bin Y.

Definition 2.22:[11] Let f be a mapping from an IFTS (X) into an IFTS (Y,0). Then f is said to be
intuitionistic fuzzy almosti-generalized continuous (I& continuous in short) if {(B) O IFaGC(X) for
every IFRCS B inY.

Definition 2.23:[2] Let f be a mapping from an IFTS (%) into an IFTS (Y,0). Then f is said to be
intuitionistic fuzzy contra continuous (IF contrantinuous in short) if #(B) O IFC(X) for every IFOS B
in.

Definition 2.24:[2] Let f be a mapping from an IFTS (%) into an IFTS (Y,0). Then f is said to be
intuitionistic fuzzy contrar-continuous (IF@ continuous in short) if #(B) O IFaC(X) for every IFOS B
in'.

Definition 2.25:[11] Let f be a mapping from an IFTS (¥),into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzy contra pre-continuous (IFCPntiauous in short) if f(B) O IFPCS(X) for every IFOS
BinY.

Definition 2.26:[2] Let f be a mapping from an IFTS (X) into an IFTS (Y,0). Then f is said to be an
intuitionistic fuzzy contra generalized continuolECG continuous in short) if #(B) O IFGCS(X) for
every IFOS B inY.

Definition 2.27:[12] An IFTS (X, 1) is said to be an intuitionistic fuzzyT,;, (IF=T; in short) space if
every IFEGSCS in X is an IFCS in X.

Definition 2.28: [12] An IFTS (X, 1) is said to be an intuitionistic fuzzygTy, (IF =gTy,  in short)
space if every ITGSCS in X is an IFGCS in X.

Result 2.29:[9] (i) Every IFTOS is an IFOS in (Xz),
(ii) Every IFECS is an IFCS in (Xg).

3. Intuitionistic fuzzy almost - generalized semi continuous mappings

In this section we introduce intuitionistic fuzzymeost - generalized semi continuous mapping and
studied some of its properties.

Definition 3.1: A mapping f: (X,7) - (Y,0) is called arintuitionistic fuzzy almost - generalized semi
continuous(IFATGS continuous in short) if #(B) is an IFTGSCS in (X,t) for every IFRCS B of
(Y, 0).
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Example3.2. Let X ={a,b}, Y={u,v}and G=(x, (0.2,0.2), (0.6,0.7) G,=(y, (0.4,0.2),

(0.6, 0.7)). Thent ={ 0., G 1.} ando ={0-, G, 1.} are IFTs on X and Y respectively. Define a majgpin
f: (X, 1) - (Y,0) by f(a) =uand f(b) = v. Then fis an IFASS continuous mapping.

Theorem 3.3: Every IF continuous mapping is an &S continuous mapping but not conversely.

Proof: Assume that f: (X1) — (Y, 0) is an IF continuous mapping. Let A be an IFRCY.iiThis implies
Ais an IFCS in Y. Since fis an IF continuous miagpf *(A) is an IFCS in X. Every IFCS is an#&SCS,
f 1(A) is an IFTGSCS in X. Hence f is an IFAGS continuous mapping.

Example3.4: Let X ={a, b}, Y={u,v}and G=(x, (0.3, 0.2), (0.6,0.7) G, =(y, (0.4,0.2), (0.5,
0.4)). Thent = {0, G L.} ando ={ 0., G, 1.} are IFTs on X and Y respectively. Define a majgpin
f: (X, 1) - (Y, 0) by f(a) = u and f(b) = v. Then f is an IF&S continuous mapping. But f is not an IF
continuous mapping sinceG=( y, (0.5, 0.4), (0.4, 0.2)is an IFCS in Y but (G, = ( x, (0.5, 0.4), (0.4,
0.2))is not an IFCS in X.

Theorem 3.5: Every IFS continuous mapping is an EGS continuous mapping but not conversely.

Proof: Assume that f: (X5) — (Y, 0) is an IFS continuous mapping. Let A be an IFRES.iThis implies
A is an IFCS in Y. Then by hypothesis™{A) is an IFSCS in X. Every IFSCS is an7®BSCS,
f 1(A) is an IFTGSCS in X. Hence f is an IFAGS continuous mapping.

Example3.6: LetX={a, b}, Y={u,v}and G=(x, (0.2,0.3), (0.5, 0.7, G,=(y, (0.6, 0.8), (0.1,
0.2)). Thent = { 0., G L.} ando ={ 0., G, 1.} are IFTs on X and Y respectively. Define a majgpin
f: (X 1) - (Y,0) by f(d) = u and f(b) = v. Then fis an IAGS continuous mapping. But f is not an IFS
continuous mapping sinceG=( y, (0.1, 0.2), (0.6, 0.8)is an IFCS in Y but (G, =( x, (0.1, 0.2), (0.6,
0.8)) is not an IFSCS in X.

Theorem 3.7: Every IFo continuous mapping is an IFAGS continuous mapping but not conversely.

Proof: Letf: (X, 1) - (Y,0) be an Il continuous mapping. Let Abe an IFRCS in Y. Thiplies A is an
IFCS in Y. Then by hypothesisf{A) is an IFACS in X. Every IRICS is an IRGSCS, f*(A) is an
IFTGSCS in X. Hence f is an IFAGS continuous mapping.

Example3.8: Let X={a,b}, Y={u,v}and G=(x, (0.4,0.2), (0.6,0.7) G, =(y, (0.8,0.8), (0.2,
0.2)) and G =(x, (0.4, 0.4), (0.5, 0.6) Thent ={0-, G; Gy,1}ando={ 0., G 1} are IFTson X and Y
respectively. Define a mapping f: (%) - (Y, o) by f(a) = u and f(b) = v. Then f is IFAGS continuous
mapping but not an bF continuous mapping The IFS;G=( y, (0.5, 0.6), (0.4, 0.4)is IFRCS in Y but
f 4G =( x, (0.5, 0.6), (0.4, 0.4)is not an I|BCS in X.

Theorem 3.9: Every IFaG continuous mapping is an If#GS continuous but not conversely.

Proof: Letf: (X, 1) - (Y,0) be an IEG continuous mapping. Let A be an IFRCS in Y. Tihiplies Ais an
IFCSin Y. Then by hypothesis’{A) is an IRIGCS in X. Since every FGCS is an IFGSCS and every
IFGSCS is an IFTGSCS, f}(A) is an IFTGSCS in X. Hence f is an IFAGS continuous mapping.

Example 3.10: Let X = {a, b}, Y = {u, v} and G =( x, (0.7, 0.6), (0.3, 0.4), G, =(y, (0.3, 0.4),
(0.4, 0.2)). Thent = {0-, G, 1.} ando = {0-, G, 1.} are IFTs on X and Y respectively. Define a majpgpin
f: (X, 1) - (Y, 0) by f(a) = u and f(b) = v. Then f is an &S continuous mapping but not arni®&
continuous mapping sincexG=( y, (0.4, 0.2), (0.3, 0.4)is an IFCS in Y but £(G,) =( x, (0.4, 0.2), (0.3,
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0.4)) isnotan lEBGCS in X.

Theorem 3.11: Every IFG continuous mapping is an &S continuous but not conversely.

Proof: Assume that : (X, t) - (Y,0) is an IFG continuous mapping. Let A be an IFRES.iThis implies
Aisan IFCSinY. Then by hypothesig(A) is an IFGCS in X. Since every IFGCS is amriGESCS, fis
an IFATGS continuous mapping.

Example3.12: Let X ={a,b}, Y={u,v}and G =(x, (0.7, 0.6), (0.3, 0.4) G, =(y, (0.3, 0.4), (0.4,
0.2)). Thent={0., G 1.} ando ={ 0., G, 1.} are IFTs on X and Y respectively. Define a majpin
X, 1) > (Y, 0) by f(a) = u and f(b) = v. Then f is an IF&S continuous mapping. But f is not an IFG
continuous mapping sinceG=( y, (0.4, 0.2), (0.3, 0.4)is an IFCS in Y but £(G,) =( x, (0.4, 0.2), (0.3,
0.4)) isnotanIFGCSin X.

Theorem 3.13: Every IFGS continuous mapping is an fHAS continuous but not conversely.

Proof: Assume thaf : (X, 1) — (Y,0) is an IFGS continuous mapping. Let A be an IFREY. This
implies A is an IFCS in Y. Then by hypothesid(f) is an IFGSCS in X. Since every IFGSCS is an
IFTGSCS, fis an IFAXGS continuous mapping.

Example 3.14: Let X ={a, b}, Y ={u, v} and G =( x, (0.5, 0.6), (0.2, 0.2) G, =(Yy, (0.6,0.6), (0.3,
0.2)). Thent = {0-, Gy, 1.} ando = { 0., G, 1.} are IFTs on X and Y respectively. Define a magpin(X,

1) - (Y, 0) by f(a) = u and f(b) = v. Then f is an I&S continuous mapping but f is not an IFGSC
continuous mapping sinceG=( y, (0.3, 0.2), (0.6, 0.6)is an IFCS in Y but (G, = ( x, (0.3, 0.2), (0.6,
0.6)) is not an IFGSCS in X.

Theorem 3.15: Every IFA continuous mapping is an IF#4&S continuous mapping but not conversely.

Proof: Let f: (X, 1) - (Y, 0) be an IFA continuous mapping. Let A be an IFRG@SYi Since f is IFA
continuous mapping, f(A) is an IFCS in X. Since every IFCS is armiGSCS, fY(A) is an IFTGSCS in
X. Hence fis an IFAAGS continuous mapping.

Example 3.16: Let X ={a, b}, Y ={u, v} and G =( x, (0.3, 0.2), (0.6, 0.7) G =(Yy, (0.4, 0.2), (0.5,
0.4)). Thent ={0-, Gy 1.} ando = { 0., G, 1.} are IFTs on X and Y respectively. Define a magpin(X,

1) - (Y, 0) by f(a) = u and f(b) = v. Then f is an If&S continuous mapping but f is not an IFA
continuous mapping since ,G=( y, (0.5, 0.4), (0.4, 0.2)is an IFRCS in Y but £(G,°) = ( x, (0.5, 0.4),
(0.4,0.2)is notanIFCSin X.

Theorem 3.17: Every IFA0G continuous mapping is an &S continuous but not conversely.

Proof: Let f: (X, 1) - (Y,0) be an IFAXG continuous mapping. Let A be an IFRCS in Y. Sihce IFA
continuous mapping, Then by hypothesi{A) is an IRIGCS in X. Since every FGCS is an IFGSCS
and every IFGSCS is an #%SCS, f*(A) is an IFTGSCS in X. Hence f is an IFAGS continuous
mapping.

Example3.18: Let X ={a,b}, Y={u,v}and G=(x, (0.8, 0.9), (0, 0.1),G, =(, (0, 0.3), (0.7, 0.7).
Thent={0-, G 1.}ando={ 0., G, 1.} are IFTs on X and Y respectively. Define a majgpin (X, 1) -
(Y, 0) by f(a) = u and f(b) = v. Then fis an IF&S continuous mapping. But f is not an tRa continuous
mapping since & =(y, (0.7, 0.7), (0, 0.3)is an IFRCS in Y but (G,%) =( x, (0.7, 0.7), (0, 0.3)) is
not an IRGCS in X.
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Theorem 3.19: Let f: (X, 1) - (Y, 0) be a mapping from an IFTS X into an IFTS Y. Thke following
conditions are equivalent if X is andF, space.

(i) fisan IFATGS continuous mapping.

(ii) If B is an IFROS in Y then#(B) is an IETGSOS in X.

(i) f }(B) O int(cl(f (B)) for every IFROS Biin Y.

Proof: (i) = (ii): obviously.

(i) = (iii): Let B be any IFROS in Y. Then by hypothesi&(B) is an IFTGSOS in X. Since X is an
IF=Ty, space, fi(B)is an IFOS in X (Result 2.29). Therefore *(B) = int(f *(B)) O int(cl(f *(B))).

(iii) = (i): Let B be an IFRCS in Y. Then its complemerit iB an IFROS in Y. By hypothesis
f %(B% O int(cl(f *(B%))). Hence f}(B) is an IETOS in X. Since every I£OS is an IRGSOS, f}(B°) is
an IFTGSOS in X. Thereforet(B) is an IFTGSCS in X. Hence fis an IFAGS continuous mapping.

Theorem 3.20: Let f: (X, 1) - (Y, 0) be a mapping. Then the following conditions ayaiealent if X is an
IF=T, space.

(i) fisan IFATGS continuous mapping.

(i) int(cl(f (A))) O f (A) for every IFRCS Ain Y.

Proof: (i) = (ii): Let A be an IFRCS in Y. By hypothesis;}fA) is an IFTGSCS in X. Since X is an
IF=Ty,, f (A) is an IFCS in X (Result 2.29 ).Therefore cltfA) = f (A). Now int(cl(f (A)))
O cl(FY(A) O f (A).

(i) = (i): Let Abe an IFRCS in Y. By hypothesis int(@(A))) O f*(A). This implies f(A) is an IFTCS in
X and hencef(A) is an IETGSCS in X. Therefore f is an IFAGS continuous mapping.

Theorem 3.21: Let f: (X, 1) — (Y, 0) be an IFTGS continuous mapping and g: 6%, - (Z,9) isIFA
continuous, then gof: (%) - (Z,0) isanIFATGS continuous mapping.

Proof: Let A be an IFRCS in Z. Then(A) is an IFCS in Y. Since f is an #GS continuous mapping,
f 1(g"(A)) is an IFTGSCS in X. Hence g f is an IFATGS continuous mapping.

4, Intuitionistic fuzzy almost contra - generalized semi continuous mappings

In this section we introduce intuitionistic fuzzjmest contra™- generalized semi continuous mappings
and studied some of its properties.

Definition 4.1: A mapping f: (X,t) - (Y,0) is called arintuitionistic fuzzy almost contrar- generalized
semi continuous mappings (IFAIGS continuous in short) if #(B) is an IFTGSCS in (X,t) for every
IFROS B of (Y,0).

Example 4.2: Let X ={a, b}, Y = {u, v} and G = x, (0.2, 0.2), (0.6, 0.7), G, =( vy, (0.4, 0.2),
(0.6, 0.7)). Thent = {0-, G, 1.} ando ={ 0, G; 1.} are IFTs on X and Y respectively. Define a majgypin
(X, 1) > (Y,0) by f(a) = u and f(b) = v. Then f is an IFAZGS continuous mapping.

Theorem 4.3: Every IF contra continuous mapping is an IFFAGS continuous mapping but not
conversely.

Proof: Let f: (X, 1) - (Y, 0) be an IF contra continuous mapping. Let A beRRRQOS in Y. This implies A
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is an IFOS in Y. Since fis IF contra continuousppmiag, f*(A) is an IFCS in X. Since every IFCS

is an IFTGSCS, f*(A) is an IFTGSCS in X. Hence f is an IFAEGS continuous mapping.

Example 4.4: Let X = {a, b}, Y = {u, v} and G =( x, (0.3, 0.2), (0.6, 0.7), G, =( vy, (0.4, 0.2),
(0.5,0.4)). Thent={0-, G, 1} ando ={ 0., G, 1.} are IFTs on X and Y respectively. Define a majgpin
X, 1) - (Y, 0) by f(a) = u and f(b) = v. Then fis an IFAGS continuous mapping but not an IF contra
continuous mapping since;& ( y, (0.4, 0.2), (0.5, 0.4)is an IFOS in Y but £(G,) =( x, (0.4, 0.2), (0.5,
0.4)) isnotanIFCSin X.

Theorem 4.5: Every IFCGS continuous mapping is an IFAGS continuous but not conversely.

Proof: Assume thaf : (X, 1) - (Y,0) is an IFCGS continuous mapping. Let A be an IFR@S. This
implies A is an IFOS in Y. Since f is IFCGS contus mapping, f'(A) is an IFGSCS in X. Since every
IFGSCS is an IFGSCS, f}(A) is an IFTGSCS in X. Hence f is an IFATGGS continuous mapping.

Example4.6: Let X ={a, b}, Y ={u, v} and G =( %, (0.5, 0.6), (0.2, 0.2) G, =(, (0.3, 0.2),(0.6, 0.6)
Thent = {0., G, 1} and 0 = { O, G, 1.} are IFTs on X and Y respectively. Define a magpin
f: (X, 1) - (Y, 0) by f(&) = u and f(b) = v. Then fis an IF4S continuous mapping but f is not an IFGSC
continuous mapping since,& ( y, (0.3, 0.2), (0.6, 0.6)is an IFOS in Y but (G,) =( x, (0.3, 0.2), (0.6,
0.6))is not an IFGSCS in X.

Theorem 4.7: Every IFQx continuous mapping is an IFATISS continuous mapping but not conversely.

Proof: Letf (X, 1) - (Y,0) be an IF@ continuous mapping. Let Abe an IFROS in Y. Thipiies A is
IFOS in Y. Then by hypothesis’{A) is an IFiCS in X. Since every CS is an IITGSCS, f'(A) is an
IFTGSCS in X. Hence fis an IFATGS continuous mapping.

Example4.8: Let X ={a,b}, Y={u,v}and G=(x, (0.4,0.2), (0.6,0.7) G, =(x, (0.8,0.8), (0.2,
0.2)) and G =(y, (0.4, 0.4), (0.5, 0.6). Thent ={0., G; G,,1} ando = {0-, G; 1.} are IFTs on X and Y
respectively. Define a mapping f: (X, - (Y, 0) by f(a) = u and f(b) = v. Then f is IFATIGS continuous
mapping but not an IFRECcontinuous mapping since;G ( y, (0.4, 0.4), (0.5, 0.6)is an IFROS in Y but
f (G;) =(x, (0.4, 0.4), (0.5, 0.6)not IFACS in X.

Remark 4.9: IFCP continuous mapping and IFAAGS continuous mapping are independent to each. other

Example4.10: Let X ={a,b}, Y={u,v}and G =(x, (0.4, 0.2), (0.6, 0.7) G, =(y, (0.4, 0.2), (0.6,
0.7)). Thent = {0, G 1.} and 0 = {0-, G, 1.} are IFTs on X and Y respectively. Define a mamgpin
f: (X, 1) - (Y, 0) by f(@) = u and f(b) = v. Then f is IFATGS continuous mapping but not an IFCP
continuous mapping since ,&(y, (0.4, 0.2), (0.6, 0.7%)is an IFOS in Y but £(G,) = ( x, (0.4, 0.2), (0.6,
0.7)) is not an IFPCS in X.

Example4.11: Let X ={a, b}, Y={u,v}and G =(x, (0.2, 0.4), (0.5, 0.4) G, =(x, (0.1, 0.3), (0.3,
0.4)), Gs =(x, (0.1, 0.3), (0.5, 0.4), G, =( %, (0.2, 0.4), (0.3, 0.4), G =(x, (0.4, 0.4), (0.3, 0.4),
Gs =(, (0, 0.3), (0.5, 0.4). Thent = { 0.,G1,G,,G3,G4,Gs,1-}Yand 0 = {0, G5 1.} are IFTs on X and Y
respectively. Define a mapping f: (¥, —» (Y, o) by f(a) = u and f(b) = v. Then fis IFP contingomapping
but not an IFAGTGS continuous mapping since 6( Y, (0, 0.3), (0.5, 0.4)is an IFROS in Y but #(Gy)
=(x, (0.0, 0.3), (0.5, 0.4)is not an IFTGSCS in X.
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Theorem 4.12: If a bijectionmapping f: X Y is IFACTGS continuous then the inverse image of
each IFRCS in Y is an ##GSOS in X.

Proof: Let A be an IFRCS in Y. This implies®s IFROS in Y. Since f is IFA@GS continuous, #A°) is
IFTGSCS in X. Since 1A% = (f(A))¢, f %(A) is an IFTGSOS in X.

Theorem 4.13: Let f: (X, 1) - (Y, o) be an IFAGrGS continuous mapping, then f is an IFACGS
continuous mapping if X is an t§T,,space.

Proof: Let A be an IFROS in Y. Then #(A) is an IFTGSCS in X, by hypothesis. Since X is an
IF=gTyspace, f1(A) is an IFGSCS in X. Hence fis an IFACGS conting mapping.

Theorem 4.14: Let f: (X, 1) - (Y, 0) be an IFTGS continuous mapping and g: 6%, - (Z,9) isIFA
continuous, then gof:(X) - (Z,6) isanIFACTGS continuous.

Proof: Let A be an IFROS in Z. Then@d) is an IFCS in Y, by hypothesis. Since f is &TGS
continuous mapping, f(g*(A)) is an IFTGSCS in X. Hence @ f is an IFACTGS
continuous mapping.

4. CONCLUSION

In this paper we have introduced intuitionistic #dyalmost z-generalized semi continuous mappings and
studied some of its basic properties. Also we hstuelied the relationship between intuitionistic Zyz
generalized semi continuous mappings and someeointiitionistic fuzzy continuous mappings already
exist.
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Figure-1

The relations between various types of intuitionifizzy continuity are given in the following diagn. In
this diagram ‘cts map.’ means continuous mapping.

QFets map.
IFS cts map. IFo cts map.

v
IF ctsmap———» IF@BS cts map.«——  d& cts map.

A

IFA cts map. IFAaG cts map.
IFGS cts map.

In this diagram by “A———— B” we mean A impdi® but not conversely.
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Figure-2
The relations between various types of intuitidnigtizzy contra continuity are given in the followi
diagram. In this diagram ‘cts map.’ means contirsumapping.

IBECts map.

IFC ctsmap. —» IFAGS cts map¢——— IFCGS cts map.

IFCP cts map.

implies But not conversely and

In this diagram by ‘A ——»» B” we mean A

“A <—|—> B” means A and B are independenéath other.
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