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Abstract  

In this paper we have introduced intuitionistic fuzzy almost - generalized semi continuous mappings and 
intuitionistic fuzzy almost contra - generalized semi continuous mappings and some of their basic 
properties are studied. 
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1. Introduction 

 

The concept of intuitionistic fuzzy sets was introduced by Atanassov[1] and later Coker[4] introduced 
intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper we 
introduce intuitionistic fuzzy almost - generalized semi continuous mappings, intuitionistic fuzzy almost 
contra - generalized semi continuous mappings and studied some of their basic properties. We provide 
some characterizations of intuitionistic fuzzy almost - generalized semi continuous mappings and 
intuitionistic fuzzy almost contra - generalized semi continuous mappings. 

 

2. Preliminaries 

Definition 2.1:[1]   An intuitionistic fuzzy set (IFS in short) A in X is an object having the form  

                                 A = {〈 x, µA(x), νA(x) 〉 / x∈ X} 

where the functions µA(x): X → [0, 1] and νA(x): X → [0, 1] denote the degree of membership (namely 
µA(x)) and the degree of non-membership (namely νA(x)) of each element x ∈X to the set A, respectively, 
and 0 ≤  µA(x) + νA(x) ≤ 1 for each x ∈ X. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. 

 

Definition 2.2:[1] Let A and B be IFSs of the form   

A = { 〈 x, µA(x), νA(x) 〉 / x∈X } and B = { 〈 x, µB(x), νB(x) 〉 / x ∈ X }. Then 

(a)  A ⊆ B if and only if µA(x) ≤ µB (x) and νA(x) ≥ νB(x) for all x ∈X 

(b)  A = B if and only if A ⊆  B and B ⊆  A 

(c)  Ac = { 〈 x, νA(x), µA(x) 〉 /  x ∈ X }        

(d)  A ∩ B = { 〈 x, µA(x) ∧ µB (x), νA(x) ∨ νB(x) 〉 / x ∈ X }  

(e)  A ∪ B = { 〈 x, µA(x) ∨ µB (x), νA(x) ∧ νB(x) 〉  / x ∈ X }  

For the sake of simplicity, we shall use the notation A = 〈 x, µA, νA〉 instead of  A = { 〈 x, µA(x), νA(x) 〉 / x 
∈ X }. Also for the sake of simplicity, we shall use the notation A = { 〈 x, (µA, µB ), (νA, νB) 〉 } instead of  
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A = 〈 x, (A/µA, B/µB), (A/νA, B/νB) 〉.The intuitionistic fuzzy sets 0~ = { 〈 x, 0, 1 〉 / x ∈X } and  1~ 
= {〈 x, 1, 0 〉 / x ∈ X}   are respectively the empty set and the whole set of  X. 

 

Definition 2.3:[3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying 
the following axioms. 

(i)  0~, 1~ ∈ τ  

(ii)  G1 ∩  G2 ∈ τ for any G1, G2 ∈ τ 

(iii)  ∪ Gi ∈ τ for any family { Gi /  i ∈ J } ⊆  τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ 
is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement Ac of an IFOS A in IFTS 
(X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X. 

 

Definition 2.4:[3]  Let ( X, τ) be an IFTS and  A = 〈 x, µA, νA 〉  be an IFS in X. Then the intuitionistic 
fuzzy interior and intuitionistic fuzzy closure are defined by  

int(A) =  ∪ { G / G is an IFOS in X and G ⊆ A }, 

cl(A)  =  ∩ { K / K is an IFCS in X and A ⊆ K }. 

 

Definition 2.5:[9] A subset of A of a space (X, τ) is called:  

(i) regular open if A = int (cl(A)).  

(ii)  open if A is the union of regular open sets. 

 

Definition 2.6:[8]  An IFS A = { 〈 x, µA, νA 〉 } in an IFTS (X, τ) is said to be an 

(i) intuitionistic fuzzy semi open set (IFSOS in short) if A ⊆ cl(int(A)), 

(ii) intuitionistic fuzzy α-open set (IFαOS in short) if A ⊆ int(cl(int(A))), 

(iii) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)). 

The family of all IFOS (respectively IFSOS, IFαOS, IFROS) of an IFTS (X, τ) is denoted by IFO(X) 
(respectively IFSO(X), IFαO(X), IFRO(X)). 

 

Definition 2.7:[8] An IFS A = 〈 x, µA, νA 〉 in an IFTS (X, τ) is said to be an 

(i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A, 

(ii) intuitionistic fuzzy α-closed set (IFαCS in short) if cl(int(cl(A)) ⊆ A, 

(iii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)). 

 

The family of all IFCS (respectively IFSCS, IFαCS, IFRCS) of an IFTS (X, τ) is denoted by IFC(X) 
(respectively IFSC(X), IFαC(X), IFRC(X)). 

 

Definition 2.8:[11] Let A be an IFS in an IFTS (X, τ). Then scl(A)  =  ∩ { K / K is an IFSCS in X and      
A ⊆ K }. 

 

Definition 2.9:[10]  An IFS A = 〈 x, µA, νA 〉 in an IFTS (X, τ) is said to be an intuitionistic fuzzy γ closed 
set (IFγCS in short) if int(cl(A)) ∩ cl(int(A))  ⊆ A. 
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Definition 2.10:[6]  An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) ⊆ A, 

(ii) intuitionistic fuzzy pre open set (IFPOS in short) if A ⊆ int(cl(A)). 

 

Definition 2.11:[9]  An IFS A in an IFTS (X, τ)  is an  

(i) intuitionistic fuzzy generalized closed set (IFGCS in short) if  cl(A) ⊆ U whenever  A ⊆ U and U is an 
IFOS in X, 

(ii) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if cl(A) ⊆ U whenever A ⊆ U and 
U is an IFROS in X, 

(iii) intuitionistic fuzzy generalized pre closed set (IFGPCS in short) if cl(A) ⊆ U whenever  A ⊆ U and U 
is an IFOS in X. 

 

Definition 2.12:[12] An IFS A is said to be an intuitionistic fuzzy alpha generalized open set (IFαGOS in 
short) in X if the complement Ac is an IFαGCS in X. 

The family of all IFαGCSs (IFαGOSs) of an IFTS (X, τ) is denoted by IFαGC(X) (IFαGO(X)). 

 

Definition 2.13:[9] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy  -generalized semi 
closed set (IF GSCS in short) if  scl(A) ⊆ U whenever A ⊆ U and U is an  IFOS in (X, τ). An IFS A is 
said to be an intuitionistic fuzzy  - generalized semi open set (IFGSOS in short) in X if the complement 
Ac is an IF GSCS in X. The family of all IFGSCSs of an IFTS (X, τ) is denoted by IFGSC(X). 

 

Result 2.14:[9] Every IFCS, IFGCS, IFRCS, IFαCS , IFαGCS IFGSCS is an IFGSCS but the converses 
may not be true in general. 

 

Definition 2.15:[6]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be 
intuitionistic fuzzy continuous (IF continuous in short) if f -1(B) ∈ IFO(X) for every B ∈ σ. 

 

Definition 2.16:[10]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be  

(i)intuitionistic fuzzy semi continuous (IFS continuous in short) if f -1(B) ∈ IFSO(X) for  every B ∈ σ, 

(ii)intuitionistic fuzzy α-continuous (IFα continuous in short)  if  f -1(B) ∈ IFαO(X)  for every B ∈ σ. 

 

Definition 2.17:[10]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy γ-continuous (IFγ continuous in short) if f -1(B) ∈ IFγCS(X) for every IFCS B in Y. 

 

Definition 2.18:[11]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy generalized continuous (IFG continuous in short) if  f -1(B) ∈ IFGCS(X) for every 
IFCS B in Y. 

 

Definition 2.19:[11]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy α-generalized semi continuous (IFαGS continuous in short) if f -1(B) ∈ IFαGSCS(X) for 
every IFCS B in Y. 

 

Definition 2.20:[11]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy generalized semi continuous (IFGS continuous in short) if f -1(B) ∈ IFGSCS(X) for 
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every IFCS B in Y. 

 

Definition 2.21:[14]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be 
intuitionistic fuzzy almost continuous (IFA continuous in short) if f -1(B) ∈ IFC(X) for every IFRCS Bin Y. 

 

Definition 2.22:[11]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be 
intuitionistic fuzzy almost α-generalized continuous (IFAαG continuous in short) if f -1(B) ∈ IFαGC(X) for 
every IFRCS B in Y. 

 

Definition 2.23:[2]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be 
intuitionistic fuzzy contra continuous (IF contra continuous in short) if f -1(B) ∈ IFC(X) for every IFOS B 
in Y. 

 

Definition 2.24:[2]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be 
intuitionistic fuzzy contra α-continuous (IFCα continuous in short) if f -1(B) ∈ IFαC(X) for  every IFOS B 
in Y. 

 

Definition 2.25:[11]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy contra pre-continuous (IFCP continuous in short) if f -1(B) ∈ IFPCS(X) for every IFOS 
B in Y. 

 

Definition 2.26:[2]  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 
intuitionistic fuzzy contra generalized continuous (IFCG continuous in short) if f -1(B) ∈ IFGCS(X) for 
every IFOS B in Y. 

 

Definition 2.27:[12] An IFTS (X, τ) is said to be an intuitionistic fuzzy T1/2 (IF T1/2 in short) space if 
every IF GSCS in X is an IFCS in X. 

 

Definition 2.28: [12]  An IFTS (X, τ) is said to be an intuitionistic fuzzy gT1/2 (IF gT1/2    in short) 
space if every IFGSCS in X is an IFGCS in X. 

 

Result 2.29:[9] (i) Every IF OS  is an IFOS in (X, τ), 

             (ii) Every IF CS is an IFCS in (X, τ). 

 

3. Intuitionistic fuzzy almost - generalized semi continuous mappings 

 

In this section we introduce intuitionistic fuzzy almost - generalized semi continuous mapping and 
studied some of its properties. 

 

 

Definition 3.1: A mapping f: (X, τ) → (Y,σ) is called an intuitionistic fuzzy almost  - generalized semi 
continuous (IFA GS continuous in short) if f -1(B) is an IF GSCS in (X, τ) for every  IFRCS  B of         
(Y, σ). 
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Example 3.2: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.2, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.4, 0.2),  
(0.6, 0.7) 〉. Then τ = { 0~, G1, 1~ } and σ = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping              
f : (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping. 

 

Theorem 3.3: Every IF continuous mapping is an IFAGS continuous mapping but not conversely. 

Proof: Assume that f : (X, τ) → (Y, σ) is an IF continuous mapping. Let A be an IFRCS in Y. This implies 
A is an IFCS in Y. Since f is an IF continuous mapping, f -1(A) is an IFCS in X. Every IFCS is an IFGSCS, 
f -1(A) is an IF GSCS in X. Hence f is an IFAGS continuous mapping. 

 

Example 3.4: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.3, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.4, 0.2),  (0.5, 
0.4) 〉. Then τ = { 0~, G1, 1~ } and σ = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping           
f : (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping. But f is not an IF 
continuous mapping since G2

c = 〈 y, (0.5, 0.4), (0.4, 0.2) 〉 is an IFCS in Y but f -1(G2
c) = 〈 x, (0.5, 0.4), (0.4,    

0.2) 〉 is not an IFCS in X. 

 

Theorem 3.5: Every IFS continuous mapping is an IFAGS continuous mapping but not conversely. 

Proof: Assume that f : (X, τ) → (Y, σ) is an IFS continuous mapping. Let A be an IFRCS in Y. This implies 
A is an IFCS in Y. Then by hypothesis f -1(A) is an IFSCS in X. Every IFSCS is an IFGSCS,              
f -1(A) is an IF GSCS in X. Hence f is an IFAGS continuous mapping. 

 

Example 3.6: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.2, 0.3), (0.5, 0.7) 〉, G2 = 〈 y, (0.6, 0.8),  (0.1, 
0.2) 〉. Then τ = { 0~, G1, 1~ } and σ = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping             
f : (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping. But f is not an IFS 
continuous mapping since G2

c = 〈 y, (0.1, 0.2), (0.6, 0.8) 〉 is an IFCS in Y but f -1(G2
c) = 〈 x, (0.1, 0.2), (0.6, 

0.8) 〉 is not an IFSCS in X. 

 

Theorem 3.7: Every IFα continuous mapping is an IFAGS continuous mapping but not conversely. 

Proof:  Let f: (X, τ) → (Y,σ) be an IFα continuous mapping. Let A be an IFRCS in Y. This implies A is an 
IFCS in Y.  Then by hypothesis f -1(A) is an IFαCS in X. Every IFαCS is an IF GSCS, f -1(A) is an 
IF GSCS in X. Hence f is an IFAGS continuous mapping. 

 

Example 3.8: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.4, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.8, 0.8),  (0.2, 
0.2) 〉 and G3 = 〈x, (0.4, 0.4), (0.5, 0.6) 〉. Then τ = {0~, G1, G2,1~} and σ = { 0~, G3, 1~} are IFTs on X and Y 
respectively. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is IFAGS continuous 
mapping but not an IFα continuous mapping The IFS G3

c = 〈 y, (0.5, 0.6), (0.4, 0.4) 〉 is IFRCS in Y but          
f -1(G3

c) = 〈 x, (0.5, 0.6), (0.4, 0.4) 〉 is not an IFαCS in X. 

 

Theorem 3.9: Every IFαG continuous mapping is an IFAGS continuous but not conversely. 

Proof: Let f: (X, τ) → (Y,σ) be an IFαG continuous mapping. Let A be an IFRCS in Y. This implies A is an 
IFCS in Y.  Then by hypothesis f -1(A) is an IFαGCS in X. Since every IFαGCS is an IFGSCS and every 
IFGSCS is an IFGSCS, f -1(A) is an IF GSCS in X. Hence f is an IFAGS continuous mapping. 

 

Example 3.10: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.7, 0.6), (0.3, 0.4) 〉,  G2 = 〈 y, (0.3, 0.4),                
(0.4, 0.2) 〉. Then τ = {0~, G1, 1~} and σ = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                      
f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping but not an IFαG 
continuous mapping since G2

c = 〈 y, (0.4, 0.2), (0.3, 0.4) 〉 is an IFCS in Y but f -1(G2
c) = 〈 x, (0.4, 0.2), (0.3, 
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0.4) 〉  is not an IFαGCS in X. 

 

Theorem 3.11: Every IFG continuous mapping is an IFAGS continuous but not conversely. 

Proof: Assume that f : (X, τ) → (Y,σ) is an IFG continuous mapping. Let A be an IFRCS in Y. This implies 
A is an IFCS in Y.  Then by hypothesis f -1(A) is an IFGCS in X. Since every IFGCS is an IFGSCS, f is 
an IFA GS continuous mapping. 

 

Example 3.12: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.7, 0.6), (0.3, 0.4) 〉, G2 = 〈 y, (0.3, 0.4), (0.4, 
0.2) 〉. Then τ = { 0~, G1, 1~ } and σ = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping f : 
(X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping. But f is not an IFG 
continuous mapping since G2

c = 〈 y, (0.4, 0.2), (0.3, 0.4) 〉 is an IFCS in Y but f -1(G2
c) = 〈 x, (0.4, 0.2), (0.3, 

0.4) 〉  is not an IFGCS in X. 

 

Theorem 3.13: Every IFGS continuous mapping is an IFAGS continuous but not conversely. 

Proof: Assume that f : (X, τ) → (Y,σ) is an IFGS continuous mapping. Let A be an IFRCS in Y. This 
implies A is an IFCS in Y.  Then by hypothesis f -1(A) is an IFGSCS in X. Since every IFGSCS is an 
IF GSCS, f is an IFA GS continuous mapping. 

 

Example 3.14: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.5, 0.6), (0.2, 0.2) 〉,  G2 = 〈 y, (0.6, 0.6),  (0.3, 
0.2) 〉. Then τ = {0~, G1, 1~} and σ = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: (X, 
τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping but f is not an IFGSC 
continuous mapping since G2

c = 〈 y, (0.3, 0.2), (0.6, 0.6) 〉 is an IFCS in Y but f -1(G2
c) = 〈 x, (0.3, 0.2), (0.6, 

0.6) 〉 is not an IFGSCS in X. 

 

Theorem 3.15: Every IFA continuous mapping is an IFAGS continuous mapping but not conversely. 

Proof: Let f: (X, τ) → (Y, σ) be an IFA continuous mapping. Let A be an IFRCS in Y. Since f is IFA 
continuous mapping, f -1(A) is an IFCS in X. Since every IFCS is an IFGSCS,  f -1(A) is an IF GSCS in 
X. Hence f is an IFA GS continuous mapping. 

 

Example 3.16: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.3, 0.2), (0.6, 0.7) 〉,   G2 = 〈 y, (0.4, 0.2), (0.5, 
0.4) 〉. Then τ = {0~, G1, 1~} and σ = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: (X, 
τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping but f is not an IFA 
continuous mapping since  G2

c = 〈 y, (0.5, 0.4), (0.4, 0.2) 〉 is an IFRCS in Y but f -1(G2
c) = 〈 x, (0.5, 0.4), 

(0.4, 0.2) 〉 is  not an IFCS in X. 

 

Theorem 3.17: Every IFAαG continuous mapping is an IFAGS continuous but not conversely. 

Proof: Let f: (X, τ) → (Y,σ) be an IFAαG continuous mapping. Let A be an IFRCS in Y. Since f is IFA 
continuous mapping,  Then by hypothesis f -1(A) is an IFαGCS in X. Since every IFαGCS is an IFGSCS 
and every IFGSCS is an IFGSCS, f -1(A) is an IF GSCS in X. Hence f is an IFAGS continuous 
mapping. 

 

Example 3.18: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.8, 0.9), (0, 0.1) 〉,G2 = 〈 y, (0, 0.3), (0.7, 0.7) 〉. 
Then τ = { 0~, G1, 1~ } and σ = { 0~, G2, 1~ } are IFTs on X and Y respectively. Define a mapping f : (X, τ) → 
(Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping. But f is not an IFAαG continuous 
mapping since G2

c = 〈 y, (0.7, 0.7), (0, 0.3) 〉 is an IFRCS in Y but f -1(G2
c) = 〈 x, (0.7, 0.7), (0, 0.3)  〉  is 

not an IFαGCS in X. 
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Theorem 3.19: Let f: (X, τ) → (Y, σ) be a mapping from an IFTS X into an IFTS Y. Then the following 
conditions are equivalent if X is an IFT1/2 space. 

(i)  f is an IFA GS continuous mapping. 

(ii) If B is an IFROS in Y then f -1(B) is an IF GSOS in X. 

(iii) f -1(B) ⊆ int(cl(f -1(B)) for every IFROS B in Y.   

Proof:  (i) ⇒⇒⇒⇒ (ii):  obviously. 

(ii) ⇒⇒⇒⇒ (iii):  Let B be any IFROS in Y. Then by hypothesis f -1(B) is an IF GSOS in X. Since X is an 
IF T1/2  space, f -1(B) is an IFOS in X (Result 2.29). Therefore  f -1(B) = int(f -1(B)) ⊆ int(cl(f -1(B))). 

(iii) ⇒⇒⇒⇒ (i): Let B be an IFRCS in Y. Then its complement Bc is an IFROS in Y. By hypothesis                
f -1(Bc) ⊆ int(cl(f -1(Bc))). Hence f -1(Bc) is an IF OS in X. Since every IFOS is an IF GSOS, f -1(Bc) is 
an IF GSOS in X. Therefore f -1(B) is an IF GSCS in X. Hence f is an IFAGS continuous mapping. 

 

Theorem 3.20: Let f: (X, τ) → (Y, σ) be a mapping. Then the following conditions are equivalent if X is an 
IF T1/2 space. 

(i)  f is an IFA GS continuous mapping. 

(ii) int(cl(f -1(A))) ⊆ f -1(A) for every IFRCS A in Y. 

Proof:  (i) ⇒⇒⇒⇒ (ii): Let A be an IFRCS in Y. By hypothesis, f -1(A) is an IF GSCS in X. Since X is an 
IF T1/2, f -1(A) is an IFCS in X (Result 2.29 ).Therefore  cl(f -1(A) =  f -1(A). Now int(cl(f -1(A)))                  
⊆ cl(f-1(A)) ⊆ f -1(A). 

(ii) ⇒⇒⇒⇒ (i): Let A be an IFRCS in Y. By hypothesis int(cl(f-1(A))) ⊆ f-1(A). This implies f-1(A) is an IF CS in 
X and hence f-1(A) is an IF GSCS in X. Therefore f is an IFAGS continuous mapping. 

 

Theorem 3.21: Let f : (X, τ) → (Y, σ) be an IF GS continuous mapping and  g : (Y, σ) → (Z, δ)  is IFA 
continuous, then  g o f : (X, τ) →  (Z, δ)  is an IFA GS continuous mapping. 

Proof: Let A be an IFRCS in Z. Then g-1(A) is an IFCS in Y. Since f is an IFGS continuous mapping,       
f -1(g-1(A)) is an IF GSCS in X. Hence g ο f is an IFA GS continuous mapping. 

 

4. Intuitionistic fuzzy almost contra - generalized semi continuous mappings 

 

In this section we introduce intuitionistic fuzzy almost contra - generalized semi continuous mappings 
and studied some of its properties. 

 

Definition 4.1: A mapping f: (X, τ) → (Y,σ) is called an intuitionistic fuzzy almost contra - generalized 
semi continuous mappings (IFACGS continuous in short) if f -1(B) is an IF GSCS in (X, τ) for every  
IFROS B of (Y, σ). 

 

Example 4.2: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.2, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.4, 0.2),                
(0.6, 0.7) 〉. Then τ = {0~, G1, 1~} and σ = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: 
(X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFACGS continuous mapping. 

 

Theorem 4.3: Every IF contra continuous mapping is an IFACGS continuous mapping but not 
conversely. 

Proof: Let f: (X, τ) → (Y, σ) be an IF contra continuous mapping. Let A be an IFROS in Y. This implies A 
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is an IFOS in Y. Since f is IF contra continuous mapping, f -1(A) is an IFCS in X. Since every IFCS 
is an IF GSCS, f -1(A) is an IF GSCS in X. Hence f is an IFACGS continuous mapping. 

 

Example 4.4: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.3, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.4, 0.2),                
(0.5, 0.4) 〉. Then τ = {0~, G1, 1~} and σ = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping f: 
(X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then  f is an IFACGS continuous mapping but not an IF contra 
continuous mapping since G2 = 〈 y, (0.4, 0.2), (0.5, 0.4) 〉 is an IFOS in Y but f -1(G2) = 〈 x, (0.4, 0.2), (0.5, 
0.4) 〉  is not an IFCS in X. 

 

Theorem 4.5: Every IFCGS continuous mapping is an IFACGS continuous but not conversely. 

Proof: Assume that f : (X, τ) → (Y,σ) is an IFCGS continuous mapping. Let A be an IFROS in Y. This 
implies A is an IFOS in Y. Since f is IFCGS continuous mapping, f -1(A) is an IFGSCS in X. Since every 
IFGSCS is an IFGSCS, f -1(A) is an IF GSCS in X. Hence f is an IFACGS continuous mapping. 

 

Example 4.6: Let X = {a, b}, Y = {u, v} and G1 = 〈 x, (0.5, 0.6), (0.2, 0.2) 〉, G2 = 〈 y, (0.3, 0.2),(0.6, 0.6) 〉. 
Then τ = {0~, G1, 1~} and σ = { 0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping                   
f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFAGS continuous mapping but f is not an IFGSC 
continuous mapping since G2 = 〈 y, (0.3, 0.2), (0.6, 0.6) 〉 is an IFOS in Y but f -1(G2) = 〈 x, (0.3, 0.2), (0.6, 
0.6) 〉 is  not an IFGSCS in X. 

 

Theorem 4.7: Every IFCα continuous mapping is an IFACGS continuous mapping but not conversely. 

Proof:  Let f: (X, τ) → (Y,σ) be an IFCα continuous mapping. Let A be an IFROS in Y. This implies A is 
IFOS in Y. Then by hypothesis f -1(A) is an IFαCS in X. Since every IFαCS is an IF GSCS, f -1(A) is an 
IF GSCS in X. Hence f is an IFACGS continuous mapping. 

 

Example 4.8: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.4, 0.2), (0.6, 0.7) 〉, G2 = 〈 x, (0.8, 0.8),  (0.2, 
0.2) 〉 and G3 = 〈y, (0.4, 0.4), (0.5, 0.6) 〉. Then τ = {0~, G1, G2,1~} and σ = {0~, G3, 1~} are IFTs on X and Y 
respectively. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is IFACGS continuous 
mapping but not an IFCα continuous mapping since G3 = 〈 y, (0.4, 0.4), (0.5, 0.6) 〉 is an IFROS in Y but   
f -1(G3) = 〈 x, (0.4, 0.4), (0.5, 0.6) 〉 not IFαCS in X. 

 

Remark 4.9: IFCP continuous mapping and IFACGS continuous mapping are independent to each other. 

 

Example 4.10: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.4, 0.2), (0.6, 0.7) 〉, G2 = 〈 y, (0.4, 0.2), (0.6, 
0.7) 〉. Then τ = {0~, G1, 1~} and σ = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping               
f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is IFACGS continuous mapping but not an IFCP 
continuous mapping since  G2 = 〈 y, (0.4, 0.2), (0.6, 0.7) 〉 is an IFOS in Y but f -1(G2) = 〈 x, (0.4, 0.2), (0.6, 
0.7) 〉 is not an IFPCS in X. 

 

Example 4.11: Let X = { a, b }, Y = { u, v } and G1 = 〈 x, (0.2, 0.4), (0.5, 0.4) 〉, G2 = 〈 x, (0.1, 0.3), (0.3, 
0.4) 〉, G3 = 〈 x, (0.1, 0.3), (0.5, 0.4) 〉, G4 = 〈 x, (0.2, 0.4),  (0.3, 0.4) 〉, G5 = 〈 x, (0.4, 0.4), (0.3, 0.4) 〉,              
G6 = 〈 y, (0, 0.3), (0.5, 0.4) 〉. Then τ = { 0~,G1,G2,G3,G4,G5,1~ }and σ = {0~, G6, 1~} are IFTs on X and Y 
respectively. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Then f is IFP continuous mapping 
but not an IFAC GS continuous mapping since G6 = 〈 y, (0, 0.3), (0.5, 0.4) 〉 is an IFROS in Y but f -1(G6) 
= 〈 x, (0.0, 0.3), (0.5, 0.4) 〉 is not an IF GSCS in X. 
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Theorem 4.12: If a bijection mapping f: X → Y is IFAC GS continuous then the inverse image of 
each IFRCS in Y is an IFGSOS in X. 

Proof: Let A be an IFRCS in Y. This implies Ac is IFROS in Y. Since f is IFACGS continuous, f -1(Ac) is 
IF GSCS in X. Since f -1(Ac) = (f -1(A))c, f -1(A) is an IF GSOS in X. 

 

Theorem 4.13: Let f: (X, τ) → (Y, σ) be an IFAC GS continuous mapping, then f is an IFACGS 
continuous mapping if X is an IFgT1/2space. 

Proof: Let A be an IFROS in Y. Then f -1(A) is an IF GSCS in X, by hypothesis. Since X is an 
IF gT1/2space, f -1(A) is an IFGSCS in X. Hence f is an IFACGS continuous mapping. 

 

Theorem 4.14: Let f : (X, τ) → (Y, σ) be an IF GS continuous mapping and  g : (Y, σ) → (Z, δ)  is IFA 
continuous, then  g o f : (X, τ) →  (Z, δ)  is an IFAC GS continuous. 

Proof: Let A be an IFROS in Z. Then g-1(A) is an IFCS in Y, by hypothesis. Since f is an IF GS  
continuous  mapping, f -1(g-1(A))   is   an IF GSCS   in  X.   Hence g ο f  is  an IFAC GS 
continuous mapping. 

 

4. CONCLUSION 

 

In this paper we have introduced intuitionistic fuzzy almost -generalized semi continuous mappings and 

studied some of its basic properties. Also we have studied the relationship between intuitionistic fuzzy 

generalized semi continuous mappings and some of the intuitionistic fuzzy continuous mappings already 

exist.  
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                              Figure -1 

The relations between various types of intuitionistic fuzzy continuity are given in the following diagram. In 
this diagram ‘cts map.’ means continuous mapping. 

 

                              

                                                 IFG cts map.                   

                                   IFS cts map.            IFα cts map. 

                                                                                                            

 

                                                            

                   IF ctsmap.                IFAGS cts map.               IFαG cts map.                       

     

 

                                                                                                                                    

                            IFA cts map.           IFAαG cts map. 

                                     IFGS cts map.   

                                                                  

In this diagram by “A           B” we mean A implies B but not conversely.                      
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                             Figure -2 

The relations between various types of intuitionistic fuzzy contra continuity are given in the following 
diagram. In this diagram ‘cts map.’ means continuous mapping. 

                                            

                                             IFCα cts map. 

                                                                                                            

 

 

                                                                                                                        
.           

        IFC ctsmap.                    IFACGS cts map.                  IFCGS cts map. 

     

  

                        

   

                                   IFCP cts map.                                                                        

In this diagram by “A       B” we mean A implies B but not conversely and                                  

“A              B” means A and B are independent of each other. 
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