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ABSTRACT 

Since the widely using of the weighted distribution in many fields of real life such various areas including 

medicine, ecology, reliability, and so on , then we try to shed light and record our contribution in this field thru 

the research. In this paper, a new class of size-biased Generalized Rayleigh distribution is defined. A size-biased 

Generalized Rayleigh distribution, a particular case of weighted Generalized Rayleigh distribution, taking the 

weights as the variate values has been defined. The power and logarithmic moments of this family is defined. 

Some important theorems of SBGRD has been derived and studied. A new moment estimation method of 

parameters of SBGRD using its characterization is presented. In brief, this paper consists of presentation of 

general review of important properties of the new distribution. Bayes estimators of Size biased Generalized 

Rayleigh distribution (SBGRD), that stems from an extension of Jeffery’s prior (Al-Kutubi [13]) with a new loss 

function (Al-Bayyati [12]). We are proposing four different types of estimator. Under squared error loss 

function, there are two estimators formed by using Jaffrey prior and an extension of Jaffrey’s prior. The two 

remaining estimators are derived using the same Jeffrey’s prior and extension of Jeffrey’s prior under a new loss 

function. These methods are compared by using mean square error through simulation study with varying sample 

sizes.  

Keywords: Generalized Rayleigh distribution, Size biased generalized Rayleigh distribution, Logarithmic 

moment, squared error loss function, Al-Bayatti’s loss function. 

 

1. Introduction 

The generalized Rayleigh distribution (GRD) is considered to be a very useful life distribution. Rayleigh 

distribution is an important distribution in statistics and operations research. It is applied in several areas such as 

health, agriculture, biology, and other sciences. The probability distribution of Generalized Rayleigh distribution 

is given as: 
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(1.1) 

Surles and Padgett [4] introduced two-parameter Burr Type X distribution and correctly named as the 

generalized Rayleigh distribution. The two-parameter generalized Rayleigh distribution is a particular member of 

the generalized Weibull distribution, originally proposed by Mudholkar and Srivastava [7]. Several aspects of 

the one-parameter (scale parameter equals one) generalized Rayleigh distribution were studied by Sartawi and 

Abu-Salih [5], and Raqab [6]. proposed another generalization of Rayleigh distribution. Ahmed et al (2013) 

estimates the parameter of Rayleigh distribution. It presents a flexible family in the varieties of shapes and is 

suitable for modeling data with different types of hazard rate function: increasing, decreasing and upside down 

bathtub shape (UBT). The Generalized Rayleigh distribution includes several other distributions as special or 

limiting cases, such as gamma, Weibull and exponential distributions. Its mean and variance are given by:
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Prentice [8] resolved the convergence problem using a nonlinear transformation of GG model. However, 

despite its long history and growing use in various applications, the GG family and its properties has-been 

remarkably presented in different papers. Ahmed. et al [9] introduced a new moment  method of estimation of 

parameters of the Size biased generalized gamma distribution using its characterization. Their characterization is 

used to derive the expectation and the variance of 
2

nV  and then the new estimators for the two parameters of 

size-biased Generalized Rayleigh distribution are proposed. 

2. SIZE-BIASED GENERALIZED RAYLEIGH DISTRIBUTION. 

Size biased distributions are a special case of the more general form known as weighted distributions..First 

introduced by Fisher [1] to model ascertainment bias, these were later formalized in a unifying theory by Rao 

[2]. These distributions arise in practice when observations from a sample are recorded with unequal probability 

and provide unifying approach for the problems when the observations fall in the non –experimental, non –

replicated and non –random categories. A size biased generalized Rayleigh distribution (SBGRD) is obtained by 

applying the weights
cx , where c =1 to the weighted Generalized Rayleigh distribution. A size biased 

generalized Rayleigh distribution (SBGRD) is obtained by applying the weights
cx , where c =1 to the weighted 

Generalized Rayleigh distribution. 

We have from relation (1.1) and (1.2) 
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This gives the size-biased generalized Rayleigh distribution (SBGRD) as: 
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The CDF of the Size biased generalized Rayleigh distribution is given by: 
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Special cases: 

The distribution like the Size-biased exponential distributions as a special case when k = 1, then the probability 

density function is given as: 

otherwise
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                                                              The distribution like the Size-biased Rayleigh distribution as a special case, when k=2 then the probability 

density function is given as:
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                        Hazard functions 

The hazard function for the Size biased generalized Rayleigh distribution is given as: 
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(2.3) 

The reverse hazard function for the Size biased generalized Rayleigh distribution is given as: 
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Theorem1: Let  kxf ,;  be a twice differentiable probability density function of a continuous random 

variable X. Define  
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respect to x. Furthermore, suppose that the first derivative of  kxn ,;  exist. 

a) If   ,0,;  kxn  for all x > 0, then the hazard function is monotonically decreasing. 

b) If   ,0,;  kxn  for all x > 0, then the hazard function is monotonically increasing.  
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, then the hazard function is upside down 

bathtub shape. 
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Proof: Using equation (2.1), the derivative of the  kxf ,; is given by: 
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(2.5) 

Collory: 

 a) If 1k , then   ,0,;  kxn  for all x > 0, then the hazard function is monotonically increasing. 

b) If 1k , then   ,0,;  kxn   then the hazard function is monotonically decreasing. 

c) If 10  k ,  then the hazard function is upside down bathtub shape. 

Structural properties: The structural properties of SBGRD can be obtained by as: 
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        The moment generating function of Size-biased generalized Rayleigh distribution is obtained as: 
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The Characteristic function of Size-biased generalized Rayleigh distribution is obtained as: 
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The Shannon’s entropy of Size-biased generalized Rayleigh distribution is given as:
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3. NEW MOMENT ESTIMATOR OF THE SIZE-BIASED GENERALIZED RAYLEIGH 

DISTRIBUTION 

 Note that Hwang .T and Huang. P [3]  have obtained more general characterizations with the independence 

of sample coefficient of variation nV  with sample mean 
nX  as one of its special cases when random samples 

are drawn from the generalized gamma distribution. Their characterization is used to derive the expectation and 

the variance of 
2

nV  and then the new estimators for the three parameters of size-biased generalized Rayleigh 

distribution are proposed. For deriving new moment estimators of three parameters of the size-biased generalized 

Rayleigh distribution, we need the following theorem obtained by using the similar approach of Hwang .T and 

Huang .P (Theorems of 2006). 
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Theorem 3.2: Let 3n and let nXXXX ...,, 321  be a n positive identical independently distributed 

random samples drawn from a population having a size-biased generalized Rayleigh distribution  
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Proof: Here,   k
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(3.1) 

Where 
nX  and 

2

nS  are respectively their sample mean and sample variance. 

Theorem 3.3: Let 3n and let nXXXX ...,, 321  be a n positive identical independently distributed 

random samples drawn from a population having a size-biased generalized Rayleigh distribution 
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Where nX  and 
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nS  are respectively their sample mean and sample variance. 

 

Proof: By theorem 3.1, we have 
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Applying theorem 3.2 to the above identity yields that 
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Thus.3.3 is established. 

 

Theorem 3.4: Let 3n and let nXXXX ...,, 321  be a n positive identical independently distributed random 

samples drawn from a population having a size-biased generalized Rayleigh distribution 
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Furthermore, if SBGR distribution, we have 
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And it can be show that 
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Comparing above two equations, we have  
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4. Estimation of parameters 

In this section, we discuss the various estimation methods for size biased Generalized Rayleigh distribution and 

verifying their efficiencies. 

4.1 Methods of Moments 

Replacing sample moments with population moments, we get   
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From above two equations, we get  
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Solving above equation for k , we get the estimate for k  and substituting that value in equation (4.1), we get the 

estimate of . 

4.2 Method of Maximum Likelihood estimator. 

Maximum likelihood estimation has been the most widely used method for estimating the parameters of the Size 

biased generalized Rayleigh distribution. Let nxxxx .......,, 321 be a random sample from the size biased 

generalized Rayleigh distribution, and then the corresponding likelihood function is given as 
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The log-likelihood function is given as: 
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Now, we obtain the normal equations, we get 
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After solving equation (4.6), we have 
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Substitute the value of ̂ in equation (4.7), we get the estimate of k . 

4.3 BAYESIAN ANALYSIS OF SIZE-BIASED GENERALIZED RAYLEGH DISTRIBUTION  

Bayesian analysis is an important approach to statistics, which formally seeks use of prior information and Bayes 

Theorem provides the formal basis for using this information. In this approach, parameters are treated as random 

variables and data is treated fixed. Ghafoor et al [10],Ahmed et al (2007) and Rahul et al [11] have discussed the 

application of Bayesian methods. An important requisite in Bayesian estimation is the appropriate choice of 

prior(s) for the parameters. However, Bayesian analysts have pointed out that there is no clear cut way from 

which one can conclude that one prior is better than the other. Very often, priors are chosen according to ones 

subjective knowledge and beliefs. However, if one has adequate information about the parameter(s) one should 

use informative prior(s), otherwise it is preferable to use non informative prior(s).  

4.3.1 Parameter estimation under squared error loss function. 

In this section, two different prior distributions are used for estimating the parameter of the size biased 

generalized Rayleigh distribution namely; Jeffery’s prior and extension of Jeffrey’s prior information. 

 Bayes estimation of parameter of size biased generalized Rayleigh distribution under Jeffrey’s prior. 

Consider there are n recorded values  nxxx ,...1  from (2.1). We consider the extended Jeffrey’s prior as:
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    2ˆ,ˆ   cL
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 Bayes estimation of parameter of size biased generalized Rayleigh distribution using extension of 

Jeffrey’s prior. 

We consider the extended Jeffrey’s prior are given as:       RcIg
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    2ˆ,ˆ   cL
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(4.14) 

Remark 1:  Replacing c1= 1/2 in (4.14), we get the Bayes estimator under squared error loss function with 

Jeffrey’s prior which is same as (4.11). By Replacing c1= 3/2 in (4.14), we get the Hartigan’s prior. By 

Replacing c1= 0 in (4.14), thus we get uniform prior.

 

4.3.2 Parameter estimation under a new loss function. 

This section uses a new loss function introduced by Al-Bayyati [12]. Employing this loss function, we obtain 

Bayes estimators using Jeffrey’s and extension of Jeffrey’s prior information. 

Al-Bayyati introduced a new loss function of the form: 
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Here, this loss function is used to obtain the estimator of the parameter of the size biased generalized Rayleigh 

distribution. 

 Bayes estimation of parameter of size biased generalized Rayleigh distribution under Jeffrey’s prior. 

By using the loss function in the form given in (4.15), we obtained the following risk function: 
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(4.16)

 
 

Remark 2:  Replacing c2 = 0 in (4.16), we get the Bayes estimator under squared error loss function with 

Jeffrey’s prior which is same as (4.11). By Replacing c2 =1 in (4.16), we get the Hartigan’s prior. By Replacing 

c2 =-1/2 in (4.16), thus we get uniform prior. 

 

Bayes estimation of parameter of size biased generalized Rayleigh distribution using extension of Jeffrey’s 

prior. 

By using the loss function in the form given in (4.15), we obtained the following risk function: 
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Remark 3:  Replacing c1= 1/2   and c2 = 0 in (4.17), we get the Bayes estimator under squared error loss 

function with Jeffrey’s prior which is same as (4.11). By Replacing c1= 3/2 and c2 =0 in (4.17), we get the 

Hartigan’s  prior.By Replacing c1= 0   and c2 =0 in (4.17), thus we get uniform prior. 

 

5 Simulation Study of Size biased Generalized Rayleigh distribution 

 

In our simulation study, we chose a sample size of n=25, 50 and 75 to represent small, medium and large data 

set. The scale parameter is estimated for Size biased Generalized Rayleigh distribution by the methods of 

Maximum Likelihood and Bayesian using Jeffrey’s & extension of Jeffrey’s prior methods. For the scale 

parameter we have considered = 0.5 and 1.0. The values of Jeffrey’s extension were c1 = 0.5, 1.0, 1.5 and 2.0. 

The value for the loss parameter c2 = 0 and   1.0. This was iterated 5000 times and the scale parameter for each 

method was calculated. A simulation study was conducted using R-software to examine and compare the 

performance of the estimates for different sample sizes with different values for the Extension of Jeffrey’s’ prior 

and the loss functions. The results are presented in tables for different selections of the parameters and c 

extension of Jeffrey’s prior. 
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Table 5.1Structural properties of Size biased Generalized Rayleigh distribution 

n   k  Mean
 

variance
 

S.D C.V
 

25 0.5 1.0 1.3057878 0.0013881 0.0372575 0.028532 

1.0 1.5 1.310549 0.0182512 0.1350972 0.103084 

50 0.5 1.0 0.3054362 0.0011856 0.0344329 0.112733 

1.0 1.5 0.3199525 0.0407701 0.2019163 0.631082 

75 0.5 1.0 1.3256778 1.425e-05 0.0037708 0.002844 

1.0 1.5 1.310549 0.0319192 0.1786595 0.136324 

 

Table 5.2: Shannon’s Entropy, AIC and BIC criteria of Size-biased Generalized Rayleigh Distribution 

N   k  
Shannon’s 

Entropy 
AIC

 
BIC

 

25 0.5 1.0 3.414851 174.7425 177.1803 

1.0 1.5 4.724048 240.2024 242.6402 

50 0.5 1.0 1.879161 191.9161 195.7401 

1.0 1.5 2.362021 240.2021 244.0261 

75 0.5 1.0 1.365678 208.8517 213.4867 

1.0 1.5 1.181019 181.1529 185.7878 

 

From the above table 5.2, we can conclude that the Size-biased Generalized Rayleigh Distribution have the 

smallest AIC and BIC values when sample size is 75 and scale parameter is 1.0 and shape parameter k=1.5. 

Table 5.3 Mean Squared Error for  ̂  under Jeffrey’s prior 

n θ k θML θSL 

θNL 

C2=-1.0 C2=-0 C2=1.0 

25 
0.5 1.0 0.4184437 0.02261071 0.02053641 0.02261071 0.02469849 

1.0 1.5 0.35385413 0.35744087 0.35031408 0.35744087 0.36473563 

50 
0.5 1.0 0.3912145 0.01621413 0.01527433 0.01621413 0.01716265 

1.0 1.0 0.3218592 0.3243453 0.3193622 0.3243453 0.3292847 

75 
0.5 1.0 0.3897367 0.01572284 0.01517348 0.01572284 0.16547846 

1.0 1.0 0.2638086 0.2654711 0.2621403 0.2654711 0.2687786 
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Table 5.4: Mean Squared Error for  ̂  under extension of Jeffrey’s prior 

 

n θ k C1 θML θSL 
θNL 

C2=-1.0 C2=0 C2=1.0 

 

 

 

 

25 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.41844371 

0.41844371 

0.41844372 

0.41844371 

0.0226107

1 

0.0236533

1 

0.0246984

9 

0.0257455

1 

0.0205364

1 

0.0215714

6 

0.0226107

1 

0.0236533

1 

0.02261071 

0.02365331 

0.02469849 

0.02574551 

0.02469849 

0.02574551 

0.02679371 

0.02784246 

1.0 1.0 0.5 

1.0 

1.5 

2.0 

0.35385413 

0.35385413 

0.35385413 

0.35385413 

0.3574408

7 

0.3610695

2 

0.3647356

3 

0.3684350

3 

0.3503140

8 

0.3538541

3 

0.3574408

7 

0.3610695

2 

0.35744087 

0.36106952 

0.36473563 

0.36843503 

0.36473563 

0.36843503 

0.37216383 

0.37591841 

 

 

50 

 

 

 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.39121450 

0.39121450 

0.39121450 

0.39121450 

0.0162141

3 

0.0166873

7 

0.0171626

5 

0.0176398

5 

0.0152743

3 

0.0157430

7 

0.0162141

3 

0.0166873

7 

0.01621413 

0.01668737 

0.01716265 

0.01763985 

0.01716265 

0.01763985 

0.01811884 

0.0185995 

 

1.0 1.0 0.5 

1.0 

1.5 

2.0 

0.33218592 

0.33218592 

0.33218592 

0.33218592 

0.3243453 

0.3268205 

0.3292847 

0.3317378 

0.3193622 

0.3218592 

0.3243453 

0.3268205 

0.3243453 

0.3268205 

0.3292847 

0.3317378 

0.3292847 

0.3317378 

0.3341798 

0.3366108 

 

 

 

 

75 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.38973671 

0.38973671 

0.38973671 

0.38973671 

0.0157228

4 

0.0163256 

0.0150778

9 

0.0160479

8 

0.0151734

8 

0.0154477

4 

0.0146889

2 

0.0154317

4 

0.01572284 

0.0153256 

0.01507789 

0.01604798 

0.01654786 

0.01653488 

0.01569146 

0.01666804 

1.0 1.0 0.5 

1.0 

1.5 

2.0 

0.26547112 

0.26547112 

0.26547112 

0.26547112 

0.2654711 

0.2671278 

0.2687786 

0.2704236 

0.2621403 

0.2638086 

0.2654711 

0.2671278 

0.26547112 

0.2671278 

0.2687786 

0.2704236 

0.2687786 

0.2704236 

0.2720628 

0.2736962 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function, 

In table 5.3, Bayes’estimation with New Loss function under Jeffrey’s prior provides the smallest values in most 

cases especially when loss parameter C2 is -1. Similarly, in table 5.4, Bayes’ estimation with New Loss function 

under extension of Jeffrey’s prior provides the smallest values in most cases especially when loss parameter C2 is 

- 1 whether the extension of Jeffrey’s prior is 0.5, 1.0, 1.5 or 2.0.  Moreover, when the sample size increases 

from 25 to 75, the MSE decreases quite significantly.  
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6. Conclusion 

In this research article we have introduced a new class of Size biased Generalized Rayleigh distribution. 

Various structural and characterizing properties of this new model has been derived and studied. From the 

simulation study, it has been observed that when the sample size increases from 25 to 75, the Shannon’s entropy, 

AIC and BIC values decreases quite significantly. We have primarily studied the Bayes estimator of the 

parameter of the Rayleigh distribution under the extended Jeffrey’s prior assuming two different loss functions. 

The extended Jeffrey’s prior gives the opportunity of covering wide spectrum of priors to get Bayes estimates of 

the parameter - particular cases of which are Jeffrey’s prior and Hartigan’s prior.We have also addressed the 

problem of Bayesian estimation for the Size biased Generalized Rayleigh distribution, under asymmetric and 

symmetric loss functions and that of Maximum Likelihood Estimation. From the results, we observe that in most 

cases, Bayesian Estimator under New Loss function (Al-Bayyati’s Loss function) has the smallest Mean Squared 

Error values for both prior’s i.e, Jeffrey’s and an extension of Jeffrey’s prior information.  
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