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Abstract 

The reductions in mortality rates experienced during the last decades and the resulting increases in life 

expectancy show that longevity risk, arising from unexpected changes in mortality, cannot be ignored.  The 

study therefore explained the mortality improvements for males’ aged 40-65 using Nigeria available data using 

two stochastic mortality models- Lee Carter Model (M1) and Renshaw-Haberman model (M2). The fitting 

methodology was applied to the model using the Poisson model; the calibration was done using Life metrics 

R-code software.                        

The Lee-Carter class of models allows for greater flexibility in the age effects. On the BIC ranking criterion, the 

model M2 for the data dominates. However, if we take into account the robustness of the parameter estimates, 

then model M1 is preferred for the dataset. This model fits the dataset well, and the stability of the parameter 

estimates over time enables one to place some degree of trust in its projections of mortality rates. The model also 

shows, for the dataset, that there have been approximately linear improvements over time in mortality rates at all 

ages. 
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1. Introduction  

The study of mortality relates to the survival and death of individuals within a particular population. The future 

development of human mortality, together with its wider implications, has attracted increasing interest in recent 

decades. The historical rise in life expectancy, experienced in the latter half of the twentieth century, shows little 

sign of slowing. Epidemiological factors seem to have contributed substantially to the increase in life expectancy 

through prevention of diseases as an important cause of mortality at younger ages.  

Historically, the study of human mortality can be seen to fall within the domain of demography and actuarial 

science, but is increasingly embracing biology, sociology, medicine and finance, thus becoming really 

interdisciplinary subject. Broadly speaking, we can identify two main approaches to analysing mortality: 

statistical and biological. 

However, several studies have found that official mortality projections in low mortality countries have 

underestimated the decline in mortality and the gain in life expectancy when compared to the realized outcomes 

(Keilman, 1997; Boongaarts and Bulatao, 2000; and Lee and Miller, 2001).  

1.1 Problem Statement  

Given that the future mortality is actually on known, there is a likelihood that the future death rates will turn out 

to be different from what is being projected, and so for better assessment of mortality and longevity risks would 

be one that consists of both a mean estimate and a measure of uncertainty. Since the early 1990s a number of 
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stochastic models have been developed to analyze these mortality improvements, but most of the proposed 

models exhibit some limitation. This assessment can therefore be performed using stochastic model to describe 

both demographic and financial risks.  

 

1.2 Study Aim and Objectives  

The aim of the study is to explain mortality improvements using stochastic modelling. The specify objectives of 

this study therefore is to apply Lee Carter Model (M1) and Renshaw-Haberman (M2) to explain male mortality 

improvement and compare the performance of the model 

 

2. Literature Review  

Mortality modelling and forecasting has made considerable progress in the last few years. On the one hand, 

various stochastic mortality models have been proposed that allow demographers and actuaries to quantify the 

uncertainty associated with long-run mortality forecasts. Life insurance and annuities are products designed to 

manage financial uncertainty related to how long an individual will survive. Hence, the lifetime random variable 

X and its associated mortality model are the basic building blocks in actuarial mathematics.  

 

2.1 Mortality Rates and Survival Probability  

In a dynamic context, the changes in mortality are analysed as a function of both age x and time t. In addition, we 

can consider birth cohorts, that is, people born in a given year. Cohorts are indexed by c = t − x, and the 

development of cohort-specific mortality can be traced through time. Calendar year t is defined as the time 

period running from t to t +1. 

 

Let m(t,x) be the crude or actual death rate for age x in calendar year t, 

 

 

Where: 

T(t, x) denotes the length of the remaining lifetime of an individual aged exactly x at time t. The average 

population, or the exposure, is usually based on the estimate of the population aged x last birthday in the middle 

of a calendar year, or on the average of population estimates at the beginning and end of a year (Cairns et al., 

2008a).  

 

Using a population estimate at the middle of a year as an approximation to the exposure to mortality risk over 

that year, we implicitly assume that the population changes uniformly over the year. Therefore, an individual 

with a (random) remaining lifetime T(t, x) will thus die at age x +T(t, x) in year t +T(t, x) . We can construct a 

model of survival based on T(t, x) by assuming it follows some probability distribution.  From the above, 

surviving to time t is equivalent to attaining an age of x + t. The survival function can alternatively be thought as 

the proportion of a given reference population cohort (aged x at time 0) that are expected to be alive at some 

future time t. We can also consider the probability, F(t, x) , that and individual will not survive to time t, that is, 

dies before reaching age x + t . Clearly, 
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where   

 

as survival probabilities. We assume the following will also hold 

, for each fixed x. This simply means that the survival will 

cease eventually (you cannot live forever). 

In some situations it is convenient to define some upper age limit for the population considered. This limit value, 

which is a characteristic of the population, is usually denoted by ω < ∞ (Atkinson and Dickson, 2000). For 

humans, for example, this limit could be taken to be on the range of 120 to 130 years, given current observations 

of the highest attained ages. 

Definition 2.1 The mortality rate q(t, x) = P[T(t, x) 1] is the probability that an individual aged exactly x at 

time t will die before reaching age x +1. 

In other words, mortality rate is the probability of dying between t and t + 1. 

We can also consider the complement of mortality rate, namely the (one year) survival probabilities. 

 

Definition 2.2 p(t, x) = P[T(t, x) >1] is the probability that an individual aged exactly x at time t will survive to 

age x +1. 

Therefore, p(t, x) =1− q(t, x) . We introduce one more mortality related measure, the force of mortality μ(t,x) (or 

the hazard rate). This is the instantaneous death rate for individuals aged x at time t. This means that for small 

intervals of time, ∆t , the probability of death between t and t + ∆t is approximately μ (t, x) ∆t. 

Definition 2.5 The force of mortality, μ (t, x), is defined as 

 

 

That its, 

 

 

 

 

=  
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Using equation above, we can express the survival function in terms of the force of mortality as follows: 

 

 where we have used the assumption that S(0, x) =1 x . The relationship between mortality rate and force of 

mortality can be derived analogously, and is expressed as 

 

2.2 Stochastic Mortality Models 

We shall therefore review some of the stochastic mortality models 

 

2.2.1 The Lee-Carter Model 

Lee and Carter (1992), in their classic paper, proposed the following model for the dynamics of the force of 

mortality (or the central death rates, m(t, x) , depending on the exact specification) to describe the age-pattern of 

mortality: 

 

where  represents an average log mortality rate over time at age x, whereas  represents the 

improvement rate at age x. k (t) describes the variations in the level of mortality over time, i.e., the random 

period effect. 

The parameters can be estimated from observed mortality data under suitable identifiability constraints, and 

forecasts can be obtained by specifying a time series model for k (t). Lee and Carter modelled the parameter k (t) 

as a random walk with drift: 

 

where μ is a constant drift parameter and Z(t) a stochastic innovation (noise), with  independent 

and identically distributed. 

 

The time series approach to modelling the pattern of mortality adopted by Lee and Carter has been very 

influential in the field of mortality forecasts. The notable conclusion from the work of Lee and Carter (1992) was 

that the time series process could be adequately described by a simple model, such as one-dimensional random 

walk (Stallard, 2006). However, the model’s description of mortality as a function of a single time index is 

problematic in practice, since it implies that changes in the mortality curve in all ages are perfectly correlated.  

Apart from this, the model has other drawbacks, as pointed out e.g. by Cairns, Blake and Dowd (2008). In any 

case, the method by Lee and Carter can be seen as an important step in the introduction and wider acceptance of 

formal statistical methods to modelling mortality in a dynamic context. The strengths of the model are its 

simplicity and robustness in the context of linear trends in age-specific death rates, and it has been widely 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                          www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.6, 2014 

 

78 

applied in practice (see, e.g., Lee and Tuljapurkar, 1994; Li, Lee and Tuljapurkar, 2004). 

 

2.2.2 The Renshaw-Haberman Model 

Renshaw and Haberman (2006) extended the Lee-Carter model by adding a second age-specific factor to the 

model: 

  

where  are the period-related factors, assumed to follow an appropriate stochastic process (e.g., 

bivariate random walk with drift). 

 

3. Research Methods 

3.1 Calibration of the Mortality Models  

We specify two models that are applied to Nigeria mortality data and used to model the development of 

mortality. The first one selected for the study is the Lee-Carter model (1993), while the second one is 

Renshaw-Haberman model (2006). We denote these models by M1 and M2, respectively.  

 

3.2 Description of Data  

We use data for Nigeria males, obtained from National Population Commission. We use data covering years 

from 1994 to 2003 and age group from 40 to 65 in estimating the parameters for our models.  

 

The dataset was fit to two models described in Cairns et al (2007), namely: 

 M1- Lee-Carter model (1992) 

 

where  represents an average log mortality rate over time at age x, whereas  represents the 

improvement rate at age x. k (t) describes the variations in the level of mortality over time, i.e., the random 

period effect. 

 

 M2- Renshaw-Haberman model (2006), extended the Lee-Carter model by adding a second age-specific 

factor to the model: 

 

  

where  are the period-related factors, assumed to follow an appropriate stochastic process. 

 

3.3 Calibration  

Brouhns et al (2002) described a fitting methodology for the Lee-Carter model based on a Poisson model. The 

main advantage of this is that it accounts for heteroskedasticity of the mortality data for different ages. This 

method has been used more commonly after that, also for other models. Therefore, the number of deaths is 
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modelled using the Poisson model, implying:                           

Dx,t ~ Poisson (Ex,t, Mx,t ) 

 

where Dx,t is the number of deaths, Ex,t is the exposure and mx,t in the proposed model. The parameter set φ is 

fitted with maximum likelihood estimation, where the log-likelihood function of the Poisson model is given by: 

 

Based on the implementation of Poisson regression with constraints, we therefore used the R-code of the (free) 

software package “Lifemetrics” as a basis for fitting (calibration) and stimulation. 

 

 

3.4 Model Comparison  

To evaluate whether the model fits the dataset well, the model was fitted dataset (The data would consists of 

numbers of deaths Dx,t and the corresponding exposures Ex,t by year) and compared the fitting results. The 

model fit was compared using the Bayesian Information Criterion measure (BIC). The BIC measure provides a 

trade-off between fit quality and parsimony of the model and it is defined as: 

 

where L(φˆ) is the log-likelihood of the estimated parameter φˆ, P is the number of observations and K is the 

number of parameters being estimated.  

 

4. Data Analysis and Result of Model Calibration  

4.1 Parameter Estimates  

In Figures 1–2, we have plotted the maximum-likelihood estimates for the various parameters in the models, 

using Nigeria males’ data, aged 40-65. In this section we will focus on the parameter. 

 

The fitted parameters x, x and t for Nigeria males are given in figure 1. The figure shows that the pattern of 

the important parameter x and t are well behaved. The patterns of the other parameter all reveal some 

autoregressive behaviour. Since the factor x and t drives a significant part of the uncertainty in mortality rates, 

its relatively regular behaviour (for this particular dataset) will also show in the projected uncertainty (in other 

words, the confidence intervals will be relatively narrow). The Model 2 incorporates a cohort parameter; we can 

see a distinctive cohort effect. The figure shows that the pattern of the important parameter x is well behaved. 

The patterns of the other parameter all reveal some autoregressive behaviour.  

 

4.2 Model Selection Criteria  

In this section, we conduct formal model comparisons based on Nigeria data. For each model, we estimate (as 

appropriate) the x
(i)

, x
(i)

, t
(i) 

and c
(i) 

for each factor, i, age, x, year, t, and cohort, c= t- x by maximizing the 

log-likelihood function. Estimates of the x
(i)

, x
(i)

, t
(i) 

and c
(i) 

are plotted in figure 1-2. Values for the maximum 

likelihood, effective number of parameters (or degrees of freedom in estimation), and the Bayes Information 

Criterion (BIC) for each model are given in Table below. If one simply compares the maximum likelihoods 

attained by each model, then it is natural for models with more parameters to fit the data ‘‘better.’’ Such 
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improvements are almost guaranteed if models are nested: if one model is a special case of another, then the 

model with more parameters will typically have a higher maximum likelihood, even if the true model is the 

model with fewer parameters.  

 

To avoid this problem, we need to penalize models that are over-parameterized. Specifically, for each parameter 

that we add to a model, we need to see a ‘‘significant’’ improvement in the maximum likelihood rather than just 

an increase of any size. A number of such penalties have been proposed. Here we focus on the Bayes 

Information Criterion (BIC; see, e.g., Hayashi 2000; Cairns 2000). A key point about the use of the BIC is that it 

provides us with a mechanism for striking a balance between quality of fit (which can be improved by adding in 

more parameters) and parsimony. The table 1 shows that Renshaw-Haberman model (M2) fits better.  

 

4.3 Model Robustness  

An important property of a model is the robustness of its parameter estimates relative to changes in the period of 

data used to fit a given model. The plots (figure 1-2) reveal that, out of the two models, M1 seems to be the most 

robust relative to changes in the period of data used: that is, the parameter estimates hardly change even when 

we use a much shorter data period. M2, on the other hand, seems to produce results that lack robustness, because 

the parameter estimates jump to a qualitatively quite different solution when we use less data.  

 

5. Conclusion  

We have attempted to explain mortality improvements for males aged 40-65 using Nigeria available historical 

data using two of the stochastic mortality models. The models have different strengths. The Lee-Carter class of 

models allows for greater flexibility in the age effects. On the BIC ranking criterion, then model M2 for the data 

dominates. However, if we take into account the robustness of the parameter estimates, then model M1 is 

preferred for the dataset.  

 

This model fits the dataset well, and the stability of the parameter estimates over time enables one to place some 

degree of trust in its projections of mortality rates. The lack of robustness in the other models means that we 

cannot wholly rely on projections produced by them. The model also shows, for the dataset, that there have been 

approximately linear improvements over time in mortality rates at all ages, but that the improvements have been 

greater at lower ages than at higher ages.  

 

In further study, we would look at forecasting Nigeria data using Lee-Carter model using uneven data interval 

approach (Li, Lee and Tuljapurkar, 2004). 
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Appendix 1: Parameter Estimation for Model M1 
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Fig. 1: Parameter Estimate for Model M1 
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Appendix 2: Parameter Estimate for Model M2 
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Fig. 2: Parameter Estimate for Model M1 
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Appendix 3 

Model Maximum 

Log-Likelihood 

Effective Number of 

Parameters 

BIC (Rank) 

M1 -2315.84 61 -2486.13(2) 

M2 -1671.88 121 -2009.68(1) 

Table 1: Maximum likelihood, effective number of parameters estimated, and Bayes Information 

Criterion (BIC) for each model 

 

Appendix 4: Parameter Estimate of model 1  

 

Age (x) 1(x) 2(x) 

40 -5.937042853 0.080622726 

41 -5.832821137 0.070231279 

42 -5.760835316 0.061703447 

43 -5.664341717 0.046331111 

44 -5.619190022 0.029260349 

45 -5.528015331 0.031185781 

46 -5.441756056 0.024557437 

47 -5.375378933 0.013803064 

48 -5.274069819 0.023450762 

49 -5.259912296 0.001616123 

50 -5.167240022 0.013201032 

51 -5.074705715 0.0206006 

52 -4.996847258 0.024783167 

53 -4.922039409 0.032162274 

54 -4.852327599 0.031430612 

55 -4.754379387 0.034225793 

56 -4.682924938 0.031836655 

57 -4.605436091 0.032808223 

58 -4.477155788 0.043577064 

59 -4.427597978 0.030443467 

60 -4.313642237 0.044129187 

61 -4.225618755 0.046220154 

62 -4.121278258 0.049671558 

63 -4.042966069 0.052734988 

64 -3.953832987 0.059234277 

65 -3.854388809 0.070178872 
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Model 1             Model 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year (t)  c 

1994 3.079477024 

1995 2.739722685 

1996 1.749328401 

1997 0.498474844 

1998 -0.036705991 

1999 -0.260030904 

2000 -1.012452624 

2001 -1.308463477 

2002 -1.415588747 

2003 -1.683642571 

2004 -2.350118639 

 

Year (t)  c 

1994 1.628738445 

1995 1.635743837 

1996 0.871444639 

1997 -0.120958091 

1998 -0.441538865 

1999 -0.419992009 

2000 -0.616423163 

2001 -0.741391836 

2002 -0.488667499 

2003 -0.211894212 

2004 -1.095061247 
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Appendix 5: Parameter Estimate Model 2 

Age (x) 1(x) 2(x) 3(x) 

40 -5.908303692 0.131624617 0.000884748 

41 -5.813137796 0.12080494 0.000671676 

42 -5.74938941 0.111320644 -0.000569007 

43 -5.661971894 0.086599849 -0.002586968 

44 -5.618820612 0.058280378 -0.001701373 

45 -5.518406098 0.064433736 0.005614764 

46 -5.437848195 0.048954141 0.002068801 

47 -5.252309633 0.058019162 0.075951201 

48 -5.202643297 0.049638789 0.04532135 

49 -5.135564502 0.002480762 0.079708326 

50 -5.066928149 0.011995112 0.070670779 

51 -5.006004835 0.019437026 0.051055738 

52 -4.9292125 0.009703233 0.056368388 

53 -4.860674347 0.00407842 0.060915211 

54 -4.836233333 0.041141518 0.020493053 

55 -4.733568489 0.016757601 0.040347454 

56 -4.675278618 0.01566199 0.036315232 

57 -4.611548761 0.013476646 0.035817291 

58 -4.522660116 -0.003800249 0.067962919 

59 -4.457691118 0.02017791 0.030581779 

60 -4.381610718 0.020645279 0.048407888 

61 -4.324550438 0.01213218 0.055655417 

62 -4.261203374 0.010688066 0.06279266 

63 -4.180327153 0.025631833 0.05135103 

64 -4.10006123 0.04083316 0.047182665 

65 -4.08080195 0.009283257 0.058718981 
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