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Abstract 

We study the second- partial differential  equation with some conditions and depending arbitrary 

continuous functions of the bar at the point x at the time t . 

1.Introduction 

In[1],they are obtained  an asymptotic expansion, containing regular boundary corner functions in the 

small parameter ɛ, for the solution of a second partial differential equation , and constructed the 

asymptotic expansion   (     ) for the modified problem and proved it is the unique solution .In[2], 

they are constructed and justify the asymptotic solutions as two series in the powers of small 

parameters consisting four parts and derivatives degenerate into the systems of partial differential 

equation of first order, also proved that the solution is uniform in the domain ,and they are a unique 

solution and the asymptotic approximation is within  (    ). In[3], they are studied the development 

wave equation with some conditions and proved the existence and uniqueness solution by using the 

reflection method. In[4],they are considered the problem of periodic solution of ordinary differential 

equations of arbitrary 4   order with a rapidly oscillating coefficient proportional to the frequency of 

oscillations, and proved the existence and local uniqueness of solution close to the corresponding 

asymptotic solution of the original and averaged problems with natural additional conditions of 

smoothness.In[5], they are construct asymptotic solution of a partial differential equation with small 

parameter , also proved the solution is unique and uniform in the domain Ω and, further, the 

asymptotic approximation is within  (  ) .studied a modification of an initial-boundary-value problem 

in the critical case for the heat-conduction equation in a thin domain, and they justified asymptotic 

expansions of the solutions of the problems with respect to a small parameter ɛ˃0,In[6].[7], they are 

constructed and justify the asymptotic solutions as two series in the powers of –small parameters 

consisting four parts and derivatives degenerate into the systems of partial differential equation of first 

order .they are proved that the solution is uniform in the domain, and they are a unique solution and 

the asymptotic approximation is within  (    ) .In[8], for a system of two partial differential 

equations of second order, they obtained and justify two asymptotic solutions in the form of two series 

with respect to the small parameter ɛ. They are proved the solutions is unique and uniform in the 

domain Ω, and, further, each the asymptotic approximations are within  (    ) .they presented an 

efficient integral equation approach to solve the forced heat equation,  ( )    ( )   (     ) in a 

two-dimensional, multiply connected domain, with Dirichlet boundary conditions, Instead of using an 

integral equation formulation based on the heat kernel, we discretize in time, first, In[9].In[10], they 

proved that the temperature distribution in the limit one-dimensional rod with time-averaged sources 

of heat is the uniform asymptotic approximation of the temperature   distribution in the initial problem 

in an arbitrary sub domain of the  plane rod and in an arbitrary time interval, which are located at a 
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positive distance from the ends of the rod and the initial time instance, respectively of course, the 

temperature in the one-dimensional rod, which is a function of the longitudinal coordinate x and the 

time t, is identified with the function of (x, y ,t), which is independent of the transversal coordinate y 

of the plane rod. In[11], the presented a numerical method that solved heat equations using he's 

variation iteration method , it showed that the solutions obtained from the developed method 

converged rapidly to the exact solutions within three iterations .it is also found that he's variation 

iteration method gives very trivial solutions for the nonlinear differential equations with zero initial 

condition. In[12]the equation describing the conduction of heat in solid had, over the past two 

centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving 

an enormous array of diffusion –type problems in physical sciences, biological sciences, earth 

sciences, and social sciences. In[13],this articled provides a practical overview of numerical solution 

to the heat equation using the finite difference method. The forward time, centered space , the 

backward time, centered space ,and Crank-Nicolson schemes are developed, and applied to a simple 

problem involving the one-dimensional heat equation. In[14], they investigated a free boundary 

problem for the heat equation derived from combustion theory and study the development of the 

boundary, Γ this problem described  the propagation solutions to this problem is reviewed and major 

results are  summarized. .our principal aim in the present paper is concerned the second-partial 

differential equation and proving the existence and uniqueness solution by using some conditions. 

2. Formulation of The Problem 

We consider the second-partial differential equation for the following problem 

  ( )     ( )      

 (   )   ( )                                                              (2.1) 

 (   )           (   )              

  (   )

  
     

  (   )

  
                      

Where  (   )the function of the bar at the point x at the time t   ( )   ( )  be a continuous function 

depends on the variable t and x  f(x) is a given function .In order to determine the temperature in the 

bar at any time t. However it turns out that suffices to consider the case      =0 only.We can also 

assume that the ends of the bar are insulated so that no heat can pass through them which 

impliesv  ( )     ( )                                                                                 (2.2) 

Where  u(x ,t) satisfies the initial condition                                                    

 (   )   ( )                                                  (2.3) 

And the boundary conditions 

 (   )   (   )                                                                 (2.4) 

In the same way, we can obtain 
  (   )

  
     

  (   )

  
                                                  (2.5) 
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The problem (2.2 ),(2,3 ),(2,5 ) is known as the Neumann problem while (2.2 ),(2,3 ),(2.4 ) as the 

Dirichlet  problem for the diffusion equation .At first we discuss a property of the diffusion equation, 

known as the maximum-minimum principle  

Let:   {(   )                 } be a closed rectangle and   {(   )              

          } . 

3.Procedure of Solving The Problem 

We study the following theorem . 

Theorem 3-1 : Let u(x ,t) be a continuous function in F which satisfies equation  (2.2) in F/ L 

     (   )  

     (   )                                                                                                                      (   )  

     (   )  

     (   )                                                                                                                       (   )  

      ( )  

      ( )                                                                                                                         (   )  

      ( )  

      ( )                                                                                                                           (   )  

Proof : We use the method of contradiction . assume that the minimum value of u(x ,t)attained at an 

interior point (     ) . Let           thus there exist a finite     such that  (     )      .  At 

the minimum point (     ) . We have   (     )         (     )          . We need to rule out 

the possibility of equality consider  (   )    (   )   (    ) . For positive constant         at 

the point (     ),we have  (   )        since both   t ,      (    )     . Now we choose   

such that    
 

  
  since         we have         

 

 
  , since u is continuous , so is v.  thus , v 

must have a minimum value at some point(     ) in the interior (           ) 

 (     )   (     )       ,therefore.                . Since  

    (     )     (     )    (     )    (     )    

    (     )            (     )      

Which is contradictory to    ( )     ( )    therefore      (   )       (   ) . The same way 

above we get :      ( )        ( ) considering the function  (   )   (   ) we have 

     (   )       (   ) and considering the function  (   )     ( ) we get        ( )  

      ( ) .   

 4.Non –Homogenous for The Second-Partial Differential Equations 

The solution for non-homogenous second-order partial differential equations by using maximum-

minimum principle it follows the uniqueness  

  ( )     ( )     (   )                              
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 (   )   ( )                                                                                                            (4.1) 

 (   )    ( )  (   )    ( )                           

Suppose  

 (   )   ( )                     ( )   [   ]                           

  ( )   [   ]                      ( )

 [   ]                                                                                                              (   )  

 ( )    ( )                      ( )    ( )                                           

By a solution we mean a function    ( )  which is differentiable inside F and satisfies the equation 

along with the initial and the boundary condition of ( 4.1 ) . 

Theorem 4-1 : The problem in (4.1) and(4.2 ) has no more than one solution . 

Proof : Suppose u(x ,t)and w(x ,t)are two solution of ( 4.2) , let  (   )   (   )   (   ) then 

   ( )     ( )                            

  (   )                                                                                     

 (   )   (   )                                               

By theorem ( 3.1) it follows       (   )       (   )                    

      ( )        ( )    . Therefore   (   )      , so that  (   )   (   ) For every (   )    . 

Consider the problem (4.2), with f         that is    ( )     ( )                

      (   )   ( )                                                              (   )     

 (   )   (   )                                                                   

As a corollary of theorem(3.1) the continuous dependence of solution of (4.3) with respect to initial 

data follows . 

Corollary 4-1 : Let   (   )be a solution of (4.3) with initial data   ( )          then 

   (   )     
      (   )     ( )    ( )      

               (   )  for every    [   ] . 

Proof : Consider the function  (   )    (   )    (   ) ,which satisfies   

  ( )     ( )                       

 (   )    ( )    ( )                               

 (   )   (   )                                       

By theorem(3.1) it follows that   (   )    (   )     {
   

     (
  ( )    ( ))   }  

   ( )    ( )      
    . 
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 And   (   )    (   )     {   (  ( )    ( ))  }     

                                            {
   

     
(  ( )    ( ))   } 

                                             
     

   ( )    ( )  

Which imply (4.4) . The uniqueness and stability to (4.3) can be derived another approach ,known as 

the energy method. Let u be a solution of the problem (4.3). the quantity  ( )  ∫   (   )  
 

 
 . Is 

referred to as  the thermal energy at the instant t .we shall show that H(t) is a decreasing function . 

Theorem 4-2 : Let u(x ,t)be a solution of (4.3) then  (  )   (  )                    . 

Let   (   )                (   )                                   ( )             ∫ (  (   )  
 

 

  (   ))
    ∫ (  ( )    ( )

 

 
)    . 

Proof : Multiplying the equation by u ,using  

 [  ( )  ]  
  ( )

 

 

  
(  )  

 [  ( )   ]    ( ) [
 

  
    

 

  
  ]  

  ∫ [  ( )     ( )   ]    
 

 
  

   ∫ [
  ( )

 

 

  
     ( ) [

 

  
    

 

  
  ]]   

 

 
 

   
  ( )

 

 

  
  
   
    ( ) (   )        ( ) (   )         ∫ (  ( )

 

  

 

 
  )   

     ( )
 

  
  
   
  ∫

 

  
  
  

 
   ( )   

     ( )
 

  
  
   
  

 

  
  
   ( )  

  ∫   ( )
 

  

 

 
     

  

  
( )    ∫   ( )  

  

 
    

  

  
( )     

Thus H(t)is a non-increasing function of time t .  (  )   (  ) for all          . The function 

 (   )    (   )    (   )satisfies(4.3)with  ( )    ( )    ( )therefore for t≥0 by (a) 

∫ (  (   )    
 

 
(   ))  ∫ (  

 

 
(   )    (   ))

    ∫ (  ( )    ( )
 

 
)     

                 
   ( )

   
  ∫   

  

 
   . We can multiply by    and integrate with respect to and get 

∫   ( )
   (   )

  

 

 
   ∫   

 

 
( )

  (   )

  

   (   )

   
   

                   ∫   
 

 
( ) [

 

  
(
  (   )

  

  (   )

  
)  

  (   )

  

   (   )

    
]    
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∫   
 

 
( )

   (   )

  
   ∫   

 

 
( )

 

  
(
  (   )

  

  (   )

  
)      

∫   ( )
  (   )

  

 

 

   (   )

    
)    

∫   
 

 
( )

   (   )

  
     ( )

  (   )

  
  
   (   )

  
  
    

  ( )
  (   )

  
    

  (   )

  
         ∫   ( )

 

 

  (   )

  

   (   )

    
    

We get by the chain rule 
 

  

   (   )

  
  

  (   )

  

   (   )

    
 

∫   
 

 
( )

   (   )

  
     ( )

  (   )

  

  (   )

  
   

  ( )
  (   )

  

  (   )

  
 
 

 
∫   
 

 
( )

 

  

   (   )

  
    

 

 

 

  
∫   ( )

   (   )

  

 

 
    ∫

   (   )

  

 

 
     

  ( )
  (   )

  

  (   )

  
  ( )

  (   )

  

  (   )

  
  

According to the boundary condition (2), u(0,t)=u(h ,t)=0 for all t>0 since u(0,t)and u(h ,t)are constant 

with respect to time ,we conclude that   (   )    (   )              thus , we get that  

 

  
∫   ( )

   (   )

  
     ∫

   (   )

  
  

 

 

 

 
 

 

  
∫     ( )
 

 

   (   )

  
    ∫

   (   )

  

 

 
    

   ( )

   
  ∫

   (   )

  

 

 
   . 

Problem 1: solve the equation      ( )     ( )        where   ( )    
      ,     ( )     

    

,      ( )         , 0< x <4   

Solution :     
 

 
 ∫  ( )    

   

 
    

 

 
 

        
 

 
 ∫ (    )    

   

 
      

  

 
   

   

 
 
  (  ) 

  

 

 
  

 (   )   ∑
  (  ) 

  
 
   

    
     

 

   

    [
   

 
]  
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      [   {      } {      }] {        }] . 

Problem 2 : solve the equation    ( )     ( )      where 

  ( )    
     ( )      ( )    

        ( )   
  

     

    
 

 
∫  ( )    

   

 
     

 

 
 : Solution 

   
 

 
∫  

  

  
 

 
   (

   

 
)       

 √
 

 
      (√ )    (

   

 
)  

 (   )  ∑ √
 

 
 
       (√ )    (

   

 
) 

        

       ( )  
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          [      [    {      } {      }] {        } {        }] . 

Problem 3: solve the heat equation   ( )     ( )      where ( )  
(     )

  
    ( )    

  

        ( )    
     

 

 
     

Solution :    
 

  
∫

(     )

  
   (

   

  
)        

  

 
 

                    =143   (
   

  
)       

 (   )  ∑       (
   

  
) 

(       
 
 )

              
     

   (
   

  
)   

     

 

 

 

 

 

 

 

 

 

          [      [   {      } {      }] {        } {        }] . 

Problem  4 :  solve the heat equation   ( )     ( )      where  ( )              ( )  

          ( )    
        . 

Solution:    
 

 
∫ (        )    (

   

 
)        

 

 
 

                    =
      

 
   (

   

 
)       

 (   )  ∑
      

 
   (

   

 
)  

              

            (
   

 
)      
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