On Generalized Dislocated Quasi Metrics

P Sumati Kumari
Department of Mathematics, FED - I, K L University, Green fields, Vaddeswaram, A.P, 522502, India.
Email:mumy143143143@gmail.com

Abstract

The notion of dislocated quasi metric is a generalization of metric that retains, an analogue of the illustrious Banach's Contraction principle and has useful applications in the semantic analysis of logic programming. In this paper we introduce the concept of generalized dislocated quasi metric space. The purpose of this note is to study topological properties of a $g d q$ metric, its connection with generalized dislocated metric space and to derive some fixed point theorems. Keywords: Generalized dislocated metric, Generalized dislocated quasi metric, Contractive conditions, coincidence point, β-property.

Introduction: Pascal Hitzler [1] presented variants of Banach's Contraction principle for various modified forms of a metric space including dislocated metric space and applied them to semantic analysis of logic programs. In this context Hitzler raised some related questions on the topological aspects of dislocated metrics.

In this paper we establish the existence of a topology induced by a $g d q$ metric, induce a generalized dislocated metric (D metric) from a $g d q$ metric and prove that fixed point theorems for $g d q$ metric spaces can be derived from their analogues for D metric spaces. We then prove a D metric version of Ciric's fixed point theorem from which a good number of fixed point theorems can be deduced. Definition 1.1:[2]Let binary operation $\diamond: R^{+} \times R^{+} \rightarrow R^{+}$satisfies the following conditions:

(I) \diamond is Associative and Commutative,
(II) \diamond is continuous.

Five typical examples are $a \diamond b=\max \{a, b\}, a \diamond b=a+b, a \diamond b=a b$,

$$
a \diamond b=a b+a+b \text { and } a \diamond b=\frac{a b}{\max \{a, b, 1\}} \text { for each } a, b \in R^{+}
$$

Definition 1.2: [2] The binary operation \diamond is said to satisfy β-property if there exists a positive real number β such that $a \diamond b \leq \beta \max \{a, b\}$ for every $a, b \in R^{+}$.
Definition 1.3: Let X be a nonempty set. A generalized dislocated quasi metric (or $g d q$ metric) on X is a function $g d q: X^{2} \rightarrow R^{+}$that satisfies the following conditions for each $x, y, z \in X$.
(1) $\operatorname{gdq}(x, y) \geq 0$,
(2) $\operatorname{gdq}(x, y)=0$ implies $x=y$
(3) $g d q(x, z) \leq g d q(x, y) \diamond g d q(y, z)$

The pair ($X, g d q$) is called a generalized dislocated quasi metric (or $g d q$ metric) space.
If $g d q$ satisfies $g d q(x, y)=g d q(y, x)$ also, then $g d q$ is called generalized dislocated metric space. Unless specified otherwise in what follows ($X, g d q$) stands for a $g d q$ metric space.

Definition 1.4: If ($x_{\alpha} / \alpha \in \Delta$)is a net in X and $x \in X$ we say that $\left(x_{\alpha}\right)_{\alpha \in \Delta} g d q$ converges to x and write $g d q \lim _{\alpha} x_{\alpha}=x$ if $\lim _{\alpha} g d q\left(x_{\alpha} x\right)=\lim _{\alpha} g d q\left(x x_{\alpha}\right)=0$.i.e For each $\in>0$ there exists $\alpha_{o} \in \Delta$ such that for all $\alpha \geq \alpha_{0} \Rightarrow g d q\left(x, x_{\alpha}\right)=g d q\left(x_{\alpha}, x\right)<\in$.We also call $x, g d q$ limit of $\left(x_{\alpha}\right)$. We introduce the following
Definition 1.5: Let $A \subseteq X . x \in X$ is said to be a $g d q$ limit point of A if there exists a net $\left(x_{\alpha}\right)_{\alpha \in \Delta}$ in X such that $g d q \lim _{\alpha} x_{\alpha}=X$.
Notation1.6:Let $x \in X, A \subseteq X$ and $r>0$,We write
$D(A)=\{x / x \in X$ and x is a $g d q$ limit point of $A\}$.
$B_{r}(x)=\{y / y \in X$ and $\min \{g d q(x, y), g d q(y, x)\}<r\}$ and $V_{r}(x)=\{x\} \cup B_{r}(x)$.
Remark 1.7: $g d q \quad \lim _{\alpha \in \Delta} x_{\alpha}=x \quad$ iff for every $\delta>0$ there exists $\alpha_{0} \in \Delta$ such that $x_{\alpha} \in B_{\delta}(x)$ if $\alpha \geq \alpha_{0}$

Proposition 1.8: Let $(X, g d q)$ be a $g d q$ metric space such that \diamond satisfies β-property with $\beta>0$.

If a net $\left(x_{\alpha} / \alpha \in \Delta\right)$ in $X g d q$ converges to x then x is unique.

Proof: Let $\left(x_{\alpha} / \alpha \in \Delta\right) g d q$ converges to y and $y \neq x$

Since $\left(x_{\alpha} / \alpha \in \Delta\right) g d q$ converges to x and y then for each $\in>0$ there exists $\alpha_{1}, \alpha_{2} \in \Delta$ such that for all $\alpha \geq \alpha_{1} \Rightarrow g d q\left(x, x_{\alpha}\right)=g d q\left(x_{\alpha}, x\right)<\frac{\in}{\beta}$ and $\alpha \geq \alpha_{2} \Rightarrow g d q\left(y, x_{\alpha}\right)=g d q\left(x_{\alpha}, y\right)<\frac{\in}{\beta}$

From triangular inequality we have, $g d q(x, y) \leq g d q\left(x, x_{\alpha}\right) \vee g d q\left(x_{\alpha}, y\right)$

$$
\begin{aligned}
& \leq \beta \max \left\{g d q\left(x, x_{\alpha}\right), g d q\left(x_{\alpha}, y\right)\right\} \\
& <\beta \max \left\{\frac{\in}{\beta}, \frac{\epsilon}{\beta}\right\}=\in
\end{aligned}
$$

Which is a contradiction.
Hence $g d q(x, y)=0$ similarly $g d q(y, x)=0$
$\therefore x=y$
Proposition 1.9: $x \in X$ is a $g d q$ limit point of $A \subset X$ iff for every $\mathrm{r}>0, A \cap B_{r}(x) \neq \phi$
Proof: Suppose $x \in D(A)$. Then there exists a net $\left(x_{\alpha} / \alpha \in \Delta\right)$ in A such that $x=g d q \lim _{\alpha} x_{\alpha}$.
If $r>0, \exists \alpha_{0} \in \Delta$ such that $B_{r}(x) \cap A \neq \phi$ for $\alpha \geq \alpha_{0}$.
Conversely suppose that for every $r>0 \quad B_{r}(x) \cap A \neq \phi$.
Then for every positive integer n , there exists $x_{n} \in B_{\frac{1}{n}}(x) \cap A$ so that $g d q\left(x_{n}, x\right)<\frac{1}{n}, g d q\left(x, x_{n}\right)<\frac{1}{n}$ and $x_{n} \in A$

Hence $g d q \lim _{n} g d q\left(x_{n} x\right)=0$ so that $x \in D(A)$
Theorem 1.10: Let $(X, g d q)$ be a $g d q$ metric space such that \diamond satisfies β-property with $\beta \leq 1$ and
$A \subseteq X \quad$ and $B \subseteq X$ then
i. $D(A)=\phi$ if $A=\phi$
ii. $\quad D(A) \subseteq D(\mathrm{~B})$ if $\quad A \subseteq B$
iii. $\quad D(D(A) \subseteq D(A)$
iv. $D(A \cup B)=D(A) \cup D(B)$

Proof: (i) and (ii) are clear. That $D(A) \cup D(B) \subseteq D(A \cup B)$ follows from (ii). To prove the reverse inclusion, let $x \in D(A \cup B), x=g d q \lim _{\alpha \in \Delta}\left(x_{\alpha}\right)$ where $\left(x_{\alpha} / \alpha \in \Delta\right)$ is a net in $A \cup B$. If $\exists \lambda \in \Delta$ such that $x_{\alpha} \in A$ for $\alpha \in \Delta$ and $\alpha \geq \lambda$ then ($x_{\alpha} / \alpha \geq \lambda, \alpha \in \Delta$) is a cofinal subnet of $\left(x_{\alpha} / \alpha \in \Delta\right)$ and $\lim _{\alpha \geq \lambda} g d q\left(x, x_{\alpha}\right)=\lim _{\alpha \in \Delta} g d q\left(x, x_{\alpha}\right)=\lim _{\alpha \in \Delta} g d q\left(x_{\alpha}, x\right)=\lim _{\alpha \geq \lambda} g d q\left(x_{\alpha}, x\right)=0$ so that $x \in D(A)$. If no such λ exists in Δ then for every $\alpha \in \Delta$, choose $\beta(\alpha) \in \Delta$ such that $\beta(\alpha) \geq \alpha$ and $\quad x_{\beta(\alpha)} \in B$. Then $\left(x_{\beta(\alpha)} / \alpha \in \Delta\right)$ is a cofinal subnet in B of $\left(x_{\alpha} / \alpha \in \Delta\right)$ and $\lim _{\alpha \in \Delta} g d q\left(x_{\beta(\alpha)}, x\right)=\lim _{\alpha \in \Delta} g d q\left(x_{\alpha}, x\right)=\lim _{\alpha \in \Delta} g d q\left(x, x_{\alpha}\right)=\lim _{\alpha \in \Delta} g d q\left(x, x_{\beta(\alpha)}\right)=0 \quad$ so that $x \in D(B)$.It now follows that $D(A \cup B) \subseteq D(A) \cup D(B)$ and hence (iii) holds. To prove (iv)
let $x \in D(D(A)), x=g d q \lim _{\alpha \in \Delta} x_{\alpha}, x_{\alpha} \in D(A)$ for $\alpha \in \Delta$, and $\forall \alpha \in \Delta$, let $\left(x_{\alpha(\beta)} / \beta \in \Delta(\alpha)\right)$ be a net in A Such that $x_{\alpha}=g d q \lim _{\beta \in \Delta(\alpha)} x_{\alpha_{\beta}}$.For each positive integer i $\exists \alpha_{i} \in \Delta$ such that $g d q\left(x_{\alpha_{i}}, x\right)=g d q\left(x, x_{\alpha_{i}}\right)<\frac{1}{i}$, and $\beta_{i} \in \Delta\left(\alpha_{i}\right) \ni \quad g d q\left(x_{\alpha_{i_{\beta_{i}}}}, x_{\alpha_{i}}\right)=g d q\left(x_{\alpha_{i}}, x_{\alpha_{i_{\beta_{i}}}}\right)<\frac{1}{i}$. If we write $\alpha_{i_{\beta_{i}}}=\gamma_{i} \forall$ i, then $\left\{\gamma_{1}, \gamma_{2} \ldots \ldots\right\}$ is directed set with $\gamma_{i}<\gamma_{j}$

$$
\text { if } i<j, g d q\left(x_{\gamma_{i}}, x\right) \leq g d q\left(x_{\gamma_{i}}, x_{\alpha_{i}}\right) \vee g d q\left(x_{\alpha_{i}}, x\right)
$$

$$
\begin{aligned}
& \leq \beta \max \left\{g d q\left(x_{\gamma_{i}}, x_{\alpha_{i}}\right), g d q\left(x_{\alpha_{i}}, x\right)\right\} \\
& \leq g d q\left(x_{\gamma_{i}}, x_{\alpha_{i}}\right)+g d q\left(x_{\alpha_{i}}, x\right) \\
& \\
& <\frac{2}{i}
\end{aligned}
$$

Similarly, $g d q\left(x, x_{\gamma_{i}}\right)<\frac{2}{i}$

Hence $x \in \mathrm{D}(A)$.

Corollory 1.11: If we write $\bar{A}=A \cup D(A)$ for $A \subset X$ the operation $A \rightarrow \bar{A}$ satisfies Kurotawski's

Closure axioms[6] so that the set $\mathfrak{J}=\left\{A / A \subset X\right.$ and $\left.\overline{A^{C}}=A^{C}\right\}$ is a topology on X. We call ($X, g d q, \mathfrak{J}$) topological space induced by $g d q$. We call $A \subset X$ to be closed if $\bar{A}=A$ and open if $A \in \mathfrak{J}$.
Corollory 1.12: $A \subset X$ is open (i.e $A \in \mathfrak{J}$) iff for every $x \in A$ there exists $\delta>0$ э $V_{\delta}(x) \subseteq A$
Proposition 1.13: Let $(X, g d q)$ be a $g d q$ metric space such that \diamond satisfies β-property with $\beta \leq 1$. If $x \in X$ and $\delta>0$ then $V_{\delta}(x)$ is an open set in $(X, g d q, \mathfrak{J})$.
Proof: Let $y \in B_{\delta}(x)$ and $0<r<\min \{\delta-d(x, y), \delta-d(y, x)\}$.
Then $B_{r}(y) \subset B_{\delta}(x) \subset A$, since $z \in B_{r}(y) \Rightarrow \min \{g d q(y, z), g d q(z, y)\}<r$

$$
\Rightarrow g d q(y, z)<r
$$

$<\min \{\delta-g d q(x, y), \delta-g d q(y, x)\}$
Now

$$
\begin{aligned}
g d q(x, z) & \leq g d q(x, y) \forall g d q(y, z) \\
& \leq \beta \max \{g d q(x, y), g d q(y, z)\} \\
& \leq g d q(x, y)+g d q(y, z) \\
& <\delta
\end{aligned}
$$

Similarly $g d q(z, x)<\delta$ therefore $z \in B \delta^{(x)}$
Hence $V_{\delta}(x)$ is open.
Proposition 1.14: Let ($X, g d q$) be a $g d q$ metric space such that \diamond satisfies β-property with Then $(X, g d q, \mathfrak{J})$ is a Hausodorff space and first countable.

Proof: Suppose $x \neq y$ we have to find δ such that $A_{\delta}=\left(B_{\delta}(x) \cup\{x\}\right) \cap\left(B_{\delta}(y) \cup\{y\}\right)=\phi$ Since $x \neq y$. One of $g d q(x, y), g d q(y, x)$ is non zero. We may assume $g d q(y, x)>0$
Choose $\delta>0$ such that $2 \delta<g d q(y, x)$.we show that $A_{\delta}=\phi$.
If $z \in A_{\delta}$ and $z=y, z \neq x . \quad z \in B_{\delta}(x)$.

$$
\Rightarrow g d q(z, x)<\delta
$$

$$
\Rightarrow g d q(y, x)<\delta<\frac{g d q(y, x)}{2} \quad \text { which is a contradiction. }
$$

Similarly if $z \neq y$ and $z=x, z \notin A_{\delta}$
If $y \neq z \neq x$ then $g d q(y, x) \leq g d q(y, z) \diamond g d q(z, x)$

$$
\begin{aligned}
& \leq \beta \max \{g d q(y, z), g d q(z, x)\} \\
& \leq g d q(y, z)+g d q(z, x)
\end{aligned}
$$

$$
<2 \delta<g d q(y, x) \quad \text { which is a contradiction. }
$$

Hence $A_{\delta}=\phi$
Hence $(X, g d q, \mathfrak{J}$) is a Hausodorff space.

If $x \in X$ then the collection $V_{\frac{1}{n}}(x)$ is base at x.Hence ($X, g d q, \mathfrak{J}$) is first countable.
Remark 1.15: Proposition 1.14 enables us to deal with sequences instead of nets.
Definition 1.16: A sequence $\left\{x_{n}\right\}$ in X is a $g d q$ Cauchy sequence if for every $\in>0$ there corresponds a positive integer $N_{0} \ni g d q\left(x_{n}, x_{m}\right)<\in$ or $g d q\left(x_{m}, x_{n}\right)<\in$ whenever $n \geq N_{0}$ and $m \geq N_{0}$ ie $\min \left\{g d q\left(x_{n}, x_{m}\right)<\in, g d q\left(x_{m}, x_{n}\right)<\in\right\}$. And $(X, g d q)$ is said to be $g d q$ complete if every $g d q$ Cauchy sequence in X is $g d q$ convergent.
Result 1.17: Define $D(x, y)=g d q(x, y) \diamond g d q(y, x)$, where $\mathrm{a} \diamond \mathrm{b}=\mathrm{a}+\mathrm{b}$, for $\mathrm{a}, \mathrm{b} \in R^{+}$.

1. D is a generalized dislocated metric $(D$ metric) on X.
2. For any $\left\{x_{\alpha} / \alpha \in \Delta\right\}$ in X and $x \in X \operatorname{gdq} \lim \left(x_{\alpha}\right)=x \Leftrightarrow D \lim \left(x_{\alpha}\right)=x$
3. X is a $g d q$ Complete $\Leftrightarrow X$ is Dcomplete.

Proof:(i) and (ii) are clear.we prove (iii)
Let X is a $g d q$ Complete
Let $\left\{x_{n}\right\}$ be a Cauchy sequence in (X, D) and $\in>0$ then there exist a positive integer $n_{0} \ni m, n \geq n_{0} . \lim D\left(x_{n}, x_{m}\right)<\in$

$$
\begin{aligned}
& \lim \left[g d q\left(x_{n} x_{m}\right) \forall g d q\left(x_{m} x_{n}\right)\right]<\epsilon \\
& \lim \left[g d q\left(x_{n} x_{m}\right)+g d q\left(x_{m} x_{n}\right)\right]<\epsilon \\
& \min \left\{g d q\left(x_{n} x_{m}\right), g d q\left(x_{m} x_{n}\right)\right\}<\epsilon
\end{aligned}
$$

$\therefore\left\{x_{n}\right\}$ is a $g d q$ Cauchy sequence.
Hence convergent.
$\therefore \lim g d q\left(x_{n}, x\right)=\lim g d q\left(x, x_{n}\right)=0$
$\therefore D\left(x_{n}, x\right)=0$
Hencce X is D complete.
Conversely suppose that,
Let X is Dcomplete.
Let $\left\{x_{n}\right\}$ be a $g d q$ Cauchy sequence in X and $\in>0$ there exist a positive integer $n_{0} \ni$

$$
\begin{aligned}
& \min \left\{g d q\left(x_{n} x_{m}\right), g d q\left(x_{m} x_{n}\right)\right\}<\frac{\epsilon}{2} \\
& \left.g d q\left(x_{n} x_{m}\right)+g d q\left(x_{m} x_{n}\right)\right\}<\epsilon \\
& \left.g d q\left(x_{n} x_{m}\right) \diamond g d q\left(x_{m} x_{n}\right)\right\}<\epsilon \\
& D\left(x_{n} x_{m}\right)<\epsilon
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ be a Cauchy sequence in (X, D)
\therefore there exist x in X э $D \lim x_{n}=x \Rightarrow \lim D\left(x_{n} x\right)=0$
$\Rightarrow \lim \left[g d q\left(x_{n} x\right)+g d q\left(\begin{array}{ll}x & x_{n}\end{array}\right)\right]=0$
$\left.\Rightarrow \lim g d q\left(x_{n} x\right)=\lim g d q\left(\begin{array}{ll}x & x_{n}\end{array}\right)\right]=0$
Hence X is $g d q$ D complete.
Remark: As a consequence of 1.17 we can derive a fixed point theorem for $g d q$ metric space if we can prove the same for D metric space and derive the contractive inequality for D from $g d q$.

The D metric induced by a $g d q$ metric on a set X is very useful in deriving fixed point theorems for self maps on ($X, g d q$) from their analogues for $(X, D$).If a self map f on a $g d q$ metric space $(X, g d q)$ satisfies a contractive inequality $g d q(f(x), f(y)) \leq \Phi_{g d q}(x, y)$, Where $\Phi_{g d q}$ is a linear function of $\{g d q(u, v) /\{u, v\} \subseteq\{x, y, f(x), f(y)\}\}$ then f satisfies the contractive inequality $D(f(x), f(y)) \leq \Phi_{D}(x, y)$ Where Φ_{D} is obtained by replacing $g d q$ in $\Phi_{g d q}$ by D.
B.E Rhodes[4] collected good number of contractive inequalities considered by various authors and established implications and nonimplications among them. We consider a few of them here.

Let (X, d) be a metric space, $x \in X, y \in Y, f$ a self map on X,
And $\quad a, b, c, h, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \alpha, \beta, \gamma$ nonnegative real numbers (=constants), $a(x, y), b(x, y), c(x, y), p(x, y), q(x, y), r(x, y) s(x, y)$ and $t(x, y)$ be nonnegative real valued continuous function on $X \times X$.

1. (Banach) :d(f(x),f(y)) $\leq a d(x, y), \quad 0 \leq a<1$
2. (Kannan) : $d(f(x), f(y)) \leq a\left\{d(x, f(x))+d(y, f(y)\} \quad, 0 \leq a<\frac{1}{2}\right.$
3. (Bianchini): $d(f(x), f(y)) \leq \mathrm{h} \max \{d(x, f(x)), d(y, f(y))\}, 0 \leq h<1$
4. $\quad d(f(x), f(y)) \leq a d(x, f(x))+b d(y, f(y))+c d(x, y), a+b+c<1$
5. $d(f(x), f(y)) \leq a(x, y) d(x, f(x))+b(x, y) d(y, f(y))+c(x, y) d(x, y)$,

$$
\sup _{x, y \in X}\{a(x, y)+b(x, y)+c(x, y) / x \in X, y \in Y\}<1
$$

6. (Chatterjea): $d(f(x), f(y)) \leq a[d(x, f(y))+d(y, f(x))], a<\frac{1}{2}$
7. $\quad d(f(x), f(y)) \leq \mathrm{h} \max [d(x, f(y)), d(y, f(x))] \quad, 0 \leq h<1$
8. $\quad d(f(x), f(y)) \leq a d(x, f(y))+b d(y, f(x))+c d(x, y), a+b+c$ <1
9. $\quad d(f(x), f(y)) \leq a(x, y) d(x, f(y))+b(x, y) d(y, f(x))+c(x, y) d(x, y)$,

$$
\sup _{x, y \in X}\{a(x, y)+b(x, y)+c(x, y) / x \in X, y \in Y\}<1
$$

10. (Hardy and Rogers):
$d(f(x), f(y)) \leq a_{1} d(x, y)++a_{2} d(x, f(x))+a_{3} d(y, f(y))+a_{4} d(x, f(y))+a_{5} d(y, f(x))$,

$$
\sup _{x, y \in X}\left\{\sum_{i} a_{i}(x, y)\right\}<1 \quad \text { For every } x \neq y
$$

11. (Zamfirescu):For each $x, y \in X$ at least one of the following is true:
I. $d(f(x), f(y)) \leq \alpha d(x, y), 0 \leq \alpha<1$
II. $\quad d(f(x), f(y)) \leq \beta[d(x, f(x))+d(y, f(y))], 0 \leq \beta<\frac{1}{2}$
III. $d(f(x), f(y)) \leq \gamma[d(x, f(y))+d(y, f(x))] \quad 0 \leq \gamma<\frac{1}{2}$
12. (Ciric): For each $x, y \in X$

$$
\begin{gathered}
d(f(x), f(y)) \leq q(x, y) d(x, y)+r(x, y) d(x, f(x))+s(x, y) d(y, f(y))+ \\
t(x, y)[d(x, f(y))+d(y, f(x))] \\
\sup _{x, y \in X}\{q(x, y)+r(x, y)+s(x, y)+2 t(x, y) \leq \lambda<1
\end{gathered}
$$

13. (Ciric): For each $x, y \in X$
$d(f(x), f(y)) \leq \mathrm{h}$
$\max \{d(x, y) d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))\}$,
$0 \leq h<1$
B.E Rhoades[4] established the following implications among the above inequalities:
(2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (12) \Rightarrow (13)
(2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (12) \Rightarrow (13)
(6) \Rightarrow (7) \Rightarrow (9) \Rightarrow (13)
(6) \Rightarrow (8) \Rightarrow (9) \Rightarrow (13)
(6) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12) \Rightarrow (13).

If d is a D metric instead of a metric, it is possible that $d(x, x) \neq 0$. As such these implications hold good in a D metric space as well when " $x \neq y$ " is replaced by " $D(x, y) \neq 0$ ". More over all these implications end up with (13). Thus a fixed point theorem for f satisfying the D metric version of Ciric's Contraction principal (13) yields fixed point theorem for f satisfying the D metric version of other inequalities.

Moreover $d(x, f(x))=0 \Rightarrow f(x)=x$ when d is a metric. However " $f(x)=x$ "does not necessarily imply $d(x, f(x))=0$ where d is a D metric. We in fact prove the existence of x such that $D(x, f(x))=0$ which we call a coincidence point of f. We now prove the following analogue of Ciric's Contraction principle.

2 Main Results

Theorem 2.1 : Let (X, D) be a complete D metric space such that \diamond satisfies β-property with $\beta \leq 1, f$ a self map on X and $0 \leq h<1$. If for all x, y with $D(x, y) \neq 0$.
$D(f(x), f(y)) \leq h \quad \max \{D \quad(x, y), D$
$(x, f(x)), D(x, f(y)), D(y, f(x)), D(y, f(y))\} \cdots\left({ }^{*}\right)$
Then f has a unique coincidence point.
Proof: Assume that f satisfies (*).

For $x \in X$ and any positive integer n write $0(x, m)=\left\{x, f(x) \ldots \ldots f^{m}(x)\right\}$ and $\delta[0(x, m)]=\sup \{D(u, v) /\{u, v\} \subset O(x, m)\}$.

We first prove the following
Lemma[7]: For every positive integer ' m ' there exists a positive integer $k \leq m$ such that $\delta[O(x, m)] \leq D\left(x, f^{k}(x)\right)$
Proof: To prove this it is enough if we prove that $\delta[0(x, m)] \leq \gamma_{m}$

Where $\gamma_{m}=\max \left\{D(x, x) \ldots \ldots . . D\left(x, f^{m}(x)\right)\right\}$ \qquad

We prove this by using Induction,

Assume that (1) is true for ' m ' i.e $\delta[0(x, m)] \leq \gamma_{m}$

Now we have to prove for $m+1$ i.e $\delta[0(x, m+1)] \leq \gamma_{m+1}$ \qquad (2)

We have $\delta[0(f(x), m)] \leq \max \{D(x, x)$, \qquad $\left.D\left(x, f^{m}(x)\right), D\left(x, f^{m+1}(x)\right)\right\}$

Also $D\left(f^{i}(x), f^{m+1}(x)\right) \leq \max \left\{D(x, x), \ldots \ldots . D\left(x, f^{m}(x)\right), D\left(f^{i-1}(x), f^{m+1}(x)\right)\right\}$
\qquad (3)

$$
\forall \quad 1 \leq i \leq m
$$

Hence $\delta[0(x, m+1)]=\operatorname{Sup}\left\{D\left(f^{i}(x), f^{j}(x)\right) / 0 \leq i \leq j \leq m+1\right\}$,

$$
=\operatorname{Sup}\left\{D(x, x), \ldots \ldots \ldots D\left(x, f^{m}(x)\right), D\left(x, f^{m+1}(x)\right)\right\} \cup
$$

$$
\operatorname{Sup}\left\{D\left(f^{i}(x), f^{j}(x)\right) / 0 \leq i \leq j \leq m+1\right\}
$$

$$
\begin{gather*}
\leq \quad \max \left\{\quad D \quad(x, x) \ldots \ldots . D \quad\left(x, f^{m}(x)\right), D\right. \\
\left.\left., f^{m+1}(x)\right), \delta(0(f(x), m))\right\} \\
\leq \gamma_{m+1} \text { from (1) and (3) }
\end{gather*}
$$

Hence $\delta[O(x, m+1)] \leq \gamma_{m+1}$. This proves the lemma.

Proof of the Theorem:

If $1 \leq i \leq m, 1 \leq j \leq m$

$$
D\left(f^{i}(x), f^{j}(y)\right)=D\left(f\left(f^{i-1}(x)\right), f\left(f^{j-1}(y)\right)\right)
$$

$$
\leq h \max \left\{D\left(f^{i-1}(x), f^{j-1}(y)\right), D\left(f^{i-1}(x), f^{i}(x)\right), D\left(f^{i-1}(x)\right.\right.
$$

, $\left.f^{j}(y)\right)$,

$$
D\left(f^{j-1}(x) \quad, f^{i}(x)\right) \quad, \quad D\left(f^{j-1}(x)\right.
$$

, $\left.\left.f^{j}(x)\right)\right\}$

$$
\begin{equation*}
\leq h \delta[0(x, m)] \tag{1}
\end{equation*}
$$

Also $\delta[0(x, m)] \leq \max \quad\left\{D\left(f^{j-1}(x), f^{j}(x)\right), D(x, x), D(x, f(x)), \ldots . . D\left(x, f^{m}(x)\right)\right\}$
\qquad
If m, n are positive integers such that $m>n$ then by (1)
$D\left(f^{m}(x), f^{n}(x)\right)=D\left(f^{m-n+1}\left(f^{n-1}(x)\right), f\left(f^{n-1}(x)\right)\right)$

$$
\begin{aligned}
& \leq h \delta\left(0\left(f^{n-1}(x), m-n-1\right)\right) \\
& \leq h D\left(f^{n-1}(x), f^{k_{1}+n-1}(x)\right) \text { for some } k_{1} ; 0 \leq k_{1} \leq m-n-1
\end{aligned}
$$

(by above lemma)

$$
\leq h^{2} \delta\left(0\left(f^{n-2}(x), m-n+2\right)\right.
$$

$$
\leq h^{n} \delta[0(x, m)]
$$

By the lemma $\exists k \ni 0 \leq k \leq m$ and $\delta[0(x, m)] \leq D\left(x, f^{k}(x)\right)$
Assume $k \geq_{1, D\left(x, f^{k}(x)\right) \leq D(x, f(x)) \diamond D\left(f(x), f^{k}(x)\right), ~}^{\text {(}}$ (

$$
\begin{aligned}
& \leq \beta \max \left\{D(x, f(x)), D\left(f(x), f^{k}(x)\right)\right\} \\
& \leq D(x, f(x))+D\left(f(x), f^{k}(x)\right) \\
& \leq D(x, f(x))+h \delta[0(x, m)] \\
& \leq D(x, f(x))+h D\left(x, f^{k}(x)\right)
\end{aligned}
$$

$$
\Rightarrow D\left(x, f^{k}(x)\right) \leq \frac{1}{1-h} D(x, f(x))
$$

If $k=0, \delta[0(x, m)] \leq D(x, x) \leq D(x, f(x)) \diamond D(f(x), x)$

$$
\begin{aligned}
& \leq \beta \max \{D(x, f(x)), D(f(x), x)\} \\
& \leq D(x, f(x))+D(f(x), x) \\
& \leq D(x, f(x))+h D(x, x) \\
\Rightarrow D(x, x) \leq & \frac{1}{1-h} D(x, f(x))
\end{aligned}
$$

Hence $D\left(f^{m}(x), f^{n}(x)\right) \leq h^{n} \delta[0(x, m)]$

$$
\leq \frac{h^{n}}{1-h} D(x, f(x))
$$

This is true for every $m>n$ Since $0 \leq h<1$. lim $h^{n}=0$. Hence $\left\{f^{m}(x)\right\}$ is a Cauchy sequence in (X, D).
Since X is complete, $\exists z \in X$ so that $\lim f^{n}(x)=z$
We prove that $D(z, f(z))=0$

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

$$
\begin{aligned}
0 \leq D(z, f(z)) & \leq D\left(z, f^{n+1}(z)\right) \vee D\left(f^{n+1}(z), f(z)\right) \\
& \leq \beta \max \left\{D\left(z, f^{n+1}(z)\right), D\left(f^{n+1}(z), f(z)\right)\right\} \\
& \leq D\left(z, f^{n+1}(z)\right)+D\left(f^{n+1}(z), f(z)\right)
\end{aligned}
$$

By continuity of $f, \lim D\left(f^{n+1}(x), f(z)\right)=0$

Hence $D(z, f(z))=0$, hence z is a coincidence point of f.

Suppose are z_{1}, z_{2} coincidence point of f then
$D\left(z_{1}, z_{1}\right)=D\left(z_{1}, f\left(z_{1}\right)=0\right.$, similarly $D\left(z_{2}, z_{2}\right)=0$

If $D\left(z_{1}, z_{2}\right) \neq 0$. Then by (*),
$D\left(z_{1}, z_{2}\right)=D\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)$
$\leq h \max \left\{D\left(z_{1}, z_{2}\right), D\left(z_{1}, f\left(z_{1}\right), D\left(z_{1}, f\left(z_{2}\right)\right), D\left(z_{2}, f\left(z_{1}\right)\right), \mathrm{D}\left(z_{2}, f\left(z_{2}\right)\right)\right\}\right.$
$\leq h D\left(z_{1}, z_{2}\right)$ a contradiction

Hence $D\left(z_{1}, z_{2}\right)=0$.Hence $z_{1}=z_{2}$. This completes the proof.

We now prove a fixed point theorem for a self map on a D metric space satisfying the analogue of (12).
Theorem2.2: Let (X, D) be a complete D metric space such that \diamond satisfies β-property with $\beta \leq 1$ and $f: \quad X \rightarrow X$ be a continuous mapping such that there exist real numbers $\alpha, \beta_{0}, \gamma \ni, 0 \leq \alpha<\frac{1}{2}, 0 \leq \beta_{0}<\frac{1}{2}, \gamma<\min \left\{\frac{1}{4}, \frac{1}{2}-\alpha, \frac{1}{2}-\beta_{0}\right\} \quad$ satisfying at least one of the following for each $x, y \in X$

$$
\begin{array}{cl}
\text { i. } & D(f(x), f(y)) \leq \alpha D(x, y) \\
\text { ii. } & D(f(x), f(y)) \leq \beta_{0}\{D(x, f(x)) \diamond D(y, f(y))\} \\
\text { iii. } & D(f(x), f(y)) \leq \gamma\{D(x, f(y)) \diamond D(y, f(x))\}
\end{array}
$$

Then f has a unique coincidence point.
Proof: Putting $y=x$ in the above and $\delta=\max \left\{2 \alpha, 2 \beta_{0}, 2 \gamma\right\}$ we get $D(f(x), f(x)) \leq \delta D(x, f(x))$

Again putting $y=f(x)$ in the above (i) (ii) (iii) yield

$$
D\left(f(x), f^{2}(x)\right) \leq 2 \alpha D(x, f(x))
$$

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

$$
\begin{aligned}
D\left(f(x), f^{2}(x)\right) & \leq \frac{\beta_{0}}{1-\beta_{0}} D(x, f(x)) \\
D\left(f(x), f^{2}(x)\right) & \leq \frac{\gamma+\delta}{1-\gamma} D(x, f(x))
\end{aligned}
$$

If $h=\max \left\{2 \alpha, \frac{\beta_{0}}{1-\beta_{0}}, \frac{\gamma+\delta}{1-\gamma}\right\}$ then $0 \leq h<1$ and

$$
D\left(f(x), f^{2}(x)\right) \leq h D(x, f(x))
$$

If m, n are positive integers such that $m>n$ then we can show that

$$
\begin{aligned}
& D\left(f^{n}(x), f^{m}(x)\right) \leq \frac{h^{n}}{1-h} D(x, f(x)) \\
& \text { since } 0 \leq h<1 ; \lim h^{n}=0
\end{aligned}
$$

Hence $\left\{f^{n}(x)\right\}$ is a Cauchy sequence in (X, D).
Since X is complete, $\exists z$ in X э $\lim _{n} f^{n}(x)=z$
Since f is continuous, $\lim f^{n+1}(x)=f(z)$ in (X, D).

$$
\begin{aligned}
\sin \text { ce } 0 \leq D & (z, f(z)) \leq D\left(z, f^{n+1}(x)\right) \diamond D\left(f^{n+1}(x), f(z)\right) \\
& \leq \beta \max \left\{D\left(z, f^{n+1}(x)\right), D\left(f^{n+1}(x), f(z)\right)\right\} \\
& \leq D\left(z, f^{n+1}(x)\right)+D\left(f^{n+1}(x), f(z)\right)
\end{aligned}
$$

It follows that $D(z, f(z))=0$, Hence z is a Coincidence point of f.
Uniqueness: If z_{1}, z_{2} are coincidence points of f then by hypothesis,
Either $D\left(z_{1}, z_{2}\right) \leq \alpha D\left(z_{1}, z_{2}\right)$ or 0 or $2 \gamma D\left(z_{1}, z_{2}\right)$
Since $0<\alpha<\frac{1}{2}$ and $0<\alpha<\frac{1}{4}$ we must have $D\left(z_{1}, z_{2}\right)=0$
Hence $z_{1}=z_{2}$. This completes the proof.
The D metric version for the contractive inequality (10) in the modified form $\left({ }^{* *}\right)$ given below yields the following
Theorem2.3 : Let (X, D) be a complete D metric space such that \diamond satisfies β-property with $\beta \leq 1$ and $f: X \rightarrow X$ be a continuous mapping. Assume that there exist non-negative constants a_{i} satisfying $a_{1}+a_{2}+a_{3}+2 a_{4}+2 a_{5}<1$ such that for each $x, y \in X$ with $x \neq y$
$D(f(x), f(y)) \leq a_{1} D(x, y) \diamond a_{2} D(x, f(x)) \diamond a_{3} D(y, f(y)) \diamond a_{4} D(x, f(y)) \diamond a_{5}$ $D(y, f(x))$
-----(**). Then f has a unique coincidence point.

Proof:

Consider

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

$$
\begin{aligned}
D\left(f(x), f^{2}(x)\right) \leq & a_{1} D(x, f(x)) \diamond a_{2} D(x, f(x)) \diamond a_{3} D\left(f(x), f^{2}(x)\right) \diamond a_{4} D\left(x, f^{2}(x)\right) \diamond a_{5} D(f(x), f(x)) \\
\leq & \beta \max \left\{a_{1} D(x, f(x)), a_{2} D(x, f(x)), a_{3} D\left(f(x), f^{2}(x)\right), a_{4} D\left(x, f^{2}(x)\right), a_{5} D(f(x), f(x))\right\} \\
\leq & a_{1} D(x, f(x))+a_{2} D(x, f(x))+a_{3} D\left(f(x), f^{2}(x)\right)+a_{4} D\left(x, f^{2}(x)\right)+a_{5} D(f(x), f(x)) \\
= & \left(a_{1}+a_{2}\right) D(x, f(x))+a_{3} D\left(f(x), f^{2}(x)\right)+a_{4} D\left(x, f^{2}(x)\right)+2 a_{5} D(x, f(x)) \\
& \quad \because D(f(x), f(x)) \leq D(x, f(x))+D(f(x), x))
\end{aligned}
$$

$$
\Rightarrow
$$

$$
D\left(f(x), f^{2}(x)\right) \leq\left[\frac{a_{1}+a_{2}+2 a_{5}}{1-a_{3}}\right] D(x, f(x))+\left[\frac{a_{4}}{1-a_{3}}\right] D(x, f(x))+\left[\frac{a_{4}}{1-a_{3}}\right]
$$

$$
D\left(f(x), f^{2}(x)\right)
$$

$$
\Rightarrow D\left(f(x), f^{2}(x)\right) \leq\left[\frac{a_{1}+a_{2}+2 a_{5}+a_{4}}{1-a_{3}-a_{4}}\right] D(x, f(x))
$$

$$
\Rightarrow D\left(f(x), f^{2}(x)\right) \leq \beta D(x, f(x)) \text { where } \beta=\left[\frac{a_{1}+a_{2}+2 a_{5}+a_{4}}{1-a_{3}-a_{4}}\right], 0<\beta<1
$$

If $m>n$ then

$$
\begin{aligned}
D\left(f^{n}(x), f^{m}(x)\right) & \leq D\left(f^{n}(x), f^{n+1}(x)\right) \diamond D\left(f^{n+1}(x), f^{n+2}(x)\right) \diamond----\diamond D\left(f^{m-1}(x), f^{m}(x)\right) \\
& \leq \beta \max \left\{D\left(f^{n}(x), f^{n+1}(x)\right), D\left(f^{n+1}(x), f^{n+2}(x)\right),----D\left(f^{m-1}(x), f^{m}(x)\right)\right\} \\
& \leq D\left(f^{n}(x), f^{n+1}(x)\right)+D\left(f^{n+1}(x), f^{n+2}(x)\right)+----+D\left(f^{m-1}(x), f^{m}(x)\right) \\
& \leq\left(\beta^{n}+\beta^{n+1}+\ldots \ldots+\beta^{m-1}\right) D(x, f(x)) \\
& =\beta^{n}\left(1+\beta+\beta^{2} \ldots \ldots+\beta^{m-n-1}\right) D(x, f(x)) \\
& <\frac{\beta^{n}}{1-\beta} D(x, f(x))
\end{aligned}
$$

Hence $\left\{f^{n}(x)\right\}$ is Cauchy sequence in (X, D), hence convergent.

Let $\xi=\lim _{n}\left(f^{n}(x)\right) \quad$ then $f(\xi)=\lim _{n}\left(f^{n+1}(x)\right) \quad$ (since f is continuous)
So $D(\xi, f(\xi))=\lim _{n} D\left(f^{n}(x), f^{n+1}(x)\right)$

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

$$
\leq \lim _{n} \frac{\beta^{n}}{1-\beta} D(x, f(x))
$$

Since $0<\beta<1, D(\xi, f(\xi))=0$. Hence $f(\xi)=\xi$.
Hence ξ is a coincidence point for f.

Uniqueness: If $D(\xi, f(\xi))=D(\eta, f(\eta))=0$
$\Rightarrow f(\xi)=\xi$ and $f(\eta)=\eta$

Consider

$$
\left.\begin{array}{rl}
D(\xi, \eta)=D(f(\xi), f(\eta)) & \leq a_{1} D(\xi, \eta) \diamond a_{2} D(\xi, f(\xi)) \diamond a_{3} D(\eta, f(\eta)) \diamond a_{4} D(\xi, f(\eta)) \diamond a_{5} D(\eta, f(\xi)) \\
& \leq \beta \max \left\{a_{1} D(\xi, \eta), a_{2} D(\xi, f(\xi)), a_{3} D(\eta, f(\eta)), a_{4} D(\xi, f(\eta)), a_{5} D(\eta, f(\xi))\right\} \\
& \leq a_{1} D(\xi, \eta)+a_{2} D(\xi, f(\xi))+a_{3} D(\eta, f(\eta))+a_{4} D(\xi, f(\eta))+a_{5} D(\eta, f(\xi)) \\
& \leq \gamma D(\xi, \eta) \quad \text { where } \gamma=a_{1}+a_{4}+a_{5}<1
\end{array}\right] \begin{array}{ll}
\Rightarrow D(\xi, \eta)=0 \quad & \text { Hence } \xi=\eta
\end{array}
$$

Acknowledgement: The author is grateful to Dr. I.Ramabhadra Sarma for his valuable comments and suggestions.

References:

[1] Pascal Hitzler: Generalised metrices and topology in logic programming semantics, Ph. D Thesis,2001.
[2] S.Sedghi: fixed point theorems for four mappings in d^{*}-metric spaces, Thai journal of mathematics, vol 7(2009) November 1:9-19
[3] S.G. Mathews: Metric domains for completeness, Technical report 76, Department of computer science, University of Warwick, U.K, Ph.D Thesis 1985.
[4] B.E.Rhoades : A comparison of various definitions of contractive mappings,Trans of the Amer.Math.Society vol 226(1977) 257-290.
[5] V.M.Sehgal : On fixed and periodic points for a class of mappings , journal of the London mathematical society (2), 5, (1972) 571-576.
[6] J. L. Kelley. General topology. D. Van Nostrand Company, Inc., 1960.
[7] Lj. B. Ciric : A Generalisation of Banach's Contraction Principle, American Mathematical Society, volume 45, Number 2, August 1974.

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

JournalTOCs

PKP | public knowlidgef project

GEORGETOWNUNIVERSITY
LIBRARY

