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Abstract

This paper presents solution for the first ordezfudifferential equation by Runge —Kutta methodwafer
two with new parameters and Harmonic meak 0§ which are used in the main formula in order to
increase the order of accuracy of the solutions Tinethod is discussed in detail followed by a catepl
error analysis. The accuracy and efficiency ofgt@posed method is illustrated by solving a fuzzial
value problem.

Keywords: Fuzzy differential equations, multi-step Rungettdumethod, higher order derivative
approximations, harmonic mean.

1. Introduction

Fuzzy Differential Equation (FDE) models have widage of applications in many branches of
engineering and in the field of medicine. The cqubad fuzzy derivative was first introduced by SChang
and L.A.Zadeh [7].D.Dubois and Prade [8] discusdiffdrentiation with fuzzy features.M.L.puri and
D.A.Ralesec [18] and R.Goetschel and W.Voxman gtBitributed towards the differential of fuzzy
functions. The fuzzy differential equation andiaditvalue problems were extensively studied by Qela
[11,12] and by S.Seikkala [19].Recently many rede@apers are focused on numerical solution afyfuz
initial value problems (FIVPS).Numerical Solutiohfozzy differential equations has been introdubgd
M.Ma, M. Friedman, A. Kandel [14] through Eulertined and by S.Abbasbandy and T.Allahviranloo [2]
by Taylor method.Runge — Kutta methods have alem lseudied by authors [3,17]. Numerical Solution of
fuzzy differential equations by Runge —Kutta metlhédrder two with new parameters has been by
V.Nirmala, Saveetha, N and S.Chenthur Pandian[a8]ky Runge —Kutta method of order four with new
parameters by V.Nirmala and S.Chenthur Pandian [16]

This paper is organised as follows: In sectioro®e basic results on fuzzy numbers and definition o
fuzzy derivative are given. Section 3 contains JuZauchy problem whose numerical solution is thenma
interest of this paper. Second order multi -stepdeu-Kutta method with new parameters based on
harmonic mean is discussed in section 4.The prapwsthod is illustrated by a solved numerical examp
in section 5and the result is compared with Eulapproximation and with the approximation by Runge-
Kutta method proposed in [15] and conclusion isention 6.

2. Preliminaries
Consider the initial value problem

{ Y® =fty®)to<t<b

2.1)
y(to) = yo

We assume that
1.£(t,y(t)) is defined and continuous in the sttip< t < h,—o0 < y < oo with t, andb finite.

2. There exists a constahtsuch that for anyt* in [t,, b] and any two numbers
yand y*|f(t,y) = f(t,y)I < Lly = y|
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These conditions are sufficient to prove that there exists on[to, b], a unique continuous, differentiable
function Y (t) satisfying (2.1).

The basis of all Runge-Kutta methods is to express the difference between the value of y at t;, 1 and {,,
as Yn+1 — Yn = Zﬁo w;k; (2.2) Where w;’s are constant for all [ and
k; = hf (t, + a;h, y, + Z;_:ll cijk;) (2.3) Most efforts to increase the order of accuracy of the
Runge-Kutta methods have been accomplished by increasing the number of Taylor’s series terms used
and thus the number of functional evaluations required [6].The method proposed by Goeken .D and
Johnson .0[9] introduces new terms involving higher order derivatives of ’f’ in the Runge-Kutta ki terms
(i > 1) to obtain a higher order of accuracy without a corresponding increase in evaluations of’f’, but
with the addition of evaluations of f".

The second order Runge-Kutta method for autonoragsiems proposed by Goeken.D andJohnson.O [9]:

ConSidern_I_l = yn + blkl + bzkz (24)
Wherde; = hf (y,) (2.5)
k, = hf (yn + az1kq + hay, fy ) k1) (2.6

New Multi-step Runge- Kutta method with harmonicamevas discussed and used approxiryfétm the
stagek, by Ababneh,0.Y,Ahmad,R.,and Ismail,E.S [1]. Irsthaper, we use exattin stagk,.Then,
the new multi-step Runge —Kutta method of order isvgiven by

kqk
Yn+1 = Yn T iliki (2.7)
Wherek, = hf (y,) (2.8)
ky = hf (Yn + az1kq + hay, fo, (V) k1) R}

Utilizing the Taylor’s series expansion technigire2.7),we get the parametes; = 1
and there is no any order condition to choggg and hence we take,, = 9/10
Runge-Kutta method of order two is given by:

kqk
V(1) = y(tn) + 52 (2.10)
1 2
Wheréde; = hf (v(t,)) (2.11)
9
ky =hf(y(t,) +k; + hﬁ(fy(ya:n))kl)) (2.12)
Theorem 2.1Let f (¢, y)belong toC?[a, b] and its partial derivatives be bounded and letsssime that
ai+jf Li+J

there exist positive constarfisM, such thalf (t,y)| < M, | i +j < m,theninthe

Runge —Kutta method of order two ,we have([13]),

Y(tiv1) = Yier = (63/30)ML2R° + O(h*).
Definition 2.1. A fuzzy numben is a fuzzy subset & (ie)u: R = [0,1] satisfying the following
conditions:

1. is normal (ied x, € R with u(xy) = 1.
2.u is convex fuzzy set

(ieyu(tx + (1 — t)y) = min{u(x),u(y)},vt € [0,1],x,y € R.
3.u is upper semi continuous ¢h 4{x € R, u(x) > 0} is compact.

otiayJ Mi-1

Let E be the class of all fuzzy subsetsthifhenE is called the space of fuzzy numbers [11].
Clearly, RcE andRcE is understood aB = {X,: X is usual real number}.
An arbitrary fuzzy number is represented by an @deair of functions

(g(r),ﬂ(‘r‘)), 0 < r < 1 that satisfies the following requirements.
1.E(r)is a bounded left continous non-decreasing funatiger [0,1],with respect to any ‘r'.
2.u(r) is a bounded right continuous non-increasing fonavver [0,1] with respect to any ‘r’.
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u(r) <u(),0<r<1.

Then the r-level set ifu], = {x \u(x) =1r},0 <r < 1is a closed and bounded interval, denoted
by[u], = [u(r), u(r)].And clearly,[u]y = {x \u(x) > 0} is compact.

Definition 2.2. A triangular fuzzy numbaet is a fuzzy set in E that is characterized by atewad triple
(up, ug, u,) € R withu; < u, < u, such thaful, = [u; u,] and[u]; = {u}.

The membership function of the triangular fuzzy temu is given by
X—uj

, U S x < u.
Uc—Up

ulx) = 1,x =u,
Ur—X

— U <x < U,
We will write ()u > 0,if u; > 0. (i)u = 0,if u; = 0. (i) u <0, if u. <0.
(iviu < 0,if u. < 0.

Let] be a real jnterval. A mappigg I — E is called a fuzzy process, anddts— level set is denoted
by[y()]e = |y(& @), ¥(t; @)|,t € 1,0 < a < I. The seikkala derivativg’ (t) of a fuzzy process
is defined byy ()], =Iy’(t; ),y (t;a)|,t €1,0 < a < I, provided that this equation defines
a fuzzy number, as in [19].

Lemma2.1. Leu, v € E ands scalar, then for € (0,1]
[+ v], = [u() + v(), 7@ + 5]
[u—v], = [ul) —v(),ul) —v()]
[, v], = [min{u (). 2(r), u(r). 50, 70 v(), B(@). (),
max{u(). v(r), u(). 50, 4. v(), w ). 50},
[sul, = s [u];.
3. A Fuzzy Cauchy Problem

Consider the fuzzy initial value problem

{y’(t) =f(t.y(®),ter=[0,T] .
y(0) = y,.
Wheref is a continuous mapping froR, X R into R andy, € E with r-level sets
[yO]T‘ = I:X(O; T'), y(o; r)] T € (Oil]

The extension principle of Zadeh leads to the feiitg definition of f (t, y) wheny = y(t) is a fuzzy
number, f(t,y)(s) = sup{y(t)\s = f(t,7)},s € R.

It follows that,[f (¢, ¥)], = [f(t,y; r), f(t,y; r)] ,7 € (0,1],

Wheref (t,y; ) = min gf_(t, \u € y(r),?(r)]}, f(t,y;r) =
max {7 (t,u)\u € |y(),y(r)|;. -

Theorem3.1. Let f satisfy |f(t, v) — f(t, 17)| <g(t|v-v]),t=0,v,VER, (32

whereg: R, X R, — R, is a continuous mapping such tirat> g(t, r) is non decreasing, the initial
value problemu’(t) = g(t,u(t)),u(0) = uy, (8.3

has a solution oR ;. foru, > 0 and that(t) = 0 is the only solution of (3.3) fat, = 0. Then the
fuzzy initial value problem (3.1 ) has a uniquezysolution.

Proof: see [19].

In this paper we suppose (3.1) satisfies the Ihgsi$ of theorem3.1, also.

(3.1)

4 .The Second Order Runge —Kutta Method with Harmorc Mean
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Let the exact solutiof (t)], = [Y.(t;7), Y (t; )] is approximated by sonf@(¢)], =

[X(t; r),y(t; r)].From (2.7) to (2.9), we define
et (b (Enir)) Ko (tn, 3 (Enir)

Y(tnaim) =y (tim) = 2 S ety ) S C
=) = o By i) Bty )

V(i) = 2 ) + Tty ) (4-2)

ﬁ(t,y(t; ) = min{h. f(t,u) \u € y(@.m),y(t, r)]} (4.3)

ki (t, y(t, 7)) = max{h. f(t,u) \u € y(t,7),y(t, r)]} (4.4)

ka(t,y(t,7)) = minfh. f(t,0) \u € |z,(6y (6 ) Z(LYED]) @5)

ko (£, y(6,7)) = max{h. f(t,0) \u € |z (6, y(t, ™), Z (LY} (46)
Where

z_1(t,)’(t, r) = y(t,r) + ﬁ(t,y(t, )+ %g
z(tyen) =¥(En) + k(L yEn) +=a
a = min{h. f,(t,u). v\u € [X(t' ), y(t, r)] &v € [ﬁ(t'J’(tF "),k (6 y(E; r))]}
a = max{h. f, (t,u).v\u € [X(t' ), y(t, r)] &v € [ﬁ(t,y(t; ), k1 (t, y(; r))]}

Define,

ky (6, (& 7))k (8, y (£ 7))
ki(t, y(&;1) + ko (t, y(E57))
6Lty ()] = 222 6YEN) ka6 (1)

k1(t’)’(ti 7‘)) + kz(t'Y(t; T))
The exact and approximate solutiong,gt0 < n < N_are denoted by
[¥ (t)) = [¥ (i 1), ¥ (i )] andly (B0)]y = [yt 1), 3t ) | respectively
The solution is calculated by grid points at =ty < t; <t; < vvvvvvv e Sty =D
anch = &9 = the1 — tn-
Therefore, we have
g(tn+1; r) = g(tn; r) + F[ty, Y(tn» T‘)] (4.9)
Y(tpesr) =Y(tyur) + Glt,, Y(t, )] (4.10)
And Y(tns1;7) = Y(tn;7) + Flty, y(tn, 7)] (4.11)
V(tns1;7) =Yt 1) + Gtn, y (6, 7)] (4.12)
The following lemmas will be applied to show thagergences of theses approximates.
i.e.limy_oy(t,r) =Y (t,r) andimy_, y(t,r) = y(t,1).
Lemma: 4.1 Let a sequence of numbdtg, }N_, satisfy|W,.1| < AW, | +B, 0<n<N -1,
for some given positive constants A and B, then W, | < A" |W,| + B %, 0<n<

N —1.
Proof: see [14]

Flt,y(t;r)] =2 (4.7)

(4.8)
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Lemma: 4.2 Let the sequence of numHatg, }N_,, {V, }N_, satisfy|W,, 1| < |W,| +
Amax{[W,|, Vo |} + B, [Vnyal < Vol + Amax{|W,,|, |V, [} + B,
for some given positive constants A and B, and tetlg = |W,,| + |V,,[,0 < n < N.

TherlJ,, < AnU, + E%,O <n < N,whered = 1 + 24 andB = 2B
Proof: see [14].
Let F (t,u, v) andG (t, u, v) be obtained by substitutiy (t)],, = [u, v] in (4.7&4.8),

Kq[tu,v]K, [tu,v] K. K,
Flt,u,v] = 2 ——= , G[t,u,v] = g KaltuviKyltuv]

ﬁ[t,u,v]+& [tu,v] Kq[tu,v]+K, [tu,v]
The domain where F and G are defined is therefore

K={t,u,v)\0<t<T,—0o<v<ow—w<u<< v}
Theorem 4.1: leF (t, u, v) andG (t,u, v) belong toC? (K) and let the partial derivatives of F and G

be bounded over K .Then, for arbitrary fixed) < r < 1,the approximate solutions (4.11&4.12)

converge to the exact solutioB{t; ) andY (t; ) uniformly in t.

Proof: See [14].
5 .Numerical Example
Example 1. Consider the fuzzy initial value probjem
{ y'(®) =y®),t€[01],
y(0) = (0.75 + 0.25r,1.125 — 0.1257),0 < r < 1.
The exact solution is given By(t; ) = y(t; r)et, Y (t;r) = y(t;r)ef which at = 1,

Y(1;r) =[(0.75 + 0.257)e, (1.125 — 0.125r)e],0 < r < 1.
The exact and approximate solutions obtained b¥thHer method and by the Runge-Kutta method of
order two with new parameters [New RK] [15] andtbg proposed New Multi-Step Runge-Kutta method

[New MSRK] with *h = 0.1’ are given in Table: 1
6. Conclusion

In this work, we have used the proposed secondrdrdnge-Kutta method to find a numerical solutbn
fuzzy differential equations. Taking into accoum tonvergence order of the Euler metho@ (&),a
higher order of convergen@(h3) is obtained by the proposed method and by théadgbroposed in
[15]. Comparison of the solutions of example 5.@vehthat the proposed method gives a better salutio
than the Euler method and by the Runge-Kutta mettfiaidder 2 proposed in [15].
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Table: 1 Quamison of Results
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Exact solution

Euler's Approximation

New RKApproximation

New MSRK Approximation

0 2.0387113,3.0580670 1.9453068,2.9179603 2.03883¥9494 2.0386636,3.0579953
0.2 | 2.1746254,2.9901100 2.074994,2.8531167 2.1 842489995 2.1745745,2.9900399
0.4 | 2.3105395,2.9221529 2.2046811,2.7882731 2.3M029220406 2.3104854,2.9220844
06 | 2.4464536,2.8541959 2.3343682,2.7234296 2.44535540861 2.4463963,2.854129

0.8 | 2.5823677,2.7862388 2.4640553, 2.658586 2.9826/861317 2.5823072,2.7861735
1 2.7182818,2.7182818 2.5937425,2.5937425 2.718271B1773 2.7182181,2.7182181
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