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Abstract 

We study the dynamical system of Ikeda map on three dimension, we find some the general properties, and 

we show some chaotic properties of it. We prove the Lypaunov exponent of Ikeda map is positive and Ikeda map 

has sensitivity dependence to initial condition. Finally we use the Matlab program to draw the sensitivity of 

Ikeda map.  

 

1. Introduction 

The Ikeda map occurs in the modeling of optical recording media (crystals) the numerical results obtained 

to date show that under certain parameter values the Ikeda map exhibits highly complicated dynamical behavior 

[2] for chaotic systems, which exhibit sensitive dependence on initial conditions this problem is especially 

important [3]. When we iterate the map using a computer the inevitable rounding errors cause that the trajectory 

generated by a computer and the true one diverge exponentially and after a certain number of iterations become 

uncorrelated. In this work we study the Ikeda map which has form Ia,b .In the 

literature there are some authors study Ikeda map ,they study the bifurcation of it.  

2. Preliminaries 

Let F: XX be a map and let x0 be a point in the domain of F, then F(x0)= the first iterate of x0 for F 

and F(F(x0))= the second iterate of x0 for F. More generally, if n any positive integer, and xn is the nth iterate of 

x0 for F, then F
n+1

(x0) is the (n+1)th iterate of x0 for F .Let V be a subset of R
3
. Let GL (3,R) be the set of all 33 

matrices,   where a, b, c, d, e, f , r, s, t  R such that det(M)=±1 The map F can always be 

represented in the form   , for all v in V when f1 , f2 , f3 are real valued coordinate map of F. In 

our work, Any   for which  , f1 (P) = P1 , f2 (P) = P2 , f3 (P) = P3   is called a fixed point of the 

three dynamical system. Let   be a fixed point of F, then  is attracting fixed point. if and only if there 

is a disk centered of  such that 
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 in the disk. x0 is an eventually 

fixed point of F if there is a positive integer m such that F
m
 (X0) is a fixed point of  F. assume that the first 

partials of the coordinate maps f1 , f2 and f3 of F exit at v0, the differential of F  at v0 is the nonlinear map DF(v0) 
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defined on R
3
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vDF  , for all v0 in R

3
. The determinant of DF(v0) is 

called the Jacobian of F at 0v  and is denoted by J=det DF(V0). if 0 )(det 0vDF <1, then  F is said to be 

area-contracting at 0v , and if )(det 0vDF >1, then  F is said to be area-expanding at 0v A map F is called a 

diffeomorphism provided it is: one-to-one, onto, C

 

and its inverse F
-1

 is C

.Suppose that A is a 33 matrix. The real number  is an eigenvalue of A provided that 

there is a nonzero v in R
3
 such that Av=v ,in this case v is an eigenvector of A . if1, 2, 3 are eigenvalues of 

any matrix satisfying |i|≠1 ,i=1,2,3 then we call the matrix M, a hyperbolic matrix. 

 

3. The General Properties of Ikeda Map  

In this section, we introduce some general properties of Ikeda map Ia,b. if a≠1  and  b≠1 then Ia,b has unique 

fixed point, we show that by proposition below:- 

Proposition (3.1):- If a≠1 and b≠1 then Ikeda map Ia,b has unique fixed point 

Proof:- by the definition of fixed point, we get:- 
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since a≠1 we get y=0  

  Hence x =
a1

1


  then 























0

0
a1

1

 is the fixed point. 

Proposition (3.2):- 

If a=1, b=1 and  t ≠ n  then Ikeda map has infinite fixed points. 

If a≠0,1 , b=1 , t≠ n and t ≠ ) then Ikeda map has infinite fixed points. 

 

Proof:- 

1. By the definition of fixed point, we get:-  =  , then t=t , so   

then  since t≠n therefore  so   , 

then , then  
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   therefore y=  , then the fixed point of  Ikeda 

map is , tR. 

2. By the definition of fixed point, we get:-  = , then  t=t  , so  

a x sint +a y cost=y  then  a x sint= y-a y cost  since a≠0, and t≠ n  therefore    , so 

 1+  –  then  a snit +a y cost + a
2
 y cos

2
t – a

2
 y sin

2
t- y + a y cost=0 since 

t≠  ) therefore  y= y=(a sint) / (1+a
2
-2 a cost) and x=(1-a cost)/(1+a

2
-2 a cost) then Ikeda map has 

infinite fixed points 

Proposition(3.3) :-The Jacobien of Ikeda map Ia,b is a
2
b . 

Proof:  the differential matrix of Ikeda is 
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In some conditions the Ikeda map is area contracting at each point in R
3
 but in other conditions it is expanding 

area. 

Proposition (3.4):- 

Let Ia,b be the Ikeda map :- 

(1)If |a|<1 and |b|<1 then Ia,b  is area contraction at v ; vR
3
 . 

(2)If |b|>1,b≠0 and |a|
2
>   then Ia,b is area expending at v ; vR

3
 . 

(3) If |a|>1,a≠0 and |b|> then Ia,b is area expending at v ; vR
3
 

 

Proof:-  

1. If |a|<1 and |b|<1 then |b | <1  so the absolute Jacobian  of Ikeda map is least than 1 so from definition of 

area contracting. 
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2. If b≠0 since | J|=|det(D
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3. Similarity proof (2). 

Now, we study the conditions which Ikeda map is onto. 

Proposition (3.5):- 
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Remark:- 

1. If a=0, b≠0 and t≠(  

2. If a≠0 , b=0 and t≠( is not onto. 

3. If a=0 , b=0 and t≠( is not onto. 

Remark:-If a=0  then Ia,b is not one to one ,so it is not diffeomorphism. 

Now, we study the conditions which Ikeda map is one to one. 

Proposition (3.6):-ifa≠0 and b≠0 then Ikeda map is one to one. 

Proof:- 0tsinaytcosax1  , 0tcosaytsinax  , 0bt   then  t=0 so  y=0  since a≠0 therefore  x= 

.then the kernel of Ia,b is unique set. 

Proposition (3.7):-If a≠0 and b≠0 Ikeda map is diffeomorphism 

Proof: . By proposition (3.5) and(3.6) Ikeda map is onto and one to one Note that  
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for all n N and n  2.Then the partial 

derivatives are exist and continuous then Ia,b is C
.

, by the above the Ikeda map has inverse map. so by the 

definition Ia,b is diffeomorphism map. 

Proposition (3.8):- I f a≠1 and b≠1 then The eigenvalues of Ikeda map is 1,2=a, 3=b at the fixed point. 

Proof :-  so by proposition(3.1)Ikeda map has unique fixed point v0= 
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Proposition (3.9):-Let Ia,b  be Ikeda map and  a≠0 , b≠0 then 

1. If |a|<1 and |b|<1 then the fixed point of Ikeda map is attracting fixed point. 

2. If |a|>1 and |b|>1 then the fixed point of Ikeda map is repelling fixed point . 

3. If |a|>1 and |b|<1 then the fixed point of Ikeda map is saddle fixed map. 

4. If |a|<1 and |b|>1 then the fixed point of Ikeda map is saddle fixed map. 

Proof:- 

By proposition (3.4) and definition it's satisfying (1, 2, 3, 4) 
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Proposition (3.10):-1. 
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Proposition (3.11):- If a≠1 and b≠1 the eventually fixed points set of Ikeda map is the set of fixed points. 

Proof:-By proposition (3.1), we have only one fixed points and clearly they is eventually fixed point

























0

0

a1

1

. 

Suppose that there exists an eventually fixed point 

















t

y

x

 for 

















t

y

x

b,a
I  and 











































0

0

a1

1

t

y

x

 then by definition of 

eventually fixed point. Then exists a positive integer number n such that 

















t

y

x

In
b,a

 is a fixed point of Ia,b so then 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                         www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.4, 2014 

 

139 

is nZ
+
 such that 
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Proposition (3.12):- If a≠1 and b≠1 then The Ikeda map has periodic points of period two 

Proof:-  Suppose  that  there  exists a periodic point of  period 2 for baI ,  then for different we have 
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Proposition (3.13):- 

Ikeda map has periodic points of period 3 

Proof:- 
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a (a x sin(0) + a y cos(0)) cos(0) = y then a
2
 y = y therefore y= 0 so 1 + a(1+ a(1+a x cos(0) – a (0) sin(0)) cos(0) 

– a((a x sin(0) + a(0) cos(0) sin(0)) cos(0) – a (a(1+a x cos(0) –a(0) sin(0)) sin(0) + a(a x sin(0) + a(0) cos(0)) 

cos(0)) sin(0) = x then 1 + a + a
2
 +a

2
 x = x therefor 1 + a + a

2
 = x – a

2
 x then    x=  therefore  
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4. Sensitivity Dependence on Initial Condition of Ikeda Map:- 

The f: X→X is said to be sensitive dependence on initial conditions if there exists ε > 0 such that for 

any x0∈X and any open set U⊂X containing x0 there exists y0∈U and n∈ z
+
 such that d(f

n
(x0),f

n
(y0)) > ε That is 

∃ε>0,∀x, ∀δ > 0, ∃ y∈ B δ(x), ∃ n:d(f
n
(x0),f

n
(y0)) ≥ ε.  A dynamical system has sensitive dependence on initial 

conditions on subset x
'
 X if there is >0 such that for every xx

'
 and >0 there are yY and nN for which 

d(x,y) < and d(f
n
(x),f

n
(y))> .Although there is no universal agreement on definition of chaos, its generally 

agreed that a chaotic dynamical system should exhibit sensitive dependence on initial conditions chaotic. 

Al-Shara'a and Al-Yaseen [1] defined an order on R
n
  as: let x=(x1,x2,……..,xn) and  y=(y1,y2,…….,yn)R

n
 we 

write x y if and only if xi<yi  ,i=1,….,n 

 

 

Proposition (3.14):-If |a|>1 or |b|>1 then Ia,b is sensitive dependence on initial conditions 

Proof:- let 



















t

y

x

x  be a point in R
3
, since the sine and cose maps are bounded then  























bt

ayax

ayax1

XI b,a .  

Case (1):- If 1x   then by hypothesis and by definition of the order a bove. 

 














 

bt

ay

ay1

XI b,a   and  



















 

bt

y2a

y2a1

XI2
b,a

   , that is ,  

















 

bt

yna

yna1

XIn
b,a

  

thus if 1a  or |b|>1 then n .then   xIn
b,a

, let 
3R

3
y

2
y

1
y

y 

















  such that   t,y,xd , 

       2bt2ay2ay1)t(I b,a),y(I b,a),x(I b,ad  ,

  y4ay4ay2a212t2b2bt
2

y2a
2

y2a1)t(2I b,a
),y(2I b,a

),x(2I b,a
d 













 





 =

y)4a22a2(12t2b   

and by induction      nbt
n2ay

n2ay1)t(nI b,a
),y(nI b,a

),x(nI b,a
d 





  

If  and n→∞ , 




 )t(nI b,a

),y(nI b,a
),x(nI b,a

d  hence Ia,b has sensitive dependence an initial 

condition. 
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Case (2):- If >1 from of the Ikeda map, then the iterates of  Ikeda map are diverage. Thus it has sensitive 

dependence on initial condition. 

Then we study the sensitivity to initial condition of map by varying thepoint (xi,yi ,zi) as follows (i.=1,2)  

control parameters (a,b) by using (Matlab) to analysis of view for sensitivity dependent on initial condition .this 

work show as in figure(1) Now consider the map we get sensitivity to initial condition on the initial  

 

 

 

 

 

5. The Lyapunov Exponents of Ikeda Map 

Let f:X→X be continuous differential map where X be any space then all x in X in direction V. the 

 

 

a=0.99,b=0.01 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 

 

 

a=0.48,b=0.01 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 

 

a=0.9 ,b=0.01 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 

 

a=0.98,b=0.01 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 

 

 

a=0.79,b=0.1 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 

 

 

 

a=-0.30,b=-0.1 with initial points 

(0.7,0.2 ,0.4)and(0.8,0.3,0.2) 
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Lyapunov exponent was defined of a map f at x by L

(x,v)= v|| whenever the limit exists. In 

higher dimensions, for example in R
n
 the map f will have n Lyapunov exponents,say (X,V1),  (X,V2),   

 (X,V3),……,  (X,Vn), for a minimum n Lyapunov exponent that is (X,V)= max{  (X,V1),  (X,V2),   

 (X,V3),……,  (X,Vn)} where v=(v1,v2,…….,vn).The usual test for chaos is calculation of the largest 

Lyapunov exponent [4].  A positive largest Lyapunov exponent indicates chaos.  When one has access to the 

equations generating the chaos, and which measure the rates of separation from the current orbit   point along 

m orthogonal directions .The Lyapunov exponent  is greater then zero. a quantitative measure of the sensitive 

dependence on the initial conditions is the Lyapunov exponent  it’s the a averaged rate of divergence(or 

convergence) of two neighboring trajectories in the phase space .we recall and discuss the Lyapunov exponent 

first since the Lyapunov exponent are orthogonal quartitive. Representing the average divergence of nearby 

trajectories in phase  space. then is a Lyapunov exponent in the direction of each of the axis (since we can 

choose our second trajectory to start from a point which denotes some perturbation a long each of the different 

dimensions of the phase space).so the Lyapunov exponents are relatied to the expanding or contracting of the 

flow of the system in different direction since the positive (orientation) of the ellipsoid changes as it develops. 

The directions associated with each exponent vary thronghout the attractor a system is refered to as chaotic. 

Proposition (3.15):- Let Ia,b:R
3
→R

3
 be the Ikeda map either |a|>1 or |b|>1 then the map has positive Lyapunov 

exponents. 

 proof:- if |a|>1 and by proposition |1,2|=|a|, :. L1,2 =  and 

since |3|=|b| then either L3     or L3  by 

definition max{L1

(x1,v1),L2


(x2,v2),L3


(x3,v3)} then  L >0 . In the way, we can prove 

if |b|<1 then Lyapunov exponent of Ikeda map is positive 
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