On Best One-Sided Approximation By Interpolation Polynomials In Space $\mathrm{L}_{\mathrm{p} . \mathrm{w}}(\mathrm{X})$

S.K.Jassim ${ }^{1}$ and Alaa.A.Auad ${ }^{2 *}$
1. Department of Mathematics, College of Science, University of Al-Mustansiry, Iraq
2. Department of Mathematics, College of Education of pure science, University of Al-Anbar, Iraq
*E-mail addresses: alaaadnan2000@yahoo.com

Abstract

The aim of this article is to obtain the order of convergence of weighted space by interpolation polynomials on [$\pi, \pi]$. Our order of convergence is given in terms of error of the best one-sided approximation or in terms averaged modulus. However if f is a smooth function, then we can given the order in terms of $E_{n}\left(f^{(m)}\right)_{p, w}$.

Keyword : One-sided approximation, Averaged modulus, Interpolation polynomials

1. Introduction

We shall consider the functions defined on \mathbb{R} which are 2π-periodic on every variable. With \mathbb{T}_{n} we denote the set of all trigonometric polynomials of degree n on every variable. Set $X=[-\pi, \pi]$. We denote the set of 2π periodic bounded measurable functions with usual sup-norm by L_{∞} such that
(1.1) $\ldots \ldots . L_{\infty}(X)=\left\{f:\|f\|_{\infty}=\sup \{|f(x)|, \forall x \in X\}<\infty\right\}$.

The space $\mathrm{L}_{\mathrm{p}}(\mathrm{X}),(1 \leq \mathrm{p}<\infty)$ is equipped with the following norm $\left(f \in L_{p}(X)\right)$

$$
\begin{equation*}
\ldots \ldots . .\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d x\right)^{\frac{1}{p}}<\infty . \tag{1.2}
\end{equation*}
$$

Further, for $\delta>0$, locally global norm of a function f is defined by
(1.3)...... $\|f\|_{\delta, p}=\left(\int_{X} \sup \left\{|f(y)|^{p} ; y \in\left[x-\frac{\delta}{2}, x+\frac{\delta}{2}\right]\right\} d y\right)^{\frac{1}{p}}$.

Now, let W be the set of all weight functions on X. Consider $L_{p, w}(X),(1 \leq p<\infty)$ the space of all functions f on X which is given the following norm $\left(f \in L_{p, w}(X)\right)$
(1.4)...... $\|f\|_{p, w}=\left(\int_{X}\left|\frac{f(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}<\infty$.

The degree of best approximation of a function $f \in L_{p}(X)$ with trigonometric polynomials from \mathbb{T}_{n} on X given by

$$
(1.5) \ldots \ldots . E_{n}(f)_{p}=\inf \left\{\left\|f-T_{n}\right\|_{p}, T_{n} \in \mathbb{T}_{n}\right\}
$$

the degree of best approximation of a function $f \in L_{\delta, p}(X)$ with trigonometric polynomials from \mathbb{T}_{n} on X is given by
$(1.6) \ldots \ldots . E_{n}(f)_{\delta, p}=\inf \left\{\left\|f-T_{n}\right\|_{\delta, p}, T_{n} \in \mathbb{T}_{n}\right\}$
and the degree of best approximation of a function $f \in L_{p, w}(X)$ with trigonometric polynomials from \mathbb{T}_{n} on X is given by
(1.7) $\ldots \ldots . E_{n}(f)_{p, w}=\inf \left\{\left\|f-T_{n}\right\|_{p, w}, T_{n} \in \mathbb{T}_{n}\right\}$.

The degree of best one-sided approximation of a function $f \in L_{p}(X), f \in L_{p, w}(X)$ and $f \in L_{\delta, p, w}(X)$ with trigonometric polynomials from \mathbb{T}_{n} on X are respectively given by
$(1.8) \ldots \ldots . \tilde{E}_{n}(f)_{p}=\inf \left\{\left\|p_{n}-q_{n}\right\|_{p}, p_{n}, q_{n} \in \mathbb{T}_{n}\right.$ and $\left.q_{n}(x) \leq f(x) \leq p_{n}(x), \forall x \in X\right\}$
(1.9) $\ldots \ldots . . \tilde{E}_{n}(f)_{p, w}=\inf \left\{\left\|p_{n}-q_{n}\right\|_{p, w}, p_{n}, q_{n} \in \mathbb{T}_{n}\right.$ and $\left.q_{n}(x) \leq f(x) \leq p_{n}(x), \forall x \in X\right\}$

$$
\begin{equation*}
\ldots \ldots \tilde{E}_{n}(f)_{\delta, p, w}=\inf \left\{\left\|p_{n}-q_{n}\right\|_{\delta, p, w}, p_{n}, q_{n} \in \mathbb{T}_{n} \text { and } q_{n}(x) \leq f(x) \leq p_{n}(x), \forall x \in X\right\} \tag{1.10}
\end{equation*}
$$

For characterization of the structural properties for a given function $f \in L_{p}(X)$ or $f \in L_{p, w}(X)$, we shall use the following modulus.

The $\mathrm{k}^{\text {th }}$ average modulus of smoothness for $f \in L_{p}(X)$ and $f \in L_{p, w}(X)$ are respectively given by

$$
\begin{equation*}
\ldots \ldots \tau_{k}(f, \delta)_{p}=\| \omega_{k}\left(f, ., \delta \|_{p},\right. \text { where } \tag{1.11}
\end{equation*}
$$

$\omega_{k}(f, \delta)_{p}=\sup _{0<h<\delta}\left\{\left\|\Delta_{h}^{k} f(.)\right\|_{p}\right\}, \delta>0$, the kth ordinary modulus of continuity for $f \in L_{p}(X)$ and

$$
\begin{equation*}
\ldots \ldots \tau_{k}(f, \delta)_{p, w}=\| \omega_{k}\left(f, ., \delta \|_{p, w},\right. \text { where } \tag{1.12}
\end{equation*}
$$

$\omega_{k}(f, \delta)_{p, w}=\sup _{0<h<\delta}\left\{\left\|\Delta_{h}^{k} f(.)\right\|_{p, w}\right\}, \delta>0$ such that
$\Delta_{h}^{k} f(x)=\sum_{i=0}^{k}(-1)^{i+k}\binom{k}{i} f(x+i h), x, h \in X$.
The kth locally modulus of smoothness for $f \in L_{\infty}(X)$ is defined by

$$
\omega_{k}(f, x, \delta)_{\infty}=\sup \left\{\left|\Delta_{h}^{k} f(t)\right| ; t, t+k h \in\left[x-\frac{k h}{2}, x+\frac{k h}{2}\right]\right\} .
$$

The unique trigonometric polynomial from \mathbb{T}_{n} interpolating a given function $f \in L_{p, w}(X)$ at a points $\left\{x_{j}\right\}_{0}^{n}$ is denoted by $I_{n}(f)$.

If $t, u \in \mathbb{R}$, then we denoted by
$D_{n}=\frac{\sin \left(\frac{n+1}{2}\right) u}{2 \sin \frac{u}{2}}$ the Dirichlet kernel . Interpolating polynomial $I_{n}(f)$ has representation
(1.13) $\ldots \ldots . I_{n}(f)=\frac{2}{2 n+1} \sum_{j \in N} f(x j) D_{n}\left(x-x_{j}\right)$, which has the following properties
i. $I_{n}\left(f, x_{k n}\right)=f\left(x_{k n}\right), 0 \leq k<n-1$.
ii. $I_{n}^{(j)}\left(f, x_{k n}\right)=f^{(j)}\left(x_{k n}\right), \mathrm{j}=\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots \mathrm{~m}_{\mathrm{q}}$, where $0<\mathrm{m}_{1}<\mathrm{m}_{2}<\ldots<\mathrm{m}_{\mathrm{q}}$ are distinct integer and $\mathrm{x}_{\mathrm{nk}}=2 \mathrm{k} \pi / \mathrm{n}[4]$.

Recently, similar results have been proved for mean convergence of interpolation by trigonometric polynomial in Xu (1991). For interpolation we do not really need continuity of the underling function f. The interpolation is well defined already for bounded measurable function f on X . To get $\mathrm{L}_{\mathrm{p}, \mathrm{w}}$-approximation of the Langrange interpolation it is sufficient to assume Riemann integrablity of f, which can be found already (Zygmand 1958).

The purpose of this note is to obtain the order of approximation of the Lagrange interpolation and more generally interpolation in $\mathrm{L}_{\mathrm{p}, \mathrm{w}}$-norm for unbounded function f.

Since the interpolating polynomials are based on the point values of f, it is unrealistic to expect that the order be given by either $E_{n}(f)_{p, w}$ or $(f, \delta)_{p, w}$.

Our order of approximation is given in terms of degree of best one-sided approximation. However if f is a smooth function, then we can give the order in terms of $E_{n}\left(f^{(m)}\right)_{p, w}$.

1. Auxiliary Lemmas :

Lemma (2.1) (Hristov 1989) :
If $T_{n} \in \mathbb{T}_{n},(1 \leq \mathrm{p}<\infty)$, then

$$
\left\|T_{n}\right\|_{p} \leq\left\|T_{n}\right\|_{\delta, p} \leq c(p)\left\|T_{n}\right\|_{p}
$$

Lemma (2.2) (Hristov 1989) :
For every $f \in L_{\infty}(X),(1 \leq \mathrm{p}<\infty)$ we have

$$
\|f\|_{p} \leq\|f\|_{\delta, p} \leq\|f\|_{\infty}=\|f\|_{\delta, \infty}
$$

Lemma (2.3) (Jassim, et al. 2010) :
Let f, g be two functions define on the same domain, $(1 \leq \mathrm{p}<\infty)$. Then

$$
\tau_{k}\left(f, \frac{1}{n}\right)_{p} \leq \tau_{k}\left(f-g, \frac{1}{n}\right)_{p}+\tau_{k}\left(g, \frac{1}{n}\right)_{p} .
$$

Lemma (2.4) (Hristov 1989) :
For every $f \in L_{\infty}(X),(1 \leq \mathrm{p}<\infty)$ we have

$$
\left\|I_{n}(f)\right\|_{\delta, p} \leq c(p)\|f\|_{\delta, p}
$$

Lemma (2.5) (Jurgen et al. 1994) :
Let $T_{n} \in \mathbb{T}_{n},(1 \leq \mathrm{p}<\infty)$. Then

$$
\left\|T_{n}\right\|_{p} \leq c(p)\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T_{n}^{(m)}\left(x_{k n}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

Lemma (2.6) (Jurgen et al. 1994) :
Let $T_{n} \in \mathbb{T}_{n},(1 \leq \mathrm{p}<\infty)$. Then

$$
\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T_{n}\left(x_{k n}\right)\right|^{p}\right)^{\frac{1}{p}} \leq c(p)\left\|T_{n}\right\|_{p}
$$

Lemma (2.7) (Jassim, et al. 2011) :
If f is a bounded measurable function on $[\mathrm{a}, \mathrm{b}]$, then
$\int_{a}^{b} f(x) d x \approx \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$, where $x_{i}=a+\frac{(b-a)(2 i-1)}{2 n}$.
Lemma (2.8) (Sendov, et al. 1988):
If $f \in L_{p}(X),(1 \leq \mathrm{p}<\infty)$,then

$$
\tilde{E}_{n}(f)_{p} \leq \frac{2 \pi}{n+1} E_{n}\left(f^{\prime}\right)_{p}
$$

Lemma (2.9) (Popov, et al. 1984) :
If $T_{n} \in \mathbb{T}_{n}, r$ is positive integer, then

$$
\left\|T_{n}^{(r)}\right\|_{p} \leq c(p) n^{-r} \omega_{r}(f, \delta)_{p}
$$

Lemma (2.10) (Popov, et al. 1984) :
For 2π-periodic bounded Riemann integrable functions, we have
$\left\|f-I_{n}(f)\right\|=O(1) \tau_{1}\left(f, \frac{1}{n}\right),(1 \leq \mathrm{p}<\infty)$, where $O(1)$ is bounded function.
Lemma (2.11) (Sendov, et al. 1988) :
Let $f \in L_{p}(X),(1 \leq \mathrm{p}<\infty)$.Then
i. $\quad E_{n}(f)_{p} \leq c_{k} \omega_{k}(f, \delta)_{p} \leq \tau_{k}(f, \delta)_{p}$.
ii. $\quad \tilde{E}_{n}(f)_{p} \leq c_{k} \tau_{k}(f)_{p}$.

Lemma (2.12) (Jassim 1991) :
Let $f \in L_{p, w}(X),(1 \leq \mathrm{p}<\infty)$. Then

$$
\tilde{E}_{n}(f)_{p, w} \leq c(p) E_{n}(f)_{\delta, p, w} \leq c(p) \tilde{E}_{n}(f)_{p, w}
$$

2. Formulation of the main results:

The object of our paper is to find the degree of best one-sided approximation in $L_{p, w}(X)$ space b interpolating $I_{n}(f)$ in terms of average modulus and modulus of continuity for $f \in L_{p, w}(X)$.

Theorem (3.1) :

If $f \in L_{p, w}(X) ;(1 \leq \mathrm{p}<\infty)$, then

$$
\tilde{E}_{n}(f)_{p, w} \leq c(p)\left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq c(p) \tilde{E}_{n}(f)_{p, w}
$$

Theorem (3.2) :

Let $n \geq 1,(1 \leq \mathrm{p}<\infty)$ and $f^{(m)} \in f \in L_{p, w}(X)$. Then

$$
\left\|f-I_{n}(f)\right\|_{p, w} \leq c(p) n^{-m} \tilde{E}_{n}(f)_{p, w}
$$

Theorem (3.3) :

Let $n \geq 1, f \in L_{p, w}(X),(1 \leq \mathrm{p}<\infty)$. Then

$$
\left\|f-I_{n}(f)\right\|_{p, w} \leq c(p)\left[\tilde{E}_{n}(f)_{p, w}+\omega_{r}(f, \delta)_{p, w}\right]
$$

Theorem (3.4) :

Let $f \in L_{p, w}(X),(1 \leq \mathrm{p}<\infty)$. Then

$$
\left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq c_{k} \tau_{k}(f, \delta)_{p, w}
$$

where c is constant depending only on p .
We need the following lemmas to prove our theorems.

Lemma (A) :

Let $f \in L_{p, w}(X),(1 \leq \mathrm{p}<\infty)$. Then

$$
\|f\|_{p, w} \leq\|f\|_{\delta, p, w}
$$

Proof : From (1.3) and (1.4) we get

$$
\begin{aligned}
& \|f\|_{p, w}=\left(\int_{X}\left|\frac{f(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}} \leq \sup \left(\int_{X}\left|\frac{f(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}} \\
& \quad \leq \sup \left(\int_{X} \sup \left\{\left|\frac{f(x)}{w(x)}\right|^{p} ; y \in\left[x-\frac{\delta}{2}, x+\frac{\delta}{2}\right]\right\} d x\right)^{\frac{1}{p}}=\|f\|_{\delta, p, w} .
\end{aligned}
$$

Lemma (B) :

Let $f \in L_{p, w}(X),(1 \leq \mathrm{p}<\infty)$. Then

$$
\tau_{k}(f, \delta)_{p, w} \leq c(p)\|f\|_{p, w}
$$

Proof :

By using (1.12) and definition of modulus of continuity we get

$$
\begin{aligned}
& \tau_{k}(f, \delta)_{p, w}=\| \omega_{k}\left(f, ., \delta \|_{p, w}=\left(\int_{X} \sup \left\{\left|\frac{\Delta_{h}^{k} f(t)}{w(t)}\right|^{p} d t\right\}\right)^{\frac{1}{p}}\right. \\
& \leq \sum_{k=0}^{n}\left(\int_{X} \sup \left\{\left|\frac{\Delta_{h}^{k} f(t)}{w(t)}\right|^{p} d t\right\}\right)^{\frac{1}{p}} \leq c(p)\left(\int_{X}\left\{\left|\frac{f(x)}{w(x)}\right|^{p} d t\right\}\right)^{\frac{1}{p}}=c(p)\|f\|_{p, w}
\end{aligned}
$$

Proof of theorem (3.1) :

We shall to prove

$$
\begin{equation*}
\left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq c(p) \tilde{E}_{n}(f)_{p, w} \ldots \ldots \ldots(\tag{1}
\end{equation*}
$$

From (2.1), (2.2), Interpolation conditions and lemma(A) we get

$$
\begin{equation*}
\left\|I_{n}(f)\right\|_{\delta, p, w}=\left\|\frac{I_{n}(f)}{w}\right\|_{\delta, p} \leq c(p)\left\|\frac{I_{n}(f)}{w}\right\|_{p}=c(p)\left\|\frac{f}{w}\right\|_{p} \leq c(p)\left\|\frac{f}{w}\right\|_{\delta, p} \tag{2}
\end{equation*}
$$

Thus $\left\|I_{n}(f)\right\|_{\delta, p, w} \leq c(p)\left\|\frac{f}{w}\right\|_{\delta, p}=c(p)\|f\|_{\delta, p, w}$
In order to obtain inequality (1), we consider $p_{n} \in \mathbb{T}_{n}$, which $E_{n}(f)_{\delta, p, w}=\left\|f-p_{n}\right\|_{\delta, p, w}$.

$$
\begin{gathered}
\left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq\left\|f-p_{n}\right\|_{\delta, p, w}+\left\|p_{n}-I_{n}(f)\right\|_{\delta, p, w} \\
=\left\|f-p_{n}\right\|_{\delta, p, w}+\left\|\mathrm{I}_{\mathrm{n}}\left(p_{n}-f\right)\right\|_{\delta, p, w}
\end{gathered}
$$

By using (2) and (2.12), we get

$$
\begin{aligned}
& \left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq E_{n}(f)_{\delta, p, w}+c_{1}(p)\left\|f-p_{n}\right\|_{\delta, p, w} \\
& =c(p) E_{n}(f)_{\delta, p, w} \leq c(p) \tilde{E}_{n}(f)_{p, w}
\end{aligned}
$$

We need to prove $\tilde{E}_{n}(f)_{p, w} \leq c(p)\left\|f-I_{n}(f)\right\|_{\delta, p, w}$.
Let $p_{n}, q_{n} \in \mathbb{T}_{n}$, such that, $q_{n}(x) \leq f(x) \leq p_{n}(x) \quad \forall x \in X$ and $\tilde{E}_{n}(f)_{p, w}=\left\|p_{n}-q_{n}\right\|_{p, w}$.
Thus $\tilde{E}_{n}(f)_{p, w} \leq c(p) E_{n}(f)_{\delta, p, w} \leq c(p)\left\|f-I_{n}(f)\right\|_{\delta, p, w}$.
Proof of theorem (3.2) :
Since $I_{n}(f)$ preserves trigonometric polynomials in \mathbb{T}_{n}, then
$\left\|f-I_{n}(f)\right\|_{p, w} \leq\left\|f-T_{n}\right\|_{p, w}+\left\|T_{n}-I_{n}(f)\right\|_{p, w} \quad$ where $T_{n} \in \mathbb{T}_{n}$ is best trigonometric polynomial approximation to f. Let p_{n} and q_{n} be the polynomials in \mathbb{T}_{n} such that

$$
\tilde{E}_{n}\left(f^{(m)}\right)_{p, w}=\left\|p_{n}-q_{n}\right\|_{p, w} ; q_{n}(x) \leq f^{(m)}(x) \leq p_{n}(x) \forall x \in X
$$

From (2.5), (2.6), (2.7) and Minkowaski's inequality, we get

$$
\begin{aligned}
& \left\|T_{n}-I_{n}(f)\right\|_{p, w}=\left\|I_{n}\left(T_{n}-f\right)\right\|_{p, w}=\left\|I_{n}\left(\frac{T_{n}}{w}-\frac{f}{w}\right)\right\|_{p} \leq c(p)\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|\frac{T_{n}^{(m)}\left(x_{k n}\right)}{w\left(x_{k n}\right)}-\frac{f^{(m)}\left(x_{k n}\right)}{w\left(x_{k n}\right)}\right|^{p}\right)^{\frac{1}{p}} \\
& \approx c(p)\left(\int_{X}\left|\frac{T_{n}^{(m)}(x)}{w(x)}-\frac{f^{(m)}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}} \\
& \leq c(p)\left\{\left(\int_{X}\left|\frac{T_{n}^{(m)}(x)}{w(x)}-\frac{q_{n}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{X}\left|\frac{q_{n}(x)}{w(x)}-\frac{f^{(m)}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}\right\} \\
& \leq c(p)\left\{\left(\int_{X}\left|\frac{T_{n}^{(m)}(x)}{w(x)}-\frac{q_{n}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{X}\left|\frac{p_{n}(x)}{w(x)}-\frac{q_{n}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}\right\} \\
& \leq c(p)\left\{\left\{\left(\int_{X}\left|\frac{T_{n}^{(m)}(x)}{w(x)}-\frac{f^{(m)}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{X}\left|\frac{f^{(m)}(x)}{w(x)}-\frac{q_{n}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}\right\}\right. \\
& \left.\quad+\left(\int_{X}\left|\frac{p_{n}(x)}{w(x)}-\frac{q_{n}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}}\right\} \\
& \leq c(p)\left\{\left\|f^{(m)}-T^{(m)}\right\|_{p, w}+\left\|p_{n}-q_{n}\right\|_{p, w}+\left\|p_{n}-q_{n}\right\|_{p, w}\right\} \\
& \quad=c(p)\left\{E_{n}\left(f^{(m)}\right)_{p, w}+2 \tilde{E}_{n}(f)_{p, w}\right\}
\end{aligned}
$$

Therefore

$$
\left\|f-I_{n}(f)\right\|_{p, w} \leq E_{n}(f)_{p, w}+c(p)\left[E_{n}\left(f^{(m)}\right)_{p, w}+2 \tilde{E}_{n}(f)_{p, w}\right]
$$

By using (2.8), we get

$$
\begin{aligned}
& \left\|f-I_{n}(f)\right\|_{p, w} \leq c(p) \frac{1}{n^{m}}\left[\tilde{E}_{n}(f)_{p, w}+E_{n}\left(f^{(m)}\right)_{p, w}\right] \\
& \leq c(p) n^{-m} \tilde{E}_{n}(f)_{p, w}
\end{aligned}
$$

Proof of theorem (3.3) :

Let $T_{n} \in \mathbb{T}_{n}$ be the best trigonometric polynomial approximation to a function $f \in L_{p, w}(X)$. Then

$$
\begin{gathered}
\left\|f-I_{n}(f)\right\|_{p, w} \leq \\
\left\|f-T_{n}\right\|_{p, w}+\left\|T_{n}-I_{n}\left(T_{n}\right)\right\|_{p, w}+\left\|I_{n}\left(T_{n}\right)-I_{n}(f)\right\|_{p, w} \\
=E_{n}(f)_{n}+\left\|T_{n}-I_{n}\left(T_{n}\right)\right\|_{p, w}+\left\|I_{n}\left(T_{n}-f\right)\right\|_{p, w}
\end{gathered}
$$

From (2.5), (2.7) and (2.9) we get

$$
\begin{aligned}
&\left\|T_{n}-I_{n}\left(T_{n}\right)\right\|_{p, w} \leq\left\|T_{n}\right\|_{p, w}=\left\|\frac{T_{n}}{w}\right\|_{p} \leq c_{1}(p)\left(\frac{1}{n} \sum_{k=1}^{n-1}\left|\frac{T_{n}^{(r)}\left(x_{k}\right)}{w\left(x_{k}\right)}\right|^{p}\right)^{\frac{1}{p}} \approx c_{1}(p)\left(\int_{X}\left|\frac{T_{n}^{(r)}(x)}{w(x)}\right|^{p} d x\right)^{\frac{1}{p}} \\
&=c_{1}(p)\left\|T_{n}^{(r)}\right\|_{p, w}=c_{1}(p)\left\|\frac{T_{n}^{(r)}}{w}\right\|_{p} \\
& \leq c(p) n^{-r} \omega_{r}\left(\frac{f}{w}, \delta\right)_{p}=c(p) n^{-r} \omega_{r}(f, \delta)_{p, w} .
\end{aligned}
$$

Now, from (2.4),(2.5) and (2.9) we get

$$
\begin{gathered}
\left\|I_{n}\left(T_{n}-f\right)\right\|_{p, w}=\left\|I_{n}\left(\frac{T_{n}}{w}-\frac{f}{w}\right)\right\|_{p} \leq c(p)\left\|\frac{T_{n}}{w}-\frac{f}{w}\right\|_{p}=c(p)\left\|T_{n}-f\right\|_{p, w} \\
\leq c(p)\left(\left\|T_{n}-q_{n}\right\|_{p, w}+\left\|q_{n}-f\right\|_{p, w}\right) \\
\leq c(p)\left(\left\|T_{n}-f\right\|_{p, w}+\left\|f-q_{n}\right\|_{p, w}+\left\|q_{n}-f\right\|_{p, w}\right) \\
\leq c(p)\left(\left\|T_{n}-f\right\|_{p, w}+\left\|p_{n}-q_{n}\right\|_{p, w}+\left\|p_{n}-q_{n}\right\|_{p, w}\right) \\
=c(p)\left(2 \tilde{E}_{n}(f)_{p, w}+E_{n}(f)_{p, w}\right) .
\end{gathered}
$$

By using (2.11)(i),we get
$E_{n}(f)_{p, w}=E_{n}\left(\frac{f}{w}\right)_{p} \leq c(p) \omega_{r}\left(\frac{f}{w}, \delta\right)_{p}=c(p) \omega_{r}(f, \delta)_{p, w}$.
Therefore $\left\|f-I_{n}(f)\right\|_{p, w} \leq c(p)\left[\tilde{E}_{n}(f)_{p, w}+\omega_{r}(f, \delta)_{p, w}\right]$.

Proof of theorem (3.4) :

Consider p_{n}, q_{n} are the best one-sided approximation of a function f is $\operatorname{space}(X)$, such that $\tilde{E}_{n}(f)_{p, w}=$ $\left\|p_{n}-q_{n}\right\|_{p, w}$

From (2.3), (2.4), (A), (2.10) and (B)
Now, $\quad\left\|f-I_{n}(f)\right\|_{\delta, p, w} \leq\left\|f-p_{n}\right\|_{\delta, p, w}+\left\|p_{n}-I_{n}\left(p_{n}\right)\right\|_{\delta, p, w}+\quad \| I_{n}\left(p_{n}\right)-$
$I_{n}(f) \|_{\delta, p, w}$

$$
\begin{gathered}
=\left\|\frac{f}{w}-\frac{p_{n}}{w}\right\|_{\delta, p}+\left\|\frac{p_{n}}{w}-\frac{I_{n}\left(p_{n}\right)}{w}\right\|_{\delta, p}+\left\|I_{n}\left(\frac{p_{n}}{w}-\frac{f}{w}\right)\right\|_{\delta, p} \\
\leq\left\|\frac{p_{n}}{w}-\frac{q_{n}}{w}\right\|_{\delta, p}+\left\|\frac{p_{n}}{w}-I_{n}\left(\frac{p_{n}}{w}\right)\right\|_{\delta, p}+c_{1}(p)\left\|\frac{p_{n}}{w}-\frac{q_{n}}{w}\right\|_{p} \\
=c_{2}(p)\left\|\frac{p_{n}}{w}-\frac{q_{n}}{w}\right\|_{p}+\left\|\frac{p_{n}}{w}-I_{n}\left(\frac{p_{n}}{w}\right)\right\|_{\delta, p}+c_{1}(p)\left\|\frac{p_{n}}{w}-\frac{q_{n}}{w}\right\|_{p} \\
=c_{3} \tilde{E}_{n}(f)_{p, w}+\left\|\frac{p_{n}}{w}-I_{n}\left(\frac{p_{n}}{w}\right)\right\|_{\delta, p} \\
\leq c_{3}(p) \tilde{E}_{n}(f)_{p, w}+c_{4}(p)\left(O(1) \tau_{1}\left(\frac{p_{n}}{w}, \delta\right)_{p}\right) \\
\leq c_{3}(p) \tilde{E}_{n}(f)_{p, w}+c_{5}(p) \tau_{1}\left(\frac{p_{n}}{w}, \delta\right)_{p}
\end{gathered}
$$

$$
\begin{aligned}
& \leq c_{3}(p) \tilde{E}_{n}(f)_{p, w}+c_{5}(p)\left(\tau_{1}\left(\frac{f}{w}, \delta\right)_{p}+\tau_{1}\left(\frac{f-p_{n}}{w}, \delta\right)_{p}\right. \\
& \leq c_{3}(p) \tilde{E}_{n}(f)_{p, w}+c_{6}(p)\left(\tau_{1}\left(\frac{f}{w}, \delta\right)_{p}+\left\|\frac{f}{w}-\frac{p_{n}}{w}\right\|_{p}\right) \leq c_{7}(p) \tilde{E}_{n}(f)_{p, w}+c_{6}(p) \tau_{1}\left(\frac{f}{w}, \delta\right)_{p} \\
& \leq c_{k}(p) \tau_{1}(f, \delta)_{p, w} .
\end{aligned}
$$

References

Hristov, V. H. (1989), "Best one-sided approximation and mean approximation by interpolation polynomials of periodic functions" New series Vol.-3 Math. Balk. 418-429.

Jassim, S. K. (1991), One-sided approximation with discrete operator. ph. D. Thesis, Sofia, Bulg..
Jassim, S. K. and Mohomed, N. J. (2010), "Direct and inverse inequalities for 2π-periodic bounded measurable functions in locally global norm" Ibn Al-Ha. Journal for pu. and app. Sci. ,Vol.-23,No. 2 Baghdad university, Iraq.

Jassim, S. K. and Lekaa A. (2011), "The degree of best approximation of unbounded functions by Bernstein operators" Journal of science , Vol.-22, No. 5 ,Al-Mustansirya university, Iraq.

Jurgen, P. and Xu, Y. (1994), "Convergence rate for trigonometric interpolation of non-smooth functions " Journal of approx. theo.77, 113-122.

Popov, V. A. and Szabados. (1984), "On the convergence and satuiation of Jackson on polynomials in L_{p}-spaces" , J. Approx. Theo. and it's app. 1, 1-10.

Sendov, B. and Popov, V. A. (1983), "The averaged modulus of smoothness " ,Publ. nouse of Bulg. Acad. of Sci. Science .

Xu, Y. (1991), "The generalized Marcinkiewics-Zygmand inequality for trigonometric polynomials" J. Math. Appl. 161, 447-456.

Zygmand, A. (1958), "Trigonometric" series 2nded Cambridge University Press, U.K. .

