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Abstract  
In this paper we consider a single server batch arrival non-Markovian retrial queueing model with non persistent 

customers. In accordance with Poisson process, customers arrive in batches with arrival rate   and are served 

one by one with first come first served basis. The server is being considered as unreliable that it may encounter 

break down at any time. In order to resume its service the server has to be sent for repair, but the repair does not 

start immediately so that there is a waiting time before the repair process. The customer, who finds the server 

busy upon arrival, can either join the orbit with probability p or he/she can leave the system with probability 1-p. 

Upon completion of a service the server may go for a vacation with probability   or stay back in the system to 

serve a next customer with probability 1 , if any. We obtain the transient solution and steady solution of the 

model by using supplementary variable technique. Also we derive the system performance measures and 

reliability indices. 

Key words: Batch size, break down, delay time, transient solution, steady solution,  reliability indices. 

 

 1.Introduction  
There is an extensive literature on retrial queues because of its wide applicability in telephone switching systems, 

telecommunication networks and computer networks. For excellent survey on retrial queues, the reader can refer 

Yang and Templeton (1987), Fallin (1990) and Kulkarni (1997). Artalejo (1999) and Gomez (2006) presented a 

bibliographical study on retrial queues. Also Artalejo and Falin (2002) have done a comparative analysis 

between standard and retrial queues. Farahmand(1990) analyzed single line queue with repeated attempts. 

 

Retrial queues with vacation have also received remarkable attention during recent years. 

Artalejo(1997, 1999) discussed retrial queues with exhaustive vacation. Krishna kumar et al.(2002) studied multi 

server with general retrial times and Bernoulli schedule. Choi et al.(1990, 1993) studied M/G/1 retrial queue with 

vacation. Atencia (2005) also studied single server with general retrial retrial time and Bernoulli vacation. Zhou 

(2005) studied the same model with FCFS orbit policy. Choudhury(2007)discussed batch arrival retrial queue 

with single server having two stages of service and Bernoulli vacation. Retrial queues with unreliable server and 

repair have also been paid attention by numerous authors. Aissani(1988, 1993,1994)and 

Kulkarni(1990),Djellab(2002) studied retrial queueing system with repeated attempts for an unreliable server. 

Artalejo (1994) found new results for retrial queueing systems with break downs. Wang et al.(2008) incorporated 

reliability analysis on retrial queue with server breakdowns and repairs. Peishu Chen et al.(2010) discussed a 

retrial queue with modified vacation policy and server break downs. Choudhury (2008)studied M/G/1 model 

with two phase of service and break down. The same author(2012) extended his analysis by including delaying 

time before the repair of the server for batch arrivals. Ke (2009) studied the M/G/1 retrial queue with balking and 

feedback. Also the same author analyzed 2)/11,/(][ GGM x
 retrial queue under Bernoulli vacation schedules 

and starting failures. Jinting Wang et al.(2008) considered the transient analysis of M/G/1 retrial queue subject to 

disasters and server failures. The same author (2008) obtained steady state solution of the queue model with 

two-Phase Service. Many authors concentrated retrial queue models with all aspects for non- persistent 

customers. Krishnamoorthy et al (2005) studied retrial queue with non-persistent customer and orbital search. 

Kasthuri et al(2010) studied two phases of service of retial queue with non-persistent customers. 

  

In this paper we consider a single server queueing system in which primary customers arrive according to 

compound Poisson stream with rate  . Upon arrival, customer finds the sever busy or down or on vacation the 

customer may leave the service area as there is no place in front of the server, he/she may join the pool of 

customers called orbit with probability p or leave the system with probability 1-p. otherwise the server can get 

service immediately if the server is idle.There is a waiting time before the the server is getting to be repaired 

since the server is assumed to be unreliable. Also the server can opt for Bernoulli vacation. The rest of the paper 

is organized as follows: In Section 2, we give a brief description of the mathematical model. Section 3 deals with 

transient analysis of the model for which probability generating function of the distribution has been obtained.In 

section 4 steady state solution has been obtained for the model. Some important performance measures and 
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reliability indices of this model are derived in Section 5. In section 6, numerical results related to the effect of 

various parameters on the system performance measures are analysed and conclusion for the model has been 

given in section7. 

 

 2.Mathematical Description of the model  

 We consider an /1/][ GM x
 retrial queue with random break downs and Bernoulli vacation. Customers arrive 

at the system in batches of variable size in a compound Poisson process. Let tci  (i=1,2,3,....) be the first 

order probability that a batch of i customers arrives at the system during a short interval of time ),( ttt  , 

where 10  ic  and 1=
1= ii
c


 and 0>  is the mean arrival rate of batches and the customers are 

served one-by-one on a "first come-first served" basis. Upon arrival, if a customer finds the server idle, the 

customer gets service immediately. Otherwise, the server is found busy or down or on vacation, the customer is 

obliged to join a retrial orbit according to an FCFS discipline with probability p or leaves the system with 

probability 1- p.  

 

The service times of the customers are identically independent random variables with probability distribution 

function B(x), density function b(x), 
thk  moment 1,2)=(kbk . When the server is serving the customers, it 

may encounter break down at random time so that the server will be down for a short span of time. The server’s 

life times are generated by exogenous Poisson process with rate  . As soon as the server gets break down it is 

sent for repair so that the server stops providing service to the customers and waits for repair to start, which may 

refer to as waiting period of the server we define this waiting time as delay time. The delay times 0; nQn  of 

the server are identically independent random variables with distribution function Q(y)and 
thk  finite moment 

1; kqk . The repair times 0; nRn  of the server are identically independent random variables with 

distribution function R(y)and 
thk  finite moment 1; krk . After the repair process is over the server is ready 

to resume its remaining service to the customers and in this case the service times are cumulative, which we may 

referred to as generalized service times. After each service completion the server may go for a vacation of 

random length V with probability   or with probability 1  he may serve the next unit; if any. The 

vacation times of the server are assumed to be identically independent random variables. All stochastic processes 

involved in the system are assumed to be independent of each other. 

 

Now we obtain the probability generating function of the joint distribution of the state of the server and the 

number in the system by treating )(),( 00 tBtI  are the elapsed retial time and service time of the customers at 

time t respectively also )(),( 00 tRtD  and )(0 tV  are the elapsed delay time,elapsed repair time and elapsed 

vacation time of the server at time t,repectively as supplementary variables. Assuming that the system is empty 

initially. Let N(t) be the number of customers in the retrial queue at time t, and C(t) be the number of customer in 

service at time t. To make it a Markov process, Define the state probabilities at time t as follows: Y(t)= 0, if the 

server is idle at time t, 

     1, if the server is idle during retrial time at time t, 

     2, if the server is busy at time t, 

     3, if the server is on vacation at time t, 

     4, if the server is waiting for repair at time t, 

     5, if the server is under repair at time t. 

Introducing the supplementary )(),(),(),( 0000 tRtDtBtI  and )(0 tV  to obtain a bivariate Markov 

process )(),(=)( tXtNtZ ,  

where )(tX  = 0   if Y(t)=0, 

)(=)( 0 tItX  if Y(t)=1, 

)(=)( 0 tBtX  if Y(t)=2, 

)(=)( 0 tVtX  if Y(t)=3 

)(=)( 0 tDtX  if Y(t)=4, 
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)(=)( 0 tRtX  if Y(t)=5. 

 

Now We define following limiting probabilities: 

 

0;=)(0,=)(=)(0 tXtPNtI  

         1;0,>,;)(<);(=)(,=)(=),( 00  ntxdxxtIxtItXntPNdxtxIn  

0,0,>,;)(<);(=)(,=)(=),( 0

1

0  ntxdxxtPxtPtXntPNdxtxpn  

0,0,>,;)(<);(=)(,=)(=)( 00  ntxdxxtVxtVtXntPNdxxVn  

and for fixed values of x and 1n  

0.>,,;)(<);(=)(,=)(=),,( 00 tyxdyytQytQtXntPNdytyxQn   

0.>,,;)(<);(=)(,=)(=),,( 00 tyxdyytRytRtXntPNdytyxRn   

Further it is assumed that I(x),B(x)and V(x) are continuous at x=0 and Q(y), R(y)are continuous at y=0 

respectively, so that 

;
)(1

)(
=)(;

)(1

)(
=)(

xB

xdB
dxx

xI

xdI
dxx




 

;
)(1

)(
=)(;

)(1

)(
=)(

yQ

ydQ
dyx

xV

xdV
dxx


  

)(1

)(
=)(

YR

ydR
dxx


  

are the first order differential (hazard rate) functions of I(), B(),V(), Q()and R()respectively. 

 

 3.The Transient State Equations  
we derive the following system of equations that govern the dynamics of the system behavior:  

 dxxtxVdxxtxPtItI
dt

d
)(),()(),()(1)(=)( 0

0
0

0
00  



  (1) 

  

 0;=),()( txIx
xt

n

















  (2) 

  

 0;)(),,(),(=),()(
0

1= 




















 ndyytyxQtxPcptxPxp
xt

nini

n

in   (3) 

  

 0);,,(=),,()( 1= 

















 ntyxQcptyxQyp

xt
ini

n

in   (4) 

  

 0);,,(=),,()( 1= 

















 ntyxRcptyxRyp

xt
ini

n

in   (5) 

  

 0);,(=),()( 1= 

















 ntxVcptxVxp

xt
ini

n

in   (6) 

 with boundary conditions  

 dxxtxVdxxtxPtI nnn )(),()(),()(1=)(0,
00

 


  (7) 

  

 )()(),(=)(0, 011
0

0 tIcdxxtxItP  


 (8) 
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 1;),()()(),(=)(0, 1=
0

11
0

 







 ndxtxIctIcdxxtxItP ini

n

innnn   (9) 

  

 0);,(=),0,( ntxPtxQ nn   (10) 

  

 dyytyxQtxR nn )(),,(=),0,(
0




 (11) 

  

 dxxtxPtV nn )(),(=)(0,
0

 


 (12) 

 

 Now we define the probability generating function: 

 

 );(=),();,(=),,(
1=1=

tIztzItxIztzxI n

n

n

qn

n

n

q 


 (13) 

  

 );(=),();,(=),,(
1=0=

tPztzPtxPztzxP n

n

n

qn

n

n

q 


 (14) 

  

 )(=),();,(=),,(
0=0=

tVztzVtxVztzxV n

n

n

qn

n

n

q 


 (15) 

  

 );,(=),,();,,(=),,,(
0=0=

txQztzxQtyxQztzyxQ n

n

n

qn

n

n

q 


 (16) 

  

 );,(=),,();,,(=),,,(
0=0=

txRztzxRtyxRztzyxR n

n

n

qn

n

n

q 


 (17) 

  

 
n

n

n

zczC 


1=

=)(  (18) 

 which are convergent inside the circle given by 1|| z  and define the Laplace transform of a function f(t) as 

 

 dtetfsf st


 )(=)(
0

 (19) 

 

 Taking Laplace transform for equations (1) - (12)  

 dxxsxVdxxsxPsIs )(),()(),()(11=)()( 0
0

0
0

0  


  (20) 

  

 0=),()( sxIxs
dx

d
n








   (21) 

  

 0;)(),,(),(=),()(
0

1= 







 



 ndyysyxQsxPcpsxPxps
dx

d
nini

n

in   (22) 

  

 0);,,(=),,()( 1= 







  nsyxQcpsyxQyps

dx

d
ini

n

in   (23) 
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 0);,,(=),,()( 1= 







  nsyxRcpsyxRyps

dx

d
ini

n

in   (24) 

  

 0);,(=),()( 1= 







  nsxVcpsxVxps

dx

d
ini

n

in   (25) 

  

 dxxsxVdxxsxPsI nnn )(),()(),()(1=)(0,
00

 


  (26) 

  

 )()(),(=)(0, 011
0

0 sIcdxxsxIsP  


 (27) 

  

 1;),()()(),(=)(0, 1=
0

11
0

 







 ndxsxIcsIcdxxsxIsP ini

n

innnn   (28) 

  

 0);,(=),0,( nsxPsxQ nn   (29) 

  

 dyysyxQsxR nn )(),,(=),0,(
0




 (30) 

  

 dxxsxPsV nn )(),(=)(0,
0

 


 (31) 

 

 Applying probability generating function for the equations(20)-(31)  

 

 0=),,()( szxIxs
dx

d
q








   (32) 

  

 dyyszyxQszxPxzCps
dx

d
qq )(),,,(=),,()())((1

0
 











  (33) 

  

 0=),,,()())((1 szyxQyzCps
dx

d
q








   (34) 

  

 0=),,,()())((1 szyxRyzCps
dx

d
q








   (35) 

  

 0=),,()())((1 szxVxzCps
dx

d
q








   (36) 

  

 )()(1)(),,()(),,()(1=),(0, 0
00

sIsdxxszxVdxxszxPszI qqq   


 (37) 

  

 dxszxIzCsIzCdxxszxIszPz qqq ),,()()()()(),,(=),(0,
0

0
0 



   (38) 

  

 ),,(=),,0,( szxPszxQ qq   (39) 
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 dyyszyxQszxR qq )(),,,(=),,0,(
0




 (40) 

  

 dxxszxPszV qq )(),,(=),(0,
0

 


 (41) 

 

 solving for equations(32)-(36)  

 

 

dtt
x

xs

qq eszIszxI
)(

0
)(

),(0,=),,(
 

 (42) 

  

 

dtt
x

xsz

qq eszPszxP
)(

0
),(

),(0,=),,(
 

 (43) 

 where 

)))]((1()))((1([1)))((1(=),( zCpsRzCpszCpssz     

 

dtt
y

xzCps

qq eszxQszyxQ
)(

0
)))((1(

),,0,(=),,,(
 

 (44) 

  

 

dtt
y

xzCps

qq eszxRszyxR
)(

0
)))((1(

),,0,(=),,,(
 

 (45) 

  

 

dtt
x

xzCps

qq eszVszxV
)(

0
)))((1(

),(0,=),,(
 

 (46) 

 

 Integrate equations (42)-(46)by parts with respect to x 

 

 












)(

)(1
),(0,=),(





s

sI
szIszI qq  (47) 

  

 






 

)),((

)),((1
),(0,=),(

sz

szB
szPszP qq




 (48) 

  

 












)))((1(

)))((1(1
),,0,(=),,(

zCps

zCpsQ
szxQszxQ qq




 (49) 

  

 












)))((1(

)))((1(1
),,0,(=),,(

zCps

zCpsR
szxRszxR qq




 (50) 

  

 












)))((1(

)))((1(1
),(0,=),(

zCps

zCpsV
szVszV qq




 (51) 

 where )))((1())),((1()),,((),( zCpsRzCpsQszBsI    and )))((1( zCpsV   

are the Laplace-Stieltjes transform of the retrial time, service time, delay time, repair time and vacation 

completion time of the server respectively. 

 

Multiply equation (42) by )(x  and integrate w.r.t x 
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 )(),(0,=)(),,(
0

 


sIszIdxxszxI qq  (52) 

 

 Multiply equation (43) by )(x  and integrate w.r.t x 

 )),((),(0,=)(),,(
0

szBszPdxxszxP qq 


 (53) 

 

 Multiply equation (44) by )(x  and integrate w.r.t x 

                              
)))((1(),,0,(=)(),,,(

0
zCpsQszxQdyyszyxQ qq 



  (54) 

 

 Multiply equation (45) by )(y  and integrate w.r.t y 

                              
)))((1(),,0,(=)(),,,(

0
zCpsRszxRdyyszyxR qq 



  (55) 

 

 Multiply equation (46) by )(y  and integrate w.r.t y 

 )))((1(),(0,=)(),,(
0

zCpsVszVdxxszxV qq 


  (56) 

 

 from equation(53), equation (37) becomes 

 

),(0,)),(()))]((1()[(1)]()([1=),(0, 0 szPszBzCpsVsIsszI qq    (57) 
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




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




s

sI
szPszBzCpsVsIsszI qq  (58) 

 

 using equations (52),(56) equation(38) becomes 

 

 

 
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)()()(1)()(

=),(0,

00

szD

sI
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sI
zCsIssIzC

szPq







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


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 substitute the value for ),(0, szPq  we can obtain the probability generating function of various states of the 

system ),,(),,,(),,,(),,(),,( szVszxRszxQszPszI qqqqq  in the transient state. 

 

 4.Steady State Distribution  
 In this section we shall derive the steady state probability distribution for our queueing model. To 

define the steady state probabilities, suppress the argument ’t’ where ever it appears in the time dependent 

analysis. By using well known Tauberian property as follows: 

 

 )(=)(0 tfLtsfsLt ts   (61) 
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 using the normalization condition 0I  can be obtained 
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 In addition, various system state probabilities also be given from equations (62)-(66) by putting z=1. 

 

Prob [the server is idle in non-empty queue]= (1)qI  
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 Prob [the server is busy ]= (1)qP   
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 Prob [the server is under waiting to be repaired]= (1)qD  
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 Prob [the server is on repair]= (1)qR  
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 Prob [the server is on vacation] = (1)qV  
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 Blocking probability  

 
))(1(1

=
p 


 (75) 

 The necessary and sufficient condition for stability condition is given by the following 
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 where 
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 is the residual batch size. 

 

After finding the expected number of units in the orbit,we can obtain the related performance measures viz mean 

number of units in the system, mean waiting time in the queue and mean waiting time in the system by using 

Little’s formula 
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5.Reliability Indices 

Let )(tAv  be the system availability at time ’t’ i.e the probability that the server is either working for a customer 

or in an idle period such that the steady state availability of the server is given by 
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 The steady state failure frequency of the server 
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6. Numerical Analysis 

Some numerical results have been presented in order to in order to illustrate the effect of various parameters on 

the performance measures and reliability analysis of our system. For the effect of parameters α and θ on system 
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performance measures. Table 1 and table 2 show the effect of parameters on system’s idle time, traffic intensity, 

reliability indices and performance measures of our model. 

                  Table 1 : ρ , Q0 and Reliability indices for various vales of α and θ 

α Θ ρ Availability Q0 Failure frequency Blocking  probabability 

1 0.25 0.3314 0.8686 0.7383 0.1188 0.2181 

1 0.5 0.4029 0.7971 0.6724 0.1151 0.2730 

1 0.75 0.4743 0.7257 0.6104 0.1117 0.3247 

2 0.25 0.3914 0.8086 0.7009 0.2334 0.2493 

2 0.5 0.4629 0.7371 0.6372 0.2264 0.3023 

2 0.75 0.5343 0.6657 0.5772 0.2197 0.3523 

3 0.25 0.4514 0.7486 0.6647 0.3441 0.2794 

3 0.5 0.5229 0.6771 0.6032 0.3339 0.3307 

3 0.75 0.5943 0.6057 0.5452 0.3242 0.3790 

4 0.25 0.5114 0.6886 0.6298 0.4511 0.3085 

4 0.5 0.5829 0.6171 0.5703 0.4378 0.3581 

4 0.75 0.6543 0.5457 0.5142 0.4254 0.4049 

 

                        Table 2 : Performance measures for for various vales of α and θ  

α Θ Iq(1) Pq(1) Qq(1) Rq(1) Vq(1) Lq Ls 

1 0.25 0.0436 0.1188 0.0356 0.0178 0.0636 02074 0.4521 

1 0.5 0.0546 0.1151 0.0345 0.0173 0.1234 0.3091 0.6253 

1 0.75 0.0649 01117 0.0335 0.0168 0.1795 0.4248 0.8124 

2 0.25 0.0499 0.1167 0.0700 0.0350 0.0625 0.2888 0.5735 

2 0.5 0.0605 0.1132 0.0679 0.0340 0.1213 0.4077 0.7639 

2 0.75 0.0705 0.1098 0.0659 0.0330 0.1765 0.5437 0.9713 

3 0.25 0.0559 0.1147 0.1032 0.0516 0.0615 0.3826 0.7073 

3 0.5 0.0661 0.1113 0.1002 0.0501 0.1192 0.5209 0.9171 

3 0.75 0.0758 0.1081 0.0973 0.0486 0.1737 0.6799 0.1475 

4 0.25 0.0617 0.1128 0.1353 0.0677 0.0604 0.4902 0.8550 

4 0.5 0.0716 0.1095 0.1314 0.0657 0.1173 0.6505 1.0867 

4 0.75 0.0810 0.1063 0.1276 0.0638 0.1709 0.8357 1.3433 

 

7.Conclusion  
 In this paper, we have obtained the probability generating function of various states of the system in transient 

state and also discussed the steady state solution with performance measures of the system and the reliability 

indices like availability of the server and failure frequency of the server. The prescribed model can be modeled 

in the design of computer networks. As a future work we can try to incorporate the effect of balking/reneging on 

this service system.  
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