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Abstract 

In this paper, we will study the joint confidence regions for the parameters of inverse Weibull distribution in the 

point of view of record values. One of the applications of the joint confidence regions of the parameters is to find 

confidence bounds for the functions of the parameters. Joint confidence regions for the parameters of extreme 

value distribution are also discussed. In this way we will discus some numerical examples with real data set and 

simulated data, to illustrate the proposed method. A simulation study is performed to compare the proposed joint 

confidence regions. 

Keywords: The joint confidence regions, confidence bounds; inverse Weibull distribution, extreme value 

distribution. 
 

1. Introduction 

Recently, there are many scenarios in life-testing and reliability experiments whose units are lost or removed 

from experimentation before failure. The loss may occur un intentionally, or it may have been designed so in the 

study. The removal of units prior to failure is preplanned in order to provide saving in terms of time and cost 

associated with testing. There are different types of censored test. Type I and Type II have been investigated 

extensively in many papers (see, e.g., [1-4]). A generalization of Type II censoring is progressive Type II 

censoring. The statistical inference on the parameters of lifetime distribution under progressive censoring has 

been studied by [5-7]. In [8] Johnson described a life test in which the experimenter might decide to group the 

test units into several sets, each as an assembly of test units, and then run all the test units simultaneously until 

occurrence the first failure in each group. Such a censoring scheme is called first-failure censoring. Jun et al. [9] 

discussed a sampling plan for a bearing manufacturer. The bearing test engineer decided to save test time by 

testing 50 bearings in sets of 10 each. The first-failure times from each group were observed. Wu et al. [10] and 

Wu and Yu [11] obtained maximum likelihood estimates (MLEs), exact confidence intervals and exact 

confidence regions for the parameters of the Gompertz and Burr type XII distributions based on first-failure-

censored sampling, respectively. Also see Lee et al. [12]. Note that a first-failure-censoring scheme is terminated 

when the first failure in each set is observed. If an experimenter desires to remove some sets of test units before 

observing the first failures in these sets this life test plan is called a progressive first-failure-censoring scheme 

which recently introduced by Wu and Kuş. [13]. In this scheme, first-failure censoring scheme is combined with 

progressive censoring scheme. 

Suppose that  n   independent groups with  k   items within each group are put in a life test.  1R   groups and the 

group in which the first failure is observed are randomly removed from the test as soon as the first failure  
R

knmX ,,;1   has occurred,  2R   groups and the group in which the second failure is observed are randomly 

removed from the test when the second failure  
R

knmX ,,;2   has occurred, and finally  mR   groups and the group 

in which the  m  -th failure is observed are randomly removed from the test as soon as the  m -th failure  
R

knmmX ,,;   has occurred. Then  
RRR

knmmknmknm XXX ,,;,,;2,,;1 ...   are called progressively first-failure 

censored order statistics with the progressive censored scheme  },...,,{ 21 mRRRR  . It is clear that  m    is 

number of the first failures  )1( nm    and  i

m

i

Rmn 



1

. If the failure times of the )( kn items 

originally in the test are from a continuous population with distribution function   xF   and probability density 
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function   xf  , the joint probability density function for  
RRR

knmmknmknm XXX ,,;,,;2,,;1 ,...,,    is given by 

,)](1[

)(),...,,(

1)1(

,,;

,,;

1

,,;,,;2,,;1,...,2,1







 
Rik

knmi

knmi

m

i

m

knmmknmknmm

xF

xfAkxxxf

R

RRRR

 (1) 

,...0 ,,;,,;2,,;1  RRR

knmmknmknm xxx  

where 

).1...)...(2)(1( 121211   mRRRnRRnRnnA m  (2) 

Special cases 
It is clear from (1) that the progressive first-failure censored scheme containing the following censoring schemes 

as special cases: (i) The first-failure censored scheme when  }0,...,0,0{R  . (ii) The progressive Type II 

censored order statistics if  1k  . (iii) Usually Type II censored order statistics when  1k   and  

},...,0,0{ mnR  . (iv) The complete sample case when 1k  and  }0,...,0,0{R  . 

Also, It should be noted that  
RRR

knmmknmknm XXX ,,;,,;2,,;1 ,...,,   can be viewed as a progressive Type II censored 

sample from a population with distribution function  
kxF ))(1(1   . For this reason, results for progressive 

type II censored order statistics can be extend to progressive first-failure censored order statistics easily. Also, 

the progressive first-failure-censored plan has advantages in terms of reducing the test time, in which more items 

are used, but only  m   of  kn    items are failures. 

In many practical situations, it is often known a priori that the hazard rate can not be monotone. It may happen 

that the course of a disease is such that the mortality reaches a peak after some finite period, and then declines 

slowly. For example, in a study of curability of breast cancer, Langlands et al. [14] found that the peak mortality 

occurred after about three years. It is important to analyze such data sets with appropriate models. If the 

empirical studies indicate that the hazard function might be unimodal, then the IWD may be an appropriate 

model. 

The probability density function (pdf) and the cumulative distribution (cdf) of the IWD as follows: 

,0,  ,0     ),exp()( 1     xxxxf  (3) 

and  

).exp()(   xxF  (4) 

As in the Weibull distribution, the shape parameter   governs the shape of the pdf, the hazard function and the 

general properties of the IWD. pdf and HF can be unimodal or decreasing depending on the choice of the shape 

parameter. In this respect the behavior of IWD and the log-normal distribution is quite similar. 

 

The rest of the paper is organized as follows. Maximum Likelihood Estimation (MLE) is presented in section 2. 

In section 3, we provide The ML point and interval estimates of the parameters as well as approximate joint 

confidence region for the parameters of IWD. To study the performance of our approach, we simulated 1000 

progressively first-failure censored samples from a IWD with the values of specific parameters as simulation 

study  is presented in section 5. Illustrative examples  and simulation results with data analysis are presented in 

section 5. and finally we conclude the paper in section 6. 

 

2. Maximum Likelihood Estimation  

To determine the point estimation, Let ),...,,( ,,;,,;2,,;1

RRR

knmmknmknm XXXX   be the progressive first-failure 

censored order statistics from inverse Weibull distribution with censored scheme R . From (1), (2) and (3), the 

likelihood function is given by 
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Calculating the first partial derivatives of (5) with respect to  and   and equating to zero, we obtain the 

likelihood equations 
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The maximum likelihood (ML) estimates ̂  and ̂  of the parameters can be obtained by solving the two 

nonlinear Eqs. (8) and (9), some numerical methods such as Newton's method can be employed. 

 

3. Approximate interval estimation 

The asymptotic variances and covariances of the MLE for parameters , and are given by elements of the 

inverse of the Fisher information matrix 

.2,1 , ;
2













 ji

L
Eij


I  (10) 

Unfortunately, the exact mathematical expressions for the above expectations are very difficult to obtain. 

Therefore, we give the approximate (observed) asymptotic variance-covariance matrix for the MLE, which is 

obtained by dropping the expectation operator E 

 )ˆ,ˆ(1

0 I  

1

)ˆ,ˆ(
2

22
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with 
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Approximate confidence intervals for  and   can be found by taking )ˆ,ˆ(   to be bivariantely normally 

distributed with mean ),(  and covariance matrix )ˆ,ˆ(1

0 I  i.e. ))ˆ,ˆ(),,((~)ˆ,ˆ( 1

0  IN . 

Thus, the  %100)1(    confidence intervals for parameters , and become 

)ˆ(ˆ
2/   varZ  and  )ˆ(ˆ

2/   varZ  (15) 

where 2/Z  is the percentile of the standard normal distribution with right-tail probability. 

The approximate confidence region for ),(   the normal approximation for )ˆ,ˆ(   implies that 

tI ]ˆˆ)[ˆ,ˆ(]ˆˆ[ 1

0     (16) 

is asymptotically of chi-squared form with two degrees of freedom. Let 

 2

)(2

1

0 ]ˆˆ)[ˆ,ˆ(]ˆˆ[:),(    tIQ , (17) 

where 
2

)(2   is the percentile of the chi-squared distribution with right-tail probability and two degrees of 

freedom. This can be used to obtain the  )%1(100    approximate confidence region for ),(  . 

 

4. Simulation Study 

To study the performance of our approach, we simulated 1000 progressively first-failure censored samples from 

a IWD with the values of parameters (1.5,0.5)),(   and different combinations of kmn ,,   and censoring 

schemes R . The samples were simulated by using the algorithm described in Balakrishnan and Sandhu [7]. 

First, we study the properties of the MLEs for different choices of kmn ,, , and progressive censoring schemes 

R . Table 1 provide the Average values and mean squared errors (MSEs) of the ML estimates. 

In our study we have used three different censoring schemes (C.S), namely: 

Scheme I:  for  0,1  iRmnR  for  .mi    

Scheme II:  for  0,  im RmnR  for  .1i   

Scheme III: for 0,2/)1(  im RmnR for ;2/)1(  mi  if m odd, and 0,2/  im RmnR  for  

;2/mi   if m  even. 

It is important to examine how well our proposed method works for constructing confidence intervals and 

regions. We will compare the approximate confidence intervals or regions on the basis of asymptotic properties 
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of the MLEs confidence interval discussed in Section 3 in terms of coverage probabilities. The coverage 

probability average length is the probability that the interval or region contains the true parameters. The 

simulation results of the coverage probabilities and average length are summarized in Table 2. 

  

 Table 1. Average values and MSEs of the estimates of  and  with ).5.0,5.1(    

k  n  m  SC.  ML̂  
ML̂  

1 

20 

10 

I 1.5493(0.4925) 0.5781(0.1711) 

II 1.6061(0.5073) 0.5827(0.1811) 

III 1.6145(0.4995) 0.5803(0.1804) 

15 

I 1.5746(0.4448) 0.5626(0.1248) 

II 1.6331(0.4772) 0.5591(0.1303) 

III 1.5746(0.4594) 0.5569(0.1250) 

50 

20 

I 1.6542(0.2553) 0.5311(0.0963) 

II 1.5258(0.2586) 0.5390(0.1178) 

III 1.4761(0.2526) 0.5433(0.1049) 

30 

I 1.5189(0.2288) 0.5115(0.0683) 

II 1.5401(0.2322) 0.5400(0.0915) 

III 1.5564(0.2669) 0.5264(0.0728) 

3 

20 

10 

I 1.4418(0.2868) 0.5585(0.1472) 

II 1.4552(0.3189) 0.5744(0.1803) 

III 1.4350(0.2960) 0.5776(0.1630) 

15 

I 1.4850(0.2436) 0.5486(0.1204) 

II 1.4918(0.2564) 0.5559(0.1379) 

III 1.5019(0.2536) 0.5420(0.1429) 

50 

20 

I 1.5113(0.2471) 0.5273(0.0881) 

II 1.4388(0.2571) 0.5459(0.1103) 

III 1.4841(0.2325) 0.5370(0.0954) 

30 

I 1.5074(0.1826) 0.5094(0.0723) 

II 1.4867(0.1658) 0.5223(0.0780) 

III 1.5014(0.2016) 0.5352(0.0840) 

5 

20 

10 

I 1.4689(0.2959) 0.5511(0.1267) 

II 1.4065(0.3474) 0.5850(0.1830) 

III 1.4371(0.3224) 0.5731(0.1607) 

15 

I 1.4781(0.2513) 0.5383(0.1175) 

II 1.4461(0.2763) 0.5552(0.1260) 

III 1.4510(0.2736) 0.5566(0.1196) 

50 

20 

I 1.4274(0.2113) 0.5388(0.0939) 

II 1.4698(0.2173) 0.5313(0.0987) 

III 1.5042(0.2355) 0.5150(0.0919) 

30 

I 1.5014(0.1666) 0.5293(0.0738) 

II 1.4651(0.1811) 0.5212(0.0748) 

III 1.4385(0.1855) 0.5333(0.0825) 
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Table 2: Coverage probability and average length for the approximate MLE ).5.0,5.1(    

k  n  m  SC.  ML̂  ML̂    MLML
ˆ,ˆ   

1 

20 

10 

I 0.95(1.7221) 0.92(0.5307) 0.91 

II 0.97(1.4927) 0.95(0.5486) 0.89 

III 0.92(1.5556) 0.92(0.5645) 0.90 

15 

I 0.94(1.5416) 0.96(0.4400) 0.92 

II 0.94(1.4754) 0.97(0.4307) 0.90 

III 0.92(1.4250) 0.99(0.4406) 0.91 

50 

20 

I 0.95(1.2542) 0.93(0.3345) 0.93 

II 0.91(1.3258) 0.92(0.3587) 0.92 

III 0.92(1.2761) 0.94(0.3645) 0.92 

30 

I 0.95(0.9189) 0.97(0.2739) 0.93 

II 0.95(1.0401) 0.90(0.2925) 0.91 

III 0.95(1.0004) 0.97(0.2907) 0.92 

3 

20 

10 

I 0.91(1.2418) 0.97(0.4650) 0.90 

II 0.93(1.2552) 0.96(0.5420) 0.89 

III 0.91(1.2350) 0.96(0.5129) 0.90 

15 

I 0.92(0.9850) 0.96(0.3946) 0.91 

II 0.93(1.0008) 0.98(0.4161) 0.91 

III 0.90(1.0002) 0.89(0.4035) 0.91 

50 

20 

I 0.93(0.8113) 0.94(0.3027) 0.94 

II 0.95(0.8880) 0.95(0.3692) 0.92 

III 0.90(0.8541) 0.93(0.3350) 0.93 

30 

I 0.94(0.7074) 0.93(0.2521) 0.96 

II 0.96(0.7670) 0.95(0.2803) 0.92 

III 0.91(0.7014) 0.94(0.2795) 0.93 

5 

20 

10 

I 0.94(1.0689) 0.96(0.4443) 0.90 

II 0.88(1.2206) 0.96(0.5587) 0.88 

III 0.91(1.1371) 0.96(0.4990) 0.90 

15 

I 0.91(0.7781) 0.95(0.3783) 0.92 

II 0.95(0.8461) 0.95(0.4160) 0.90 

III 0.93(0.8310) 0.97(0.4067) 0.90 

50 

20 

I 0.94(0.7074) 0.94(0.3030) 0.93 

II 0.93(0.7269) 0.97(0.3626) 0.91 

III 0.94(0.7042) 0.95(0.3138) 0.92 

30 

I 0.95(0.5014) 0.95(0.2571) 0.94 

II 0.94(0.5565) 0.93(0.2806) 0.92 

III 0.93(0.5339) 0.95(0.2724) 0.92 

 

5. Illustrative Example 

For illustrative purpose, we consider a progressive first-failure censored sample were generated from IWD with 

parameters: 2 , 1 , using the algorithm proposed by Balakrishnan and Sandhu [7]. The data consisting 

of 150 observations as a lifetime data, were randomly grouped into 30n  sets, with 5 observations in each. 

The progressive first-failure censored sample with the corresponding censoring scheme are given in Table 3. 

Under the data given in Table 3 we compute MLEs estimates of  and   results are given in Table 4. Table 5 
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gives the 95%, approximate MLE confidence intervals . 

Table 3. Results obtained by MLE 

Parameter True value  ML(.)  

 
2.0 2.09252 

 
1.0 0.957363 

Table 4. Two-sided 95% confidence intervals of  and   

Method of Estimate 95% C.I of    Length 95% C.I of    Length 

MLE (1.50641,2.67864) 1.18223 (0.53840,1.37633) 0.83793 

6. Conclusion 

Censoring is a common phenomenon in life-testing and reliability studies. The subject of progressive censoring 

has received considerable attention in the past few years, due in part to the availability of high speed computing 

resources, which makes it both a feasible topic for simulation studies for researchers and a feasible method of 

gathering lifetime data for practitioners. 

In this article, we have considered the maximum likelihood for the parameters of the IWD using progressive 

first-failure censored scheme. Also, we develop an approximate confidence intervals and an approximate joint 

confidence region for the parameters of the IWD. A simulation study was conducted to examine and compare the 

performance of the proposed methods. From Tables 1, as the effective sample proportion nm /  increases, the 

MSEs of the estimators, reduce significantly. For fixed  mn,  and k , we can determine the censoring scheme 

which is most efficient; for example, from tables, we observe that the censoring scheme II , corresponding to the 

case of withdrawal in the first stage of the test, seems to provide the smallest MSE for the estimate of the 

parameters. 
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