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Abstract : The development of Burger equation through the transform function is studied and we prove the 

existence and uniqueness of solution , also we give some applications .  

1- Introduction :  

The application of Adomian's decomposition method to partial differential equations, when the exact 

solution is not reached , demands the use of truncated series , but the solution's may have small convergence 

radius and the truncated series may be inaccurate in many regions ,in order to enlarge the convergence domain of 

the truncated series , pade approximations to the Adomain's series solution have been tested and applied to 

partial and ordinary differential equations, in [1] . Turbulence generated by Burgers' model equation yielded 

good approximation to real turbulence , the energy spectrum fell off like k to the -2 power for times greater than 

6 seconds , the energy spectrum of turbulence generated by the model equation was found to follow the k to the -

2 power law , in [2] .  In [3] they are studied Burgers' equation and vector Burgers' equation with initial and 

boundary conditions , they are considered the Burgers' equation in the quarter plane x>0 , t>0 with Riemann type 

of initial and boundary conditions and use the HOPf-cole transformation to linearize the problems and explicitly 

solve  them . Time and space splitting techniques are applied to the Burgers' equation and the modified Burgers' 

equation , and then the quintic B-spline collocation procedure is employed to approximate the resulting system , 

some numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method , 

comparisons with both analytical solutions and some published numerical results are done in computational 

section , in [4] . The  researcher is examination the numerical solution to Burgers' equation on a finite spatial 

with various boundary condition , he first conduct experiments to confirm the numerical solution observed by 

other researchers for Neumann boundary condition , also he considered the case where the non – homogeneous 

Robin boundary conditions approach the non- homogenous Neumann conditions , in [5] . The Projective 

Ordinary Differential assisted projective integration method based on the equation – free framework is presented 

, the method is essentially based on the slow manifold governing of given system , they have applied tow 

variants which are the "on – line" and "of – line " methods for solving the non- dimensional viscous Burgers' 

equation for the on – line method , they have computed the slow manifold by extracting the POD modes and 

used them on the fly along the projective integration process without assuming know ledge of the underlying 

slow manifold . In [7] they proposed differential quadratic method for calculating the numerical solution of 

nonlinear on – dimensional Burger – Huxley equation with appropriate initial and boundary conditions . In [8] 

they are constructed hump solution of Burgers' equation in terms of the self – similar solution of the heat 

equation following Kloosterziel approach , these self similar solution involve Hermite polynomials , the solution 

obtained here are compared with miller and Bernoff (large time) asymptotic solution . In [9] they are devoted to 

the numerical studied of various finite difference approximations to the stochastic Burgers' equation , of 

particular interest in the one- dimensional case is the situation where the driving noise is white both in space and 

in time , they are demonstrated that in this case , different finite difference schemes converge  to different 

limiting processes as the mesh size tends to zero . In [10] , they are conducted a numerical studied if the one 

dimension viscous Burgers' equation and several Reduced Order Models over a range of parameter values , this 

studied is motivated by the need for robust reduced order model that can be used both for design and control , 

thus the model should first , allow for selection of optimal parameter value in a trade space and second , identify 

impacts from changes of parameter values that occur during development , production and sustainment of the 

designs . Burgers'- Huxley equations and their reduced form are of vital importance in modeling the interaction 

between reaction mechanisms , convection effects and diffusion transports , they applied the reduced form of 

differential transform method , in [11] . In [12] , first they are used the classification of one-dimensional 

subalgebras of Lie point symmetries admitted by Burgers' Equation and the corresponding reduced differential 
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equations to construct a large class of new exact solutions, second, by using the Riccati transformation method , 

we obtain some new solutions of the Burgers equation namely , exponential, rational and periodic solutions. In 

[13] , they are presented the Burgers' equation in its viscous and non-viscous version, after submitting, as a 

motivation, some applications of this paradigmatic equations, they continue with the mathematical analysis of 

them . For Riemann data consisting of a single decreasing jump , they found that the Leray regularization 

captures the correct shock solution of the in viscid Burgers equation , for Riemann data consisting of a single 

increasing jump , the leray regularization captures an unphysical shock , this behavior can be remedied by 

consisting the behavior of the leray regularization with initial data consisting of an arbitrary mollification of the 

Riemann data , in [14] . Numerical solutions for the Burgers' equation based on the Galerkin's method using 

cubic B- splines as both weight and interpolation functions are set up , it is shown that this method is capable of 

solving Burgers' equation accurately for values of viscosity ranging form very small to large . in [15] . A new 

method for the solution of Burgers' equation is described, the marker method relies on the definition of a 

convective field associated with the underlying partial differential equation; the information about the 

approximate solution is associated with the response of an ensemble of markers to this convective field , some 

key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in 

some details , the marker method is applicable to a general class of nonlinear dispersive partial differential 

equations, in [16]. In this work , we prove the existence and uniqueness of the development of Burgers' equation 

.  

 

2- Statement of the problem :  

     Consider the second – order partial differential equation definitions of the following form :     

     (1.2) 

    

 
  where h(x)and f(x) are continuous functions define in Ω ,  Ω=  

 also we suppose the following condition is valid .  

For given   

                                                         ( 2.2) 

 

 

We can change the equation by use the new variables  

                                                 (3.2) 

where V(x , t) is continuous and differentiable function with respect to x and t . from (3.2) and (1.2) we get :  

 

 

 

 

 
Compensate derivatives of  x  and  t  in the equation (1.2) , we get :  
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If we suppose  u =u(x , t) , then we solving the equation (1.2), is :  

 

 

 

 , 

and  

 , 

 
where 

 
and 

 
which agrees with what was found by the first approach for solving the Development Burger’s equation. from 

(4.2) we get  

 
Can rewrite the solution to be asymptotically 

 

 
Since                       ,                       then we get :  

                                                                                                            (5.2) 

The equation (5.2) is exactly the solution of the problem 

                  (6.2) 
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We found the equation (6.2) by the method of characteristics, the solution of equation (5.2) is smooth for t, if the 

function u0 (x) is smooth function and differentiate for x  , then we have  

 

 
where            

 

If suppose u
'
 (x) < 0 for every x , then ux = ∞,  if     is the first instant TO when ux = ∞, known as 

gradient catastrophe, corresponds to a So where u
'
0(x) has a minimum 

 
3- Study some application about equation (1.2):  

1.3 :  Let consider the instant of gradient catastrophe for the problem 

 
    

 
Solution: The solution of the problem  

 
For the function  

 

 

 

Because     

Then     Note that 

 

 
The graphs of the functions  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Figure (1.3)  

Plot3D[ ,  {e, -8 , 8 }  ,  { kx , -8 , 8 } ] 

 

 

Figure (2.3)  

Plot3D[ ,  {e, -8 , 8 }  ,  { kx , -8 , 8 } ] 
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Figure (3.3) 

Plot3D[ ,  {e, -8 , 8 }  ,  { kx , -8 , 8 } ] 

 

 

4- Procedure of solving the problem  :  

Consider the following problem :  

                              (1.4) 

 

 
which is  a limit case of Development Burgers' equation as      .   

Definition 1.4 :  

Assume  

 

 

for every test function  

And we need the following Proposition:  

 

 

Proposition 1.4   [4]  

Let u (x, t) be a smooth solution of the problem        .  

  . Then u (x ,t ) is a weak solution of the problem.  

Proof:  

 Obviously     

and   Multiplying integrating in    

and using   we obtain  :  
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Theorem 1.4  

For a given function  the regularizations  tend to u in  for every 

compact   ,   i ,e         [4] 

From the theorem (1.4) and proposition (1.4), the following theorem is holds :   

Theorem 2.4  

Let be a smooth solution of the equation   and a weak 

solution of the problem (1.4).  If  is continuous at a point x0 , then u(x0 , 0) = u0(x) .   

Proof :  

Let  . As in proposition (1.4) we are led to 

 
Suppose   u(x0,0) > u0(x0) . By continuity there exist a neighborhood U such that  

 
Take such that  

 

 
Then  

 

 
Which is a contradiction , similarly u(x0 , 0) < u0(x0) is impossible . then  u(x0 , 0) = u0(x0)        ■ 

 

 Now let us consider the initial data  

                             (2.4) 

where  ul  and   uτ   are constant .  

The two cases  are quite different with respect to the solvability of problem(1.4) . It 

can be proved that if    then the weak solution is unique, while if   then there exist infinitely 

many solutions.  

 

5- Studying  the following cases for problem (1.4) :   

Case I :   then we have the following problem  

 
    

 
If   we are in a situation to apply the theorem (1.4) 

           Let x > 0 be fixed and  
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The instant τ of the theorem (2.4)and by using the condition (2.2) is determined by the slope k of the straight line 

through the points (x,0) and (0,s)  

 

then  

 
and  

 
The unique solution of (1.4) is known as a shock wave , while  is a shock speed the speed at 

which the discontinuity of the solution travels .  

Theorem 1.5  
     Let the function  

                                                                    (1.5) 

Is a weak solution of the problem (1.4) with initial data (2.4) , where  

 
 

Proof :  

Let   . Denote for simplicity   

 

 
We have  

 

 

 
By 

 
and  

 
then by using the Retail Integration of A1 we get  
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Similarly 

 

 
by  

 
and  

 
then by using the Retail Integration of A2 we get  

 
then  

          A = A1 + A2 = 0 . 

On the other hand  

 

 

 
 

         then           A = B                                                     ■  

Case II :  If ul < uτ then we have the following problem :  

In this case there exist more than one weak solution, we show the following theorem is valid  .  

 

Theorem 2.5  

      Let the function  

 
         is a weak solution of the problem (1.4)with initial data (2.4) .  

 Proof :        Let        

for simplicity we take ul = -1 and  uτ = 1 and denote  
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Where    ul = -1    and    uτ = 1 

the function satisfies the equation  .             we have  

 
where  

 

 
F2  has a singularity at 0  

 
where  

 
we have  

 
that  

 

 

so     

 

 
         The proof is complete                                                                       ■ 
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6-  We have some applications about the case II :  

       1.6 : We can find the solution of the following Development Burger's     equation with discontinuous initial 

condition: 

 
 

Solution:   Let the following problem: 

 

 

 
Then we have the following problem :   

 
that means  ,  

 

Sending      we get the solution of the original problem 

 
It is interesting to observe that the initial discontinuity is smoothed as illustrated in following figure. We can say 

Development Burger's equation favors non-decreasing initial values and dislikes other ones. 
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Figure (1.6)  

 
 

 2.6 : We solve the initial value problem for u(x , t) , t > 0 in terms of t and a characteristic variable  

 

 
 

 

 

 
 

Hence in terms of t and L  

u = B(L)     with    

 

and                             u = B(L) =  

so                               

With                           

We have ,  

 
That is when   
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Figure (2.6) 
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