Orlicz Space of Difference Analytic Sequences

Nada Mohammed Abbas^{1*} Rehab Amer Kamel^{2*} Department of Mathematics, Babylon University, Hilla, Babylon, Iraq * E-mail: <u>re_ami_ka@yahoo.com</u>

Abstract

In this Paper, we introduce difference analytic sequence spaces defined by Orlicz function and study some topological properties.

Keywords: analytic sequence, Orlicz sequence space, difference sequence space .

1. Introduction

A complex sequence, whose k^{th} term is denoted by (x_k) . A sequence $x = (x_k)$ is said to be analytic, if $\sup_{k \to \infty} |x_k|^{1/k} < \infty$. The vector space of all analytic sequence will be denoted by Λ . A sequence is entire sequence if $\lim_{k \to \infty} |x_k|^{1/k} = 0$. The vector space of all entire sequence will be denoted by Γ .

The notion of difference sequence space was introduced by Kizmaz [2], who studied the difference sequence spaces $L_{\infty}(\Delta)$, $C(\Delta)$ and $C_{D}(\Delta)$. Kizmaz [2] defined the following difference sequence spaces,

 $Z(\Delta) = \{x = (x_k) : \Delta_x \in Z\}, \text{ where }$

 $\Delta_{\boldsymbol{\chi}} = (\Delta_{\boldsymbol{\chi}})_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty} .$

An Orlicz function $M:[0,\infty) \to [0,\infty)$ is a continuous non decreasing and convex function such that M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

Lindenstrass and Tzafriri [4] used the idea of Orlicz function to defined the following sequence space

$$\ell_{\mathcal{M}} = \left\{ x \in w : \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{|x_k|}{\rho}\right) < \infty \right\}, \text{ where }$$

 $w = \{all \ complex \ sequence \}$, which is called an Orlicz sequence space. Also ℓ_M is a Banach space with the nom

 $||x|| = \inf \left\{ \rho > 0; \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}, \text{ and , they proved that every Orlicz sequence space } \ell_M \text{ contains a subspace isomorphic to } \ell_p \ (1 \le p < \infty).$

2. Definition and Preliminaries

2.1 Definition

Let M be an Orlicz function. The space consisting of all those sequences x in w such that

$$\left(\sup_{k} \left(M \frac{|\mathbf{x}_{k}|^{1}}{\rho}\right)\right) < \infty$$
, for some arbitrarily fixed $\rho > 0$. Is denoted by $\Lambda_{\mathbf{M}}$ and is known as a

sequence of analytic sequences defined by a sequence of Orlicz function.

2.2 Definition [1]

A sequence space E is said to be solid or normal if $(\alpha_k x_k) \in E$ where $(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \le 1$.

2.3 Definition [3]

Let V be a vector space over scalars k. A semi norm v on V is a real - valued function on V so that:

- $1, v(x) \ge 0, for all x \in V$
- 2. $v(\alpha x) = |\alpha|v(x)$, for all $\alpha \in k, x \in V$
- 3. $v(x + y) \le v(x) + v(y)$, for all $x, y \in V$.

2.4 Definition

Let (X, q) be a semi-normed space over the field of complex numbers with the semi-norm q. We denote $\Lambda(X)$ as the space of all analytic sequences defined over X.

We define the following sequence spaces :

$$\Lambda_{\mathbf{M}}(\Delta, p, q) = \left\{ x \in \Lambda(X) : \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} \right\} < \infty.$$

2.5 Definition [5]

Let X be a linear metric space .A function $p: X \to R$ is called paranorm, if

1. $p(x) \ge 0$, for all $x \in X$, 2. p(-x) = p(x), for all $x \in X$, 3. $p(x + y) \le p(x) + p(y)$, for all $x, y \in X$,

4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda \text{ as } n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n - x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

2.6 Note

The following inequality will be used throughout the paper

Let $p = (p_k)$ be a sequence of positive real numbers with $0 \le p_k \le \sup p_k = G$, $K = \max(1, 2^{G-1})$ then $|a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\}$

3. Main Results

3.1 Theorem

Let M be an Orlicz function , then $\Lambda_{\mathbf{M}}(\Delta, p, q)$ is linear space.

Proof:

Let
$$x = (x_k), y = (y_k) \in \Lambda_{\mathbf{M}}(\Delta, p, q)$$
 and $\alpha, \beta \in C$, then we have
 $\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/k}}{\rho_1}\right)\right) \right]^{p_k} < \infty$, for some $\rho_1 > 0$
 $\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta y_k|^{1/k}}{\rho_2}\right)\right) \right]^{p_k} < \infty$, for some $\rho_2 > 0$,

Since M is Orlicz function and q semi norm and Δ is linear , then we get

Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.4, No.3, 2014

$$\begin{split} \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\kappa x_{k} + \beta y_{k})|^{1/k}}{\rho_{2}}\right)\right) \right]^{p_{k}} &< \infty, \text{ for some } \rho_{3} > 0 \\ &\leq \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\alpha|^{1/k} |\Delta x_{k}|^{1/k}}{\rho_{2}} + \frac{|\beta|^{1/k} |\Delta y_{k}|^{1/k}}{\rho_{2}}\right) \right) \right]^{p_{k}}, \text{where } \rho_{3} = max \left\{ |\alpha|^{1/k} \rho_{1}, |\beta|^{1/k} \rho_{2} \right\} \\ &\leq K \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho_{1}} + \frac{|\Delta y_{k}|^{1/k}}{\rho_{2}}\right) \right) \right]^{p_{k}} \\ &\leq K \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho_{1}}\right) + M\left(q\left(\frac{|\Delta y_{k}|^{1/k}}{\rho_{2}}\right)\right) \right]^{p_{k}} \\ &\leq K \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho_{1}}\right) \right) + M\left(q\left(\frac{|\Delta y_{k}|^{1/k}}{\rho_{2}}\right) \right) \right]^{p_{k}} \\ &\leq K \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho_{1}}\right) \right) + K \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta y_{k}|^{1/k}}{\rho_{2}}\right) \right) \right]^{p_{k}} < \infty. \end{split}$$

3.2 Theorem

Let M', M'' be two an Orlicz functions, then $\Lambda_{\mathbf{M}'}(\Delta, p, q) \cap \Lambda_{\mathbf{M}''}(\Delta, p, q) \subseteq \Lambda_{\mathbf{M}'+\mathbf{M}''}(\Delta, p, q)$. Proof:

Let
$$x = (x_k) \in \Lambda_{M'}(\Delta, p, q) \cap \Lambda_{M''}(\Delta, p, q)$$
, then $\exists \rho_1, \rho_2 > 0$ such that

$$\begin{aligned} \sup_n \frac{1}{n} \sum_{k=1}^n \left[M' \left(q \left(\frac{|\Delta x_k|^{1/h}}{\rho_1} \right) \right) \right]^{p_k} < \infty \end{aligned}$$

$$\begin{aligned} \sup_n \frac{1}{n} \sum_{k=1}^n \left[M'' \left(q \left(\frac{|\Delta x_k|^{1/h}}{\rho_1} \right) \right) \right]^{p_k} < \infty, \text{ since } \rho > 0, \text{ such that } \rho = \min(2\rho_1, 2\rho_2) \end{aligned}$$
, then we have

$$\begin{aligned} \sup_n \frac{1}{n} \sum_{k=1}^n \left[(M' + M'') \left(q \left(\frac{|\Delta x_k|^{1/h}}{\rho_1} \right) \right) \right]^{p_k} \end{aligned}$$

$$\leq \sup_n \frac{1}{n} \sum_{k=1}^n \left[M' \left(q \left(\frac{|\Delta x_k|^{1/h}}{\rho_1} \right) \right) \right]^{p_k} + \sup_n \frac{1}{n} \sum_{k=1}^n \left[M'' \left(q \left(\frac{|\Delta x_k|^{1/h}}{\rho_1} \right) \right) \right]^{p_k} < \infty. \end{aligned}$$
Hence $(x_k) \in \Lambda_{M'+M''}(\Delta, p, q).$

3.3 Theorem

The sequence space $\Lambda_{\mathbf{M}}(\Delta, p, q)$ is solid.

Proof

Let
$$x = (x_k) \in \Lambda_{\mathbf{M}}(\Delta, p, q)$$
, then

$$\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/k}}{\rho}\right)\right) \right]^{p_k} < \infty.$$

Let (α_k) sequence of scalars such that $|\alpha_k| \leq 1, \forall k \in \mathbb{N}$, then , we have

$$\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\alpha_{k}\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} \leq \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\alpha_{k}|^{\frac{1}{k}} |\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}}$$

Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.4, No.3, 2014

$$\leq \sup_{n} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} < \infty.$$

3.4 Theorem

 $\Lambda \subset \Lambda_{\mathbf{M}}(\Delta, p, q)$ with the hypothesis that

$$\frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} \leq |x_{k}|^{1/k}$$

Proof

Let $(x_k) \in \Lambda$, then we have

 $\sup |x_k|^{1/k} < \infty$. But

$$\begin{split} \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} &\leq \sup |x_{k}|^{1/k} \text{, by our assumption, implies that} \\ \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} &< \infty. \end{split}$$
Then $(x_{k}) \in \Lambda_{\mathbf{M}}(\Delta, p, q) \text{ and } \Lambda \subset \Lambda_{\mathbf{M}}(\Delta, p, q). \end{split}$

3.5 Theorem

Let
$$0 \le p_k \le \eta_k$$
 and $\left\{\frac{r_k}{p_k}\right\}$ be bounded. Then $\Lambda_{\mathbf{M}}(\Delta, r, q) \subseteq \Lambda_{\mathbf{M}}(\Delta, p, q)$

Proof

Let
$$x = (x_k) \in \Lambda_M(\Delta, r, q)$$
, then

$$\sup_{n \frac{1}{n}} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/h}}{\rho}\right)\right) \right]^{r_k} < \infty.$$
Let $t_k = \sup_{n \frac{1}{n}} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/h}}{\rho}\right) \right) \right]^{q_k}$ and $\lambda_k = \frac{p_k}{r_k}$, since $p_k \le r_k$, we have $0 \le \lambda_k \le 1$. Take $0 < \lambda < \lambda_k.$
Define $u_k = \begin{cases} t_k & \text{if } t_k \ge 1 \\ 0 & \text{if } t_k < 1 \end{cases}$ and $r_k = \begin{cases} 0 & \text{if } t_k \ge 1 \\ t_k & \text{if } t_k < 1 \end{cases}$
 $t_k = u_k + r_k, t_k^{\lambda_k} = u_k^{\lambda_k} + r_k^{\lambda_k}.$ It follows that $u_k^{\lambda_k} \le u_k \le t_k, u_k^{\lambda_k} \le r_k^{\lambda}.$
Since $t_k^{\lambda_k} = u_k^{\lambda_k} + r_k^{\lambda_k}$, then $t_k^{\lambda_k} \le t_k + r_k^{\lambda}.$ Thus
 $\sup_{n \frac{1}{n}} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/k}}{\rho}\right)\right)^{r_k} \right]^{d_k} \le \sup_{n \frac{1}{n}} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|^{1/k}}{\rho}\right)\right) \right]^{r_k}$
 \Rightarrow

$$\begin{split} \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{p_{k}} &\leq \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{1/k}}{\rho}\right)\right) \right]^{r_{k}}. \end{split}$$

$$But \quad \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{\frac{1}{k}}}{\rho}\right)\right) \right]^{r_{k}} &< \infty. \end{split}$$

$$Therefore \quad \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|^{\frac{1}{k}}}{\rho}\right)\right) \right]^{p_{k}} &< \infty. \end{cases}$$

Hence $x = (x_k) \in \Lambda_{\mathbf{M}}(\Delta, p, q)$. Thus, we have $\Lambda_{\mathbf{M}}(\Delta, r, q) \subseteq \Lambda_{\mathbf{M}}(\Delta, p, q)$.

3.6 Theorem

Let $0 < inf p_k \le p_k \le 1$. Then $\Lambda_M(\Delta, p, q) \subset \Lambda_M(\Delta, q)$

Proof

⇒

Let
$$x = (x_k) \in \Lambda_{\mathbf{M}}(\Delta, p, q)$$
. Then
 $\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|_k}{\rho}\right)\right) \right]^{p_k} < \infty$, since $0 < \inf p_k \le p_k \le 1$,
 $\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|_k}{\rho}\right)\right) \right] \le \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_k|_k}{\rho}\right)\right) \right]^{p_k} < \infty$.

Thus it follows that $x = (x_k) \in \Lambda_{\mathbf{M}}(\Delta, q)$. Thus $\Lambda_{\mathbf{M}}(\Delta, p, q) \subset \Lambda_{\mathbf{M}}(\Delta, q)$.

3.7 Theorem

 $\text{Let } 1 \leq p_k \ \leq \sup p_k \ < \infty \text{. Then } \Lambda_{\mathbb{M}}(\Delta,q) \ \subset \ \Lambda_{\mathbb{M}}(\Delta,p,q).$

Proof

Let $p_k \ge 1$ for each k and $\sup p_k < \infty$, let $x = (x_k) \in \Lambda_M(\Delta, q)$, \Rightarrow

$$\begin{split} \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho}\right)\right) \right] &< \infty \text{ , since } 1 \leq p_{k} \leq \sup p_{k} < \infty \text{, we have} \\ \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho}\right)\right) \right]^{p_{k}} \leq \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho}\right)\right) \right] \Rightarrow \\ \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho}\right)\right) \right]^{p_{k}} < \infty \text{ ,} \\ \Rightarrow x = (x_{k}) \in \Lambda_{\mathbf{M}}(\Delta, p, q) \text{ , Therefore } \Lambda_{\mathbf{M}}(\Delta, q) \subset \Lambda_{\mathbf{M}}(\Delta, p, q). \end{split}$$

3.8 Theorem

Let M be a sequence of Orlicz function. Then $\Lambda_{\mathbf{M}}(\Delta, p, q)$ is a paranormed space with paranorm defined by

$$g(x) = \inf\left\{\rho^{\frac{pm}{H}}: \sup \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho}\right)\right) \right]^{p_{k}} < \infty, \rho > 0 \right\}, \text{ where } H = \max(1, \sup_{k} p_{k}).$$

Proof

Clearly $g(x) \ge 0$, g(x) = g(-x) and $g(\theta) = 0$, where θ is the zero sequence of X.

Let $(x_k), (y_k) \in \Lambda_{\mathcal{M}}(\Delta, p, q), \rho_1, \rho_2 > 0$, such that

$$\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta x_{k}|_{k}^{1}}{\rho_{1}}\right)\right) \right]^{p_{k}} < \infty \text{ , and } \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta y_{k}|_{k}^{1}}{\rho_{2}}\right)\right) \right]^{p_{k}} < \infty$$

Let $\rho_1 + \rho_2 = \rho$. Then by using Minkowski inequality, we have

$$\begin{split} \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\mathbf{x}_{k}+\mathbf{y}_{k})|_{\mathbf{h}}^{1}}{\rho}\right)\right) \right]^{p_{k}} \leq \\ \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta\mathbf{x}_{k}|_{\mathbf{h}}^{\mathbf{h}}}{\rho_{1}}\right)\right) \right]^{p_{k}} + \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\mathbf{y}_{k})|_{\mathbf{h}}^{\mathbf{h}}}{\rho_{2}}\right)\right) \right]^{p_{k}} < \infty \end{split}$$

$$\begin{aligned} \text{Hence } g(x+y) &= \inf\left\{ \left(\rho_{1}+\rho_{2}\right)^{\frac{p_{n}}{R}} : \left(\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\mathbf{x}_{k})|_{\mathbf{h}}^{\mathbf{h}}}{\rho_{1}+\rho_{2}}\right)\right) \right]^{p_{k}}\right)^{\frac{1}{C}} \right\} \end{aligned}$$

$$\leq \\ \inf\left\{ \left(\rho_{1}\right)^{\frac{p_{n}}{R}} : \left(\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\mathbf{x}_{k})|_{\mathbf{h}}^{\mathbf{h}}}{\rho_{1}}\right) \right) \right]^{p_{k}}\right)^{\frac{1}{C}} \right\} + \\ \inf\left\{ \left(\rho_{2}\right)^{\frac{p_{n}}{R}} : \left(\sup_{\mathbf{n}} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(q\left(\frac{|\Delta(\mathbf{y}_{k})|_{\mathbf{h}}^{\mathbf{h}}}{\rho_{2}}\right) \right) \right]^{p_{k}}\right)^{\frac{1}{C}} \right\} \end{split}$$

Thus, we have $g(x + y) \le g(x) + g(y)$. Hence satisfies the triangle inequality.

Now, let
$$\lambda_n \to \lambda$$
 as $n \to \infty$ and $g(x_n - x) \to 0$ as $n \to \infty$, then $g(\lambda_n x_n - \lambda_x) \to 0$ as $n \to \infty$. Since $g(\lambda_x) = \inf\left\{ (\rho)^{\frac{pm}{H}} : \left(\sup_n \frac{1}{n} \sum_{k=1}^n \left[M\left(q\left(\frac{|\lambda \Delta x_k)|_k}{\rho}\right) \right) \right]^{p_k} \right)^{\frac{1}{c}} \right\} < \infty.$

Hence $\Lambda_{\mathbf{M}}(\Delta, p, q)$ is a paranormed space.

References

[1] P.K Kamthan and M.Gupta , Sequence spaces and series ,Lecture Notes in Pure and Applied Mathematics ,65 Marcel Dekker , Inc,. New York ,(1981).

- [2] H. Kizmaz, On certain sequences spaces, Canad.Math.Bull.,24(1981),169-176.
- [3] Kosaku Yosida, Functional Analysis ,Sixth Edition ,Springer Verlag,Berlin Heidelberg New York, 1980.
- [4] J.Lindenstrauss and L.Tzafriri ,On Orlicz sequence spaces ,Israel J.Math.,10(1971),pp.379-390.
- [5] I.J. Maddox ,Elements of functional analysis ,Cambridge university press ,2nd edition ,1988.