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Abstract:

In this research work, new topological notions are proposed and investigated. The notions are named final
characterized L-spaces and initial and final characterized L-topological groups. The properties of such notions
are deeply studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in
the category CRL-Sp and hence CRL-Sp is topological category over the category SET of all sets. By the notion of
final characterized L-space, the notions of characterized qoutien pre L-spaces and characterized sum L-spaces
are introduced and studied. The characterized L-subspaces together with their related inclusion mappings and
the characterized quotient pre L-spaces together with their related canonical surjections are the equalizers and
co-equalizers, respectively in CRL-Sp. Moreover, we show that the initial and final lefts and then the initial and
final characterized L-topological groups uniquely exist in the category CRL-TopGrp. Hence, the category CRL-
TopGrp is topological category over the category Grp of all groups. By the notion of initial and final
characterized L-topological groups, the notions of characterized L-subgroups, characterized product L-
topological groups and characterized L-topological quotient groups are introduced and studied., we show that the
category CRL-TopGrp is concrete and co-concrete category of the category L-Top. Finally, we show that the
special faithful functors .#: CRL — TopGrp —L — Top and F" L - Top —> CRL — TopGrp are isomorphism, that is,
the category CRL-TopGrp is algebraic and co-algebraic category over the category L-Top as in sense of [7].
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1. Introduction

The notion of L-filter has been introduced by Eklund ef al. [10]. By means of this notion a point-based approach
to L- topology related to the usual points has been developed. More general concept for L-filter introduced by

G d hler in [11] and L-filters are classified by types. Because of the specific type of L-filter however the
approach of Eklund is related only to L-topologies which are stratified, that is, all constant L-sets are open. The
more specific L-filters considered in the former papers are called now homogeneous. The operation on the

ordinary topological space (X ,7 ) has been defined by Kasahara ([16]) as a mapping ¢ from 7" into 2X such

that, 4 < A4 ’ , forall 4 €T . In. [5], Abd El-Monsef's et al.extended Kasahars's operation to the power set
P(X ) ofaset X. Kandil et al. ([15]), extended Kasahars's and Abd El-Monsef's operations by introducing an

operation on the class of all L-sets endowed with an L-topology 7 as a mapping ¢ : L 5 L such that

X
int g < ,uq) for all # € L , where ,u(p denotes the value of ¢ at g . The notions of the L-filters and the

operations on the class of all L-sets on X endowed with an L-topology 7 are applied in [2,3,4] to introduce a
more general theory including all the weaker and stronger forms of the L-topology. By means of these notions

the notion of ¢, , -interior of L-set, ¢, L-convergence and ¢, , L-neighborhood filters are defined and applied to

introduced many special classes of separation axioms. The notion of ¢, , -interior operator for L-sets is defined

X X
as a mapping @, ,. int :L — L which fulfill (I1) to (I5) in [2]. There is a one-to-one correspondence between
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the class of all ¢, , -open L-subsets of X and these operators, that is, the class ¢ ,OF (X ) of all @, ,-open L-

subsets of X can be characterized by these operators. Then the triple (X N 2.in‘[) as will as the triple

X, ¢, ,OF (X )) will be called the characterized L-space of ¢, , -open L-subsets. The characterized L-spaces are
characterized by many of characterizing notions in [2,3], for example by: ¢, , L-neighborhood filters, ¢ , L-

interior of the L-filters and by the set of ¢, , -inner points of the L-filters. Moreover, the notions of closeness and

compactness in characterized L-spaces are introduced and studied in [4].

This paper is devoted to introduce and study the notions of final characterized L-spaces and initial and final
characterized L-topological groups as a generalization of the weaker and stronger forms of the final topological
L-space and initial and final L-topological group introduced in [8, 18]. In section 2, some definitions and

notions related to L-sets, L-topologies, L-filters, operations on L-sets, characterized L-spaces, ¢, L-
neighborhood filters, ¢ ,a L-neighborhood, ¢, y , L-contiuous mappings, ¢, w,, L-open mappings,

®,, ¥,, L-homeomorphism mappings and characterized L-topological groups are given. The categories of all
characterized L-spaces, stratified characterized L- spaces and the characterized L-topological groups with the
¢, ¥, , L-continuity and ¢, , y, , -homomorphisms as a morphismeis between them are presented. Section 3, is

devoted to introduce and study the notion of final characterized L-spaces. We show that all the final lefts and all
the final characterized L-spaces are uniquely exist in the category CRL-Sp. Further notions related to the notion
of characterized L-spaces are e.g. those of a characterized qoutient pre L-spaces and a characterized sum L-
spaces are investigated as special cases for the notions of final characterized L-spaces. By the initial and final
lefts in CRL-Sp we show that the category CRL-Sp is topological category over the category SET of all sets in
sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in CRL-Sp
exist, which of course are unique up to isomorphisms. According to general procedure, we show that the
characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-
spaces together with their related canonical surjections are equalizers and co-equalizers in CRL-Sp, respectively.
Section 4, is deviated to introduce and study the notion of initial characterized L-topological groups as a
generalization of the weaken and stronger forms of the initial L-topological groups which introduced in [8]. It
will be shown that the initial lefts and then the initial characterized L-topological groups are uniquely exist in the
category CRL-TopGrp and therefore, the category CRL-TopGrp is topological category over the category
Grp of all groups. More generally, we show that the category CRL-TopGrp is concrete category of the category
L-Top of all topological spaces and the faithful functor #: CRL — TopGrp —L — Top is isomorphism. Thus, the
category CRL-TopGrp is algebraic category over the category L-Top in sense of [7]. Finally, by the notion of
initial characterized L-topological groups, the notions of characterized L-subgroups and characterized product L-
topological groups are introduced and studied. In section 5, the notion of final characterized L-topological
groups are introduced and studied as a generalization of the weaken and stronger forms of the final L-topological
groups introduced in [8]. It will be shown that the final lefts and then the final characterized L-topological
groups are uniquely exists in the category CRL-TopGrp. More generally, we show that the category CRL-
TopGrp is co-concrete category of the category L-Top of all topological L-spaces and the faithful functor

" L - Top —> CRL - TopGrp is isomorphism. Thus, the category CRL-TopGrp is co-algebraic category over
the category L-Top in sense of [7]. By the notion of final characterized L-topological groups, the notions of

characterized L-topological quotient groups is introduced and studied. Finally, we present a relation between the
characterized L-topological quotient groups and the characterized product L-topological groups.

2. Preliminaries

In this research work we consider L be a completely distributive complete lattice with different least and last
elements 0 and 1, respectively. Consider L =L \{0} and L =L \ {1} . Sometimes we will assume more
specially that L is complete chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set
X , let L" be the set of all L-subsets of X , that is, of all mappings / : X — L . Assume that an order-
reversing involution a > a'of L is fixed. For each L-set z € L" , let x'denote the complement of z and it is
defined by: #'(x) = p(x) for all x € X. Denote by & the constant L-subset of X with value @ € L . For all
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x €X.and forall o € L, the L-subset x of X whose value @ at X and 0 otherwise is called an L-point in
X . Now, we begin by recalling some facts on the L-filters.

L-filters. The L- filter on a set X ([11]) is a mapping A : L* — L such that the following conditions are
fulfilled:

(F1) (&)< o forall c € L and M(1)=1.

(F2) M~ p) = M) N MM(p) forall y,pel”.

The L-filter A is called homogeneous ([11]) if M (&X) = o for allax € L . For each x € X ,the mapping
X : L — L defined by X (1) = z¢(x ) for all g2 € L" is a homogeneous L-filter on.X . For each gz € L,
the mapping £z:L* —> L defined by £i(17) = 01}}( )77()6) for all 7 € L is also homogeneous L-filter on

X , called homogenous L- filter at the L-subset 42 € L* . Let £ X and F, X will be denote the sets of all L-
filters and of all homogeneous L- filters on a set X , respectively. If . and A are L- filtersonaset X , M
is said to be finer than /", denoted by M < A/, provided M (11)> N (12) holds for all gz € L* . Noting
that if L is a complete chain then  is not finer than 4, denoted by MM £ N, provided there exists
1€ L™ such that (1) <A (12) holds.

For each non-empty set _4 of the L- filters on X the supremum M\e/ﬂ M exists ([11]) and given by:

V M)u)= N\ M
(N, A0 = N M(p)
forall i e L* . Whereas the infimum /ﬂ/\ﬂ./ll of A does not exists in general as an L-filter. If the infimum

/\ M exists, then we have:
MeA

(A= N (M) A I (1)

<

- <,

M...., MeA

For all e L", where nis a positive integer, ff,..., is a collection such that 4 A ...A g, < and

n

//{ y e ,‘///ln are L- filters from .4 . Let X be a set and MU el , then the homogeneous L- filter /¢ at

1€ L is the L-filter on X given by:
L=V x

0<pux)
L- filter bases. A family (j);{ ) wel, of non-empty subsets of L” is called a valued L- filter base ([11]) if the
following conditions are fulfilled:
(V) u e B, implies < sup .
(V2) For all o,fel, withan fel, and all x€B, and p € B, there are y =2 a A f and
N HA O suchthat 7 € B,.

Each valued base (4,),,_, defines the L-filter € on X ([11]) by M ()= V « foralluel” .

ael
0 PERB, ,pSu

Conversely, each L- filter M can be generated by a valued base, eg by
(oz-pr./l/l)msL0 with a-pr M ={ueL* |a < M)} . The family (a-pr. )
prefilters on X and is called the large valued base of M . Recall that a prefilter on X ([16]) is a non-empty
proper subset F of L* such that:

(1) iy peF Tmplies uAnpeF and 2) from g€ F and < p it follows p € F .

wel, is a family of

10
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Topological L-spaces. By an L-topology on a set X ([9, 14]), we mean a subset of 1 € L* which is closed
polog Y y pology H

with respect to all suprema and all finite infima and contains the constant L-sets 0andl.Aset X equipped
with an L-topology 7 on X is called topological L-space. For each topological L-space (X ,7), the elements

of 7 are called open L-subsets of this space. If 7, and 7, are L-topologies on a setX , 7, is said to be finer

than 7, and 7, is said to be coarser than 7, provided 7; C 7, holds. For each L-set 11 € LY , the strong « -

cut and the weak « -cut of 4 are ordinary subsets of X defined by the subsets

S,()=x €eX 1ux)>a} and W, (u) ={x €X :u(x) = a}, respectively. For each complete

chain L, the & -level topology and the initial topology ([17]) of an L-topology 7 on X are defined as follows:
7, ={S,(0)eP(X):uer} and i(r)=inf{r,: ¢ €L},

respectively, where inf is the infimum with respect to the finer relation on topologies. On other hand if

(X ,T )is ordinary topological space, then the induced L-topology on X is defined by Lowen in [17] as the set

ol )={uel” : S,(u)eT forall a eL,}.Lowen in [17], show that @ and i are functors in

special case of L =/ . The topological L-space (X ,7) and also 7 are said to be stratified provided @ € T

holds for all @ € L , that is, all constant L-sets are open ([17]). Denote by L-Top and Top to the categories of
all L-topological spaces and all ordinary topological spaces, respectively.

Operation on L-sets. In the sequel, let a topological L-space (X ,7) be fixed. By the operation ([15]) on a set

X we mean a mapping @ : L* —>L" such that int £< g holds, for all gz € L, where 1 denotes the
value of ¢ at . The class of all operations on X will be denoted by O IR The constant operation on
0<LX 7)
O(LX 7)
L ={0,1}, the identity operation on the class of all ordinary operations Oy, on X will be denoted

is the operation C : LY —L" such that Cx ()= 1, for all (€ L” . By identity operation on

, we mean the operation 1 , : LY =LY such that L (u)=p . for all u eL” . In case of

by ip(xy, and it is defined by i, (4) =4 for all A € P(X'). If < is a partially ordered relation on

0] )deﬁned as follows: @ <@, < u” < p” forally e L* | then obviously, O is a completely

r* * 0)

distributive lattice. As an application on the partially ordered relation < on the set X , we classified the
operatins by names as listed, the operation @ : LY —L* will be called:

(i) Isotone if 1 < p implies 11” < p?, forall u, p e L .

(ii) Weakly finite intersection preserving (wfip, for short) with respect to .4 LY if oA’ <(pAp)’
holds, forall pe A4 and e L* .

(iii) Idempotent if 127 = (1?)?, forall gt € L* .

@ -open L- sets. Let a topological L-space (X ,7)be fixed and @ € O - The L-set g: X —> L will be

@* r
called @ -open L- set if £ < 11” holds. We will denote the class of all ¢ -open L- sets on X by @OF (X ).
The L- set 4 is called @ -closed if its complement co £ is ¢ -open. The two operations @, i € O

equivalent and written @ ~ ¥ if @OF (X ) =ywOF (X ).

@ o A

@, , -interior of L- sets. Let a topological L-space (X ,7)be fixed and ¢, ¢, €O ;- Then the ¢, -

.z
interior of the L-set ££: X —> L is the mapping ¢, ,.int z£: X —> L defined by:
@, ,.int p= V P (2.1

PEPOF (X ), p™ <p

11
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(ol,z.int M is the greatest @, -open L-set p such that p” less than or equal to £ ([2]). The L- set g is said
to be ¢, , -open if £ < @, ,.int g2. The class of all ¢, , -open L- sets on X will be denoted by ¢, ,OF (X ).
The complement co p of a @, , -open L-subset 1 will be called @, , -closed, the class of all ¢, , -closed L-
subsets of X will be denoted by ¢, ,CF (X ). In the classical case of L ={0,1}, the topological L-space
(X',7) is up to identification by the ordinary topological space (X ,7")and ¢, ,.int 4 is the classical one.
Hence, in this case the ordinary subset 4 of X is ¢, , -open if 4 < ¢, ,.int4 . The complement of a ¢, , -
open subset A of X will be called ¢, , -closed. The class of all ¢, ,-open and the class of all ¢, , -closed
subsets of X will be denoted by ¢, ,O(X ) and ¢, ,C (X ), respectively. Clearly, F is ¢, , -closed if and
only ifg, ,.cl, FF=F.

Proposition 2.1 [2] If (X ,7) is a topological L-space and ¢, @, €O Then, the mapping

(N
@,.int g2: X — L fulfills the following axioms:

() fe, 21 ., then @ ,.int g2 < g4 holds.

(i) @,,.Int g isisotone, i.e, if £ < p then @ ,.intu < @, ,.int p holds for all 1z, p € LY.

(iii) ¢,.int 1=1.

(ivy If @, = lLX is isotone operation and ¢, is wfip with respect to @OF(X) , then
@, int (LA pP)=@,,.int £ A@,,.int p forall g1, p e L* .

(v) If @, is isotone and idempotent operation, then ¢, ,.int u < ¢, ,.int (¢, ,.int ) holds.

(vi) @, ,.int (_\/[ y7 )=_\/1 @,,-int g, forall i, € ¢ ,OF (X).

Proposition 2.2 [2] Let (X ,7) be a topological L-space and Q,Q, € O(LX o Then the following are fulfilled:
(i) Ifep, = ILX , then the class ¢, ,OF (X ) of all ¢, , -open L-sets on X forms an extended L- topology

onX , denoted by 77 ([13]).
(i) If@, 21 ., then the class ¢, ,OF (X )of all ¢, , -open L-sets on X forms a supra L- topology on X,

denoted by 772 ([13]).

(iii) If ¢, 21 , is isotone and ¢, is wiip with respect to POF (X'), then ¢ ,OF (X )is a pre L-topology
onX , denoted by 2'(212 ([13]).

(iv) If @, 21 , is isotone and idempotent operation and ¢, is wfip with respect to ¢OF (X ), then
¢,,OF (X') forms an L- topology on X, denoted by 7, ([9, 14]).

From Propositions 2.1 and 2.2, if the topological L-space (X ,7) be fixed and o, €0 ) Then

@* r

PLOF(X)={uel" | u<g,.inty (2.2)
and the following conditions are fulfilled:
(1) If@, > 1, ,then @ ,.int 1z < g holds forall 1z € L™ .

(I2)If g2 < p then @,,.int 11 < @ ,.int p holds forall 1, p € L™ .
13)@,,.int T=1.

12
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(4) 1f ¢,21, is isotone and ¢ is wfip with respect to @OF(X) ., then

@, It (UAP)=@,,.int g A@,,.int p forall u, p € L.
(I5) If ¢, 21 , is isotone and idempotent, then @, ,.int (¢, ,.int £) =@, ,.int u forall yz € L.

Characterized L-spaces. Independently on the L- topologies, the notion of ¢, , -interior operator for L- sets
can be defined as a mapping (ol,z.int : LY — L* which fulfills (I1) to (I5). It is well-known that (2.1) and
(2.2) give a one-to-one correspondence between the class of all ¢, , -open L- sets and these operators, that is,
¢, ,OF (X ) can be characterized by ¢, , -interior operators. In this case the pair (X , ¢, ,.int) as will as the
pair (X, ,OF (X)) will be called characterized L- space ([2]) of ¢, -open L- subsets of X . If
(X ,¢,,.int)and (X, ,.int) are two characterized L-spaces, then (X ,¢,,.int) is said to be finer than
(X, ,.int) and denoted by ¢, ,.int <y ,.int provided ¢, ,.int g >y, ,.int g holds for all y € L.
The characterized L-space (X a¢1,2-int) of all @, -open L-sets is said to be stratified if and only if
@,.int =& for allx € L . As shown in [2], the characterized L-space (X ,¢,,.int)is stratified if the
related L- topology is stratified. Moreover, the characterized L-space (X ,¢1’2.int) is said to have the weak
infimum property ([13]) provided for all 4 € L* and @ € L . The characterized L-space (X , @, ,-1nt) is said

to be strongly stratified ([13]) provided ¢, , .int is stratified and have the weak infimum property.

If ¢ =intandg, =1 ,, then the class ¢, ,OF (X )of all ¢, ,-open L-set of X coincide with 7 which is

defined in [9,14] and hence the characterized L- space (X ,¢,,.int) coincide with the topological L-
space (X , 7).

¢, , L-neighborhood filters. An important notion in the characterized L-space (X , ¢, ,.int) is that of a
@, , L-neighborhood filter at the point and at the ordinary subset in this space. Let (X ,7) be a topological L-

space and @, @, €O As follows by (I1) to (I5) for each x € X , the mapping

(L)
N, (x): L* — L which is defined by:

N, , (x)() = (@,,.int z2)(x ) (2.3)
for all 1 € L™ is L-filter, called ¢, , L-neighborhood filter at x ([2]). If ¢ # F' < P(X ), then the ¢, , L-
neighborhood filter at /" will be denoted by ./, (£) and it will be defined by:

/V(A,2 (F)= X\E{V /V(/,L2 (x).

Since ¥, (x) is L-filter forallx €X , then , (F)is also L-filter on.X' . Moreover, because of
[x-] :x\e/Fx' , then we have ‘/l/(/)lv2 (F) = [ x-] holds.

If the related ¢, , -interior operator fulfill the axioms (I1) and (12) only, then the mapping ‘/Vq)] . (x):L* > L,
which is defined by (2.3) is an L-stack ([15]), called ¢, , L- neighborhood stack atx . Moreover, if the @, , -

interior operator fulfill the axioms (I1), (I12) and (I4) such that in (I4) instead of p € L* we choice & , then the
mapping ‘/’/¢| , (x):L* — L, is an L-stack with the cutting property, called here @, , L- neighborhood stack

with the cutting property at X . Obviously, the ¢, , L-neighborhood filters fulfill the following axioms:

13
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(ND) X <, (x)holds forallx €X .

(N2) A, (x)(0) < A, (x)(p) holds forall 1, p € L" and u< p.

N3) A, )y >, (V)) =, (X)), forall x €X andpe L.
Clearly, y '_)‘/Vm (¥ )()is the L-set ¢, ,.int 2.

The characterized L-space (X , ¢, ,.int) of all ¢, , -open L-subsets of a set X is characterized as a filter pre L-
topology ([2]), that is, as a mapping ‘/Vw1 , (x): X — ZX such that the axioms (N1) to (N3) are fulfilled.

¢, ,& L-neighborhoods. Let (X ,7) be a topological L-spaces and ¢, ¢, € O . Then for each €L,

(023
and eachx € X , the L-set uz € L™ will be called ¢, , & L-neighborhood at x if & < (¢, ,.int ££)(x ) holds.
Because of Proposition 2.1, the L-set € LY s ¢, «a L-neighborhood at Xx if and only
if uea-pr ‘/Vfﬂl,z (x), where ‘/V(/)L2 (x) be given by (2.3). For each a €L, and each x € X let
N_(x) be the set  of all ?, o L-neighborhood at X , that s,
N, (x)={uel" :a< (,,.int ££)(x )}, then the family (N, (x)),. 1, is the large valued L-filter base

of #, (x).

@, , L-convergence. Let a topological L-spaces (X ,7)be fixed and o, p €0 ) If X is a point in the

"z

characterized L-space (X ,¢,,.int), F < X and M is L-filter on X . Then M is said to be ¢, L-

convergence ([2]) to X and written T)x , provided  is finer than the @, , - neighborhood
‘z.m s

filter A, (). Moreover, M is said to be @, , -convergence to [ and written A W)F , provided
B > 20

M s finer than the ¢, , L-neighborhood filter N, (x) forallx € F', that is, M s finer than the ¢, , L-
neighborhood filter A/, (7).

@, , -closure L-sets. Let a topological L-space (X',7) be fixed and ¢, @, €O ) The ¢, , -closure of the

@~z

L-set g£: X — L isthe mapping ¢, ,.cl g£: X —> L defined by:
(Pl w(x)=_V  M(u)

M S‘/V% , (x )
for allx € X .The L-filter /# my have additional properties, e.g, we may assume that is homogeneous or

even that is ultra. Obviously, ¢, cl g = p holds forall € L.

@, ¥, , L-continuous and ¢, , i/, , L-open mappings. In the following let a topological L-spaces X,7)
and (¥ ,7,) are fixed ¢@,@ €0 @ and  w,,y, €0 o The  mapping
f (X, (Dl’z.int) -, l//l’z.int) is said to be @, , ¥/, , L-continuous ([2]) if and only if

(W, -intn)ef <@,.int(°f) (2.4)
holds for all 77 e L’ . If an order reversing involution & H> &' of L is given, then we have that [ is
®,, Wy, L-continuous if and only if ¢, ,.cl(r70/) < (y,,.clp)eof forall ne L" | where ¢,,-cl and
Vi, .cl are the closure operators related to (pl’z.int and l//l,z.int , rtespectively. Obviously if f is

¢, W,, L-continuity mapping, then the inverse mapping [ R4 SWi,-int) = (X, @ ,.nt) s

14
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¥\, ¢, L-continuous mapping, that is, (¢, ,..int z2)of < W, int(uof ™) holds for all 1€ L* . By
means of the ¢, , L-neighborhood filter /Vm(x) of (pl’z.int at X and the v, L-neighborhood filter

/’/‘/’1,2 (x) of w,,.int at x , the @, , Y, , L-continuity of /" is also characterized as follows:

A mapping /1 (X ,@,,.int) > ¥,y ,.int) is ¢, , ¥, , L-continuous if for each x € X the inequality
(602 ()

holds. Obviously, in the case of L ={0,1}, ¢ =y, =int, ¢, =1, andy, =1, , the ¢, ¥, L-

continuity of f* is coincides with the usual L-continuity.

Proposition 2.3 [2] Let /* : (X ,¢,,.int) — (Y, ,.int) be a mapping between the characterized L-spaces
(X ,@,.int) and (Y, ,.int). Then the following are equivalent:

(D) fis @, ¥, , L-continuous.

(2) For each L-filter # on X and each x €X such that A X we
have Z f (M) f(x).

(3) For eachx € X , @ €L, and y,, & L-neighborhood 77 at f (x ), we have 77of is an ¢, & L-
neighborhood atx .

@ ') eﬂ(m'im for all 7 eﬁwm.im ,where ,B(m_im and ﬂ%z‘im are the bases of (X ,¢,,.int) and
¥ ,y,,.int), respectively.

Y1 ,5-int

We will denoted by CRL-Sp, SCRL-Sp and CR-Sp to the categories of all characterized L- spaces, stratified
characterized L- spaces and the ordinary characterized spaces with the @, , ¥/, , L-continuity and ¢, , ¥/, , -

continuity as a morphismes between them, respectively. The objects in these categories are characterized L-
spaces, stratified characterized L-spaces and characterizet spaces and will be dented by (X ,¢,,.int) ,

X ,(pl’z.ints) and (X ,@,,.int, ) , respectively.

The mapping f : (X ,@,,.int) — (¥, ,.int) is said to be ¢, , ¥, , L-open if and only if

f e, intp)of Sy ,.Ant(f o p) (2.5)
holds for all u e L" . If an order reversing involution & > &' of L is given, then we have that f is
¢, W, L-open if and only if ¢ ,.cl(f op) <f oy ,.cly) for all u € L*. The mapping
[ (X ,p,.nt) > (¥ ,p,,.int) is said to be ¢, ¥, , L-homeomorphism if and only if it is bijective

@, ¥, , L-continuous and ¢, , ¥, , L-open mapping.

Proposition 2.4 [1] Let /' : (X ,¢,,.int) — (¥ ,,,.int) be a mapping between the characterized L-spaces
(X ,¢,,.int) and(Y ,y,,.int). Then the following are equivalent:

(1) fis @, ¥, , L-open.
(2) For each L-filter 4 on Y and each y €Y such that #/ ——> y we have

¥y 5-int

Ff(N)—f - (¥ ), where £ f (AN)is the preimage of A .

@ -int
(3) For eachy €Y , @ € L, and ¢,, ¢ L-neighborhood 4 atf’ (y), we have gof ' is an W, & L-
neighborhood aty .
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@ f () ey ,OFX ) forall pe f, . where . isabaseof(X,¢,.int).

Characterized L-topological groups. In the following let G is a multiplicative group. We denote, as usual, the
identity element of G by e and the inverse of X in G byx ~'. Consider 7 is an L-topology on G and
o, O EO(LG o Then the pair (G, ¢, ,.int ) will be called an characterized L-topological group ([1]) if

and only if the mappings:
a: (G xG, @,.int; x@,.int; ) =>(G,@,,.int; ) and B:(G, ¢,.int;) =>(G,@,,.int; ) that
defined by:
a((x,y))=xy V(x,y)eGxG (2.6)
and
Lx)=x" VxeG (2.7)
are @, , ¢, , L- continuous, respectively.

If ¢, =intand @, = 1 ., then the characterized L-topological group (G,@,,.int; ) is coincide with the L-

topological group (G',7) which is defined in [6,8]. As shown in [1], the characterized L-topological groups are
characterized by an equivalent definition as will as in the following proposition:

Proposition 2.5 Let G be a multiplicative group, 7 is an L-topology on G and ¢,, @, € O( Then,

° )’
(G,p,.int; ) is  characterized  L-topological ~ group if and only if the mapping
7 (G xG, ¢,.int; x@,,.int; ) —>(G, @, ,.int; ) which is defined by:

y(x,y)=xy " forall (x,y)eG (2.8)

is ¢, ¢, L- continuous.

Denote by CRL-TopGrp and CR-TopGrp for the categories of all characterized L-topological groups and all
characterized topological groups with all the @, , ¢, , L-continuous homeomorphisms and with all the ¢, , ¢, , -

continuous homomorphism as morphisms mappings between them, respectively. As shown in [1], the category
CRL-TopGrp is concrete category over the category Grp of all groups.

3. [Initial and final characterized L-spaces

We make at first the relation between the farness on L-sets and the finer relation between characterized spaces
to define the & -level and initial characterized spaces for an L-topological space (X ,7) by means of the

functors @ and i . For an ordinary topological space (X ,7"), the induced characterized L-space is also
introduced by using the functor @ . The functors @ and i are extended for any complete distributive lattice L
to the functors functors @, andi; . We further notions related to the notion of characterized L-spaces are e.g.

those of characterized L-subspace, characterized product L-space, characterized quotient pre L-space and
characterized sum L-space are investigated as special cases from the notions of initial and final characterized L-
spaces. By the initial and final lefts in CRL-Sp we show that the category CRL-Sp is topological category in
sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in CRL-Sp
exist, which of course are unique up to isomorphisms. Moreover, the category SCRL-Sp is bireflective
subcategory of the category CRL-Sp and it is also topological category ([1]). Spacial cases we already described
using the standard specifications, namly the characterized product and coproduct L-spaces. The latter type here is
called characterized sum L-space. According to general procedure [6,12], the characterized L-subspaces together
with their related inclusion mappings and the characterized quotient pre L-spaces together with their related
canonical surjections are the equalizers and co-equalizers, respectively in CRL-Sp.
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Let (X ,7)be a topological L-space and ¢, @, € O ;- Then the @ -level and the initial characterized

(LX T
spaces ([1]) of the characterized L-space (X ,¢),,.int) will be denoted by (X, ,.int,) and
(X ,@,,.1nt, ), respectively where ¢, ,.int_ and ¢, ,.int, are the ¢, , -interior operators generates the two
classes (¢ ,OF (X)), and i (¢, ,OF (X)) which are given by

(PLOF (X)), =S, (1) e P(X): i € 9 ,OF(X)} and i(p,,OF (X)) =inf{(¢,,0F(X)), : @eL,},
respectively, where inf is the infimum with respect to the finer relation on characterized spaces. On other hand if
(X ,T)is ordinary topological space and ¢, @, EO(P(X yry » then the induced characterized L-space on

X ([1]) will be denoted by (X', ¢, ,.int, ), where ¢, ,.int, is the ¢, , -interior operator generates the class
a)(gol,zO (X)) which is defined as follows:
Ap,000) = (el : S, (1) g 00) forall acL,}.

@ and i are functors in sense of Lowen in [17] in special case of L = I . These functors extended for any
completely distributive complete lattice L in [1] as follows:

Let (X ,7)be a topological L-space, @, ¢, €O )and v, ¥, €0 Wy Then, the characterizd spaces

(LX T
(X ,¢,.nt; ) and (X ,¢,,.Int, ) are called initial characterized space and induced characterized L-space
on X, respectively where ¢, ,.int;

Iy

i, (¢, 0F (X ))and o, (gol,zO (X )) which are defined by the formulas:
i ((P1,20F(X ) = inf{,u_l (UP( w,,OF (L )) © He @ ,OF(X)}

and (0172.intwL are the ¢, , -interior operators generates the classes

and
0, (9 0(X)) = <<C((X.0,,0X ). (L.UP(y; ,OF (L)) >>

C ((X ,9,0(X)), (L, UP(y, ,OF (L))) is the set of all @, ,, -continuous mappings between
X ,9,0(X)) and (L,UP(y,,0F(L))) , where UP(y,,OF(L)) is the upper W, , -open L-set
generated by the set L\ (a) ford (a)={x €L :x <a}.If @ =intand @, =1 ,, then the initial
characterized space (X , ¢, ,.int, ) and the induced characterized L-space (X , ¢, ,.int,, ) are coincide with
the initial topological space (X ,i (7)) and the induced topological L-space (X ,@(T")) which are defined in
[8]. As shown in [1], the functors o, :CR-Sp >CRL-Sp , i,:CRL-Sp—>CR-Sp and
S, : CRL - Sp — SCRL - Spare concrete functors. Moreover, the category SCRL-Sp is bireflective subcategory
of the category CRL-Sp and for each object (X ,¢,,.int) of CRL-Sp the ¢,/ , L-continuous mapping
1, from the stratification (X ,gol’z.ints) of (X,@,.int) into (X,@,,.int) is bi-coreflection of

X ,¢,,.int).

Initial characterized L-spaces. Consider a family of characterized L-spaces ((X ; a‘//1,2~int,- ))[E[ and for
ecachi €l ,let f, : X — X, be a mapping from X intoX , . By an initial characterized L-space ([1]) of
the family ((X ; ’l//l,Z'inti ))iel with respect to (f ; ) .;» we mean the characterized L-space (X ,(pl’z.int)

for which the following conditions are fulfilled:
(1) All the mappings [ : (X ,¢,,.int) - (X, ,.int, ) are ¢, , ¥, , L-continuous.
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(2) For an characterized L-space (Y ,0;,.int) and a mapping f :¥ — X, the mapping
[ ,6,.nt) > (X ,p,.int) is &, ¢, L- continuous if all the mappings
fiof X ,0,.int) > (X, ,y,,.int; )are O, , ¥, , L-continuous forall i € /.
The initial characterized L-space (X , ¢, ,.int) for a family ((X i Wy, 10t ))1 .; of characterized L-spaces
with respect to the family (f ; )iE ; of mappings exists and will be given by
@ointp= N (y,,.int, p)of, (3.1
Hiof Sl
forall z1eL”.

As showen in [1], the initial lefts and then the initial characterized L-spaces are uniquely exist in the category
CRL-Sp. Hence, the category CRL-Sp is topological category over the category SET of all sets. Moreover, the

initial characterized L-space (X , ¢, ,.int) for a family of characterized L-spaces ((X i Wy, Int, ))id with
respect to a family of mappings (f,)._, is stratified if and only if (X, W ,.nt, ) is stratified for

somei € [ . In the following we consider some special cases for the initial characterized L-spaces

Characterized L-subspaces. Let A be non-empty subset of a characterized L-space (X ,¢,,.int) and
i, :A —>X be the inclusion mapping of A into X . Then the mapping ¢, ,.int, : L' — L" which is
defined by: ’

@,.int, o= !,c)ég(%ﬂ'int Hyei, (3.2)
for all o€ L” is initial @, , -operator of ¢, ,.int with respect to the inclusion mapping i, :4 —> X ,
called the induced @, -operator of ¢, ,.int on the subset A of X and (4,¢,,.int,) is initial
characterized L-space called characterized L-subspace ([1]) of the characterized L-space (X ,(D],Z.int). As
showen in [1], the characterized L-subspaces (4, ,.int, ) of the characterized L-spaces (X , ¢, ,.int)
always exist and the related initial ¢, , -operator of them is given by (3.2). Moreover, (4, ,.int, ) is

stratified if (X , ¢, ,.int) is stratified.

Characterized product L-spaces. Assume that for eachi € I, (X, Vi, .int, ) be the characterized L-space of
W,,-open L -subset of X;. Let X be the cartesian product [[X; of the family (X ;),_jand P, : X — X

iel
is the related projection. Then the mapping ¢, ,.int : LY — L which is defined by:
@o-intu= NV (y,.int; g)o P, (3.3)
14 0P. <

for all g € L™ is initial ¢, , -operator of ¥/, ,.int; with respect to the projection mapping P, : X' — X,
called the @,, -product operator of the Y/, -interior operators V/l,z-inti and (X ,qol,z.int) is initial
characterized L-space called characterized product L-space ([1]) of the characterized L-spaces (X Wi .inti)

with respect to the family (P, : X' — X,),_; of projections and will be denoted by (ITX;, [Ty, ,.int;).

iel iel

Initial lefts in CRL-Sp. For the general notion of initial left we refer the standard books of category theory
which include the categorical topology, e.g. [7,19]. The notion of initial left is meant here with respect to the
forgetful functor of CRL-Sp to SET. It can be defined as follows:
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The family of one and the same domain (fi (X ,¢1,2.in‘[) - (X, ’Wl,z-inti )) . where [ is any classe in

the category CRL-Sp is called initial left ([1]) of the family (fi X > X,y 2.inti) provided for any
’ iel

characterized L-space (Y ,0,,.int) of the o), -open L-subsets of the set Y, the mapping

f ¥ ,0,.int) > (X ,p,.int) is o, ¢, L-continuous if all the compositions

fief 1 ,0,.int) > (X,,y,,.int;) are o,, W, L-continuous. As showen in [1], for each family

(fi X _>Xi’l//1’2'inti)ie1 of the mappings f; :X — X, and of y,, -interior operators y/,,.int;

defined on the co-domains X . of these mappings, the family (f ; (X ,gD]’z.int) —> X 1.,l//]’z.in'[i ))iEI is

initial left, where the initial ¢, , -interior operator ¢, , .Int defined by (3.1).

Lemma 3.1 [1] Let (X ,,,.int) and (' ,0,,.int) are the characterized product L-spaces for the families
((Xv‘//l,z-inti ))ieI and ((Yiaél,z'inti ))ieI of characterized L-spaces. Then if foe each i € I, the mapping
fi (X, p,,.int)) > (Y ,,0,,.int, ) is ¥, , 6, L-continuous (resp. ¥, , &, L- open) mapping, then the
product mapping  f = Hfi (X ,¢1’2.int) —->¥ ,O'l’z.int) , which is defined by

iel

F((x)i) =(f,(x))ig forall (x,),, €X =[]X, is ¢, 0,, L- continuous (resp. ¢, , &, L-open).

iel

Final characterized L-spaces. It is well-known (cf.e.g [7,19]) that in a topological category all final lifts
uniquely exiats and hence also all final structures exist. They are dually defined. In case of the category CRL-Sp
the final structures can easily be given, as is shown in the following:

Let / beaclass and for eachi € I, let (X, ,.int; ) be a characterized L-space of /, , -open L-subsets of
X,and f, : X, = X be a mapping from X, into a setX . By a final characterized L-space of the family
((X ; >W1,z-int ; )) ;<; With respect to the family (f ; ) ;<; » of mappings we mean the characterized L-space
(X, @,,.int) for which the following conditions are fulfilled:
(1) All the mappings f; : (X, ,.int;) — (X ,¢,,.int) are ¥, , @, , L-continuous.
(2) For an characterized L-space (Y ,0,,.int) and a mapping f :X —Y, the mapping
f X ,p,.int) > (¥ ,0,,.int) is ¢, O, L- continuous if all the mappings
fofi (X, ,w,.int;)) > ,6,,.int)are ¥, , 5, L-continuous forall i €1/,
X 1>y
T e
X

(See Fig. 3.1)
Fig.3.1
In the following proposition we show that the final characterized L-space (X a¢1,2-int) for a family

((X NZP .inti ))iE ; of characterized L-spaces with respect to the family (f ; )iE , of mappings exists and will
be defined.
Proposition 3.1 The final characterized L-space (X ,(olﬂz.int) for the family of characterized L-spaces

((X N2 .nt, )) ;<; With respect to the family of mappings (fl. ) ;o; always exists and it is given by:
(qol,z-int M)(x) = A\ Via Ant, (pef)(x, ) A p(x) (3.4)

xef i (xpiel
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forall x € X and e L.

Proof. Let ¢,.int be the operator defined (3.4). For eachx € X , u e L and for all i € with
x, ef'(4x}) we have VAN Wy, nt, (pof ) (x;) Ap(x) 2 pu(x) and  therefore

xief M (xDiel

@Lz.int M < 1. Hence, gom.int fulfills condition (I1). For condition (12), let 1,7 € L* with M= 1, then
(ueof )x) 2 (neof )x) and therefore (@,.intg)(x) = /N yy,.nt (uef;)(;)

xef (fxhsie

Au(x) = V Wi, nt, (7of, )(x,) Au(x) = (@,.intn)(x) holds for allx €X . Thus,

yef, M(xD<siel
condition (I12) is fulfilled. For all xeX,iel with x,ef, '({x}) we have
VAN ¥, ,-nt; (1 of Nx A 1(x) <1(x)and therefore qolyz.intT = 1. Hence, @,,.int fulfill

xef el
condition (I3). Now, let g#,me L and x € X,i €l such that x, €f,' ({x}) . Then from the

distributives of L, we have that

(@o-intpe A giint))= AN (pedntCee ) Apyent of )0 ) A i Am)(x)

> AN yint((uan)ef ) ) A Anx)

IR COE

= @, int(u An)(x).
Thus, @, .Int fulfills condition (14). Clearly, D5 .int is idempotent, that is, condition (I5) is fulfilled. Hence,
(X ,@,.int) is characterized L-space. Since for all i€l with f T (xD=9 , we
have (¢, ,.int g2)(x ) = g(x ) . Then, because of (3.4) for each i €/ and x, € X';, we have that the
inequality (¢ ,.int )(f, (x,;)) 2y, ,.int (geof; )(x,) holds and therefore, the inequality
(p,-intg)of, <y ,.int(ueof,) is also holds. Hence, for each i €/ all the mappings
fi (X, ,.int, ) —> (X, @, ,.int) are ¥, , ¢, , L-continuous. Thus, condition (1) is fulfilled.
Now, let (Y ,0,,.int) is a characterized L-space and f* : X —Y be a mapping such that the mappings
fof (X, ,w,.nt;) > ,5,,.int) are y,, O,, L-continuous for all i €. Then, we have that
(O,-int ) o(f of ) Sy,.int, (grof of,) holds for all ue L" and because of (3.4) we have that

@uit ) D= Ayt WS G AU D Z A i
of )X IA(uef )x) 2@ ,.int(ueof )(x) is also holds for all pel” . Hence, the mapping
f (X ,p,.int) > ¥ ,0,,.int) is ¢, O, L- continuous, that is, condition (2) is also fulfilled.

Consequently, (X ,¢,,.int) is final characterized L-space of the family ((X ;W ,-1nt; )) of

iel

characterized L-spaces with respect to (1) O

iel *

Because of Proposition 3.1, all the final lefts and all the final characterized L-spaces are uniquely exist in the
category CRL-Sp and hence CRL-Sp is a topological category over the category SET of all sets.

Proposition 3.2 The final characterized L-space (X ,¢1)2.int) for the family of characterized L-spaces

((X i7V/1,2-inti ))id with respect to the family of mappings (f l.) is stratified if and only if

iel

(X, ,p,,.1nt, ) is stratified for somei €/ .
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Proof. Assume that (X, ,.int;) is stratified for j €/ . Then because of (3.4), we have that

(p,.mta)(x)= AN W ,-int (&, of )(x ;) Ad(x) < a(x) holds for all ¢ €L , where
’ xpef; (xhjel 7

a and 07j are the constant mappings on X and X ; hose value & and «; , respectively. Hence,

@,,.inta = & forallax € L and therefore (X , ¢, ,.1nt) is stratified.

Conversely, let (X, ,.int) is stratified, that is ¢ ,.intad= & for all a€L . Then

VAN W, nt, (& of  )(x,;) Aa(x)= a(x) holds for all x € X and i €/ . Hence, there is

xef (xpiel
J €l such that (y,,.int; & )(x,;)< a(x) and a(x)<(&,of;)x,;)<a;(x,) ., therefore
W,,-int, @, = &, forsome j €l .Hence, (X ;,y,,.int,) is stratified for j €/ . O

In the following we consider the notions of a characterized quotient pre L-space and a characterized sum L-space
as special cases from the final characterized L-spaces.

Characterized quotient pre L-spaces. Let 4 be non-empty L-subset of the characterized L-space
(X ,p,.int) and f :X —A is a surjective mapping of X into 4 . Then the mapping

@p,-int, : L' — L" which is defined by:

(pint, (@)= A ni(uef) (x) (35)

for all a €A and u eL” is final pre @, , -interior operator of ¢1,2.int with respect to the mapping
f : X — A which is not idempotent, called the quotient pre @, , -interior operator of @, , .int on the L-subset
A and (4 ,¢1,2.intf ) is a final characterized L-space which is not idempotent called characterized quotient
pre L-space of the characterized L-space (X , ¢, ,.int).

Note that in this case (Dl’z.int is idempotent but (Dlyz.intf need not be. Even in the classical case of
L = 10,1} with choices ¢ =intand ¢, =1, , we have that ¢, ,.int is up to an identification the usual

topology and Ql)z.intf is up to an identification the usual pretopology which need not be idempotent. An
example is given in [12] (p.234).

Proposition 3.3 Let 4 be non-empty subset of a characterized L-space (X , ¢, ,.int). Then the characterized
quotient pre L-space (A4, @, ,.int, ) of (X ,¢,,.int) always exists and the quotient ¢, , -interior operator
@,-Int, is given by (3.5). If (X, ¢, ,.Int) is stratified, then (A4, ¢, ,.Int, ) also is.

Proof. Let @ € A and g € L” such that x €f ~'({a}) holds, then xefé}{a})gou.int(‘u of Nx) = u(a)

is also holds and therefore gol,z.intf M <t holds for all u e L" . Hence, ¢1’2.intf fulfills condition (I1).

For condition (I12), let € A and z,n € L" with £ <7 and x €f "' ({a}), then because of (3.5) we have

(p,-int, w)(a) = Xef{}{a}) Q- nt(pof ) x) 2 ,\»E/I\M) P,-int(r o f )x ) = (¢, ,.int, 17)(@). Thus,

condition (12) is fulfilled. Since ¢, , dnt1=1 and gof <1 forallgz e L” , then we have

(@oint, D@= A goin(Tef)x) s A (Tof)x) =T(a)

Hence, ¢, ,.int, fulfills condition (I3). Now, let £,77 € L" and a € A suchthat x € f "' ({a}). Then from
the distributives of L and (3.5), we have that
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(@1 'intf HND, 'intf mia) = i efé\({al)(ﬂ,z Ant(pof ) (x ) A(@y,.int(r o f )(x )

e xefé\({a})((ﬁl,z-int (uAm)ef )x) =@,,.nt, (u ~n)(a).

Since @, ,.1nt, is isotone, it follows @, ,.int, 1 A @, ,.int, 17 = @, ,.int, (& A77). Thus, condition (I4) is
also fulfilled. Hence, (4,¢,,.int, ) is characterized pre L-space. Since for all @ € 4 and el”, we
have (@, ,.int, pof )a) 2 ¢ ,.int(gof ) @), then the mapping /* : (X ,¢,,.int) > (4,¢,,.int, ) is
@, ¢, L-continuous. Hence, condition (1) is fulfilled.

Now, let (¥, 51,2 .int) is a characterized pre L-space and g : 4 —Y is a surjective mapping such that the
composition f/ o g : (4,9, ,.int, ) > ,5,,.int) is ¢, , O, , L-continuous mapping. Then, the inequality
(6 -int ) o (f o g) <@ ,.int, (pzof og) holds for all ue L" , therefore because of (3.5), the

inequalty (9,-int, O/ @)= A pini(eogef)x) = A Sdnt(uegef)(x)

O,.nt(cof )(a) is also holds for all a€Ad and ocel’ . Hence, the mapping
[ ,6,.int) >(4,¢,,.int, ) is 6, ¢, L- continuous, that is, condition (2) is also fulfilled.
Consequently, (4,@,,.int, ) is initial characterized pre L-space.

Finally, let (X ,q,.int) is stratified. Then, ¢,.intd= & for all «ael and

therefore /1\ @,.nt(aof )(x)= a(a), where @ and & are the constant mappings on X and A
xef “({a}) 7

hose value &, respectively. Because of (3.5), we have ¢, ,.int, @ = & foralla € L . Hence, (4, ,.int, )
is stratified. O

Characterized sum L-spaces. Assume that for each i€/, (X, ,.int;)be an characterized L-space of

W, ,-open L -subset of X ;. Let X' be the disjoint union U (X; x {i }) of the family (X,),_ and for each

iel
iel,lete : X, > X be the canonical injection of X, into X given by e;(x,)=(x,,i). Then the
mapping ¢, ,.int : LY — L which is defined by:

(@,-Int u)(a,i) =y, ,.int; (uee; )(a) (3.6)
foralliel , aeX, and e L” is final ¢, , -interior operator of (y/,,.int;),_, with respect to the
canonical injection (e,),_; - ? 5 .int will be called a sum @, , - interior operator of the ¥/, , -interior operators
(,,.int;), _, and will be denoted by Z;l//l,zinti . The pair (X ,¢,,.int) is final characterized L-space

ic
called characterized sum L-space of the characterized L-spaces (X ; :‘/’1,2-inti) with respect to the family of

canonical injection (e, ), , and will be denoted by 2 (X, ,¥,,.int;) or (X ,¢,,.int) for shorts.
iel ’

Proposition 3.4 For each 1 € [ , let (X, ,.int; ) be a characterized L-space of ¥/, , -open L -subset of X, .
Then the characterized sum L-prespace > (X, ,.int;) of (X ;,y,,.int,)always exists and the sum ¢, , -
iel ’ '

interior operator ¢, ,.int is given by (3.6). If (X ;, v, ,.int; ) stratified for eachi € I , then the characterized

sum L-space . (X, ,.int; ) is also stratified.

iel
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Proof. The first part is similar to that of Proposition 3.3. For the second part,let i€/ , a € X, and o € L,
where X is the disjoint union U (X, x{i}) of the family (X))

iel

) - Because of (3.6) we have

(p,.nta)(a,i) =y,,.int,(xoe Na) = (y,,.int, @)(a,i) = a(a,i)and therefore ¢, ,.intx = x .

Hence, 2 (X, ,y,,.int;) is stratified. O
iel

Final lefts in CRL-Sp. For the general notion of initial and final left we refer the standard books of category
theory which include the categorical topology, e.g. [6,23]. The notion of final left is meant here with respect to
the forgetful functor of CRL-Sp to SET. It can be defined as follows:

The family of one and the same co-domain (fi (X ,,y,,.nt) > (X, 2.in'[)) , where  is any close
’ ’ el
of morphisms in the category CRL-Sp is called final left of the family (fi X, >X ,wlz.inti)
’ iel
provided for any characterized L-space (¥ ,G,)z.int) of 0, -open subsets of Y , the mapping
[ (X,p,.int) > (¥ ,0,,.int) is ¢, 0, L-continuous if all the compositions  mappings

fofi :(Xi.y,.int,) > (¥ ,0,,.int) are ¥, , o, L-continuous.

Proposition 3.7 For each family (fi X, =Xy, 2.iIlti) consisting of the mappings f, : X, = X and
? iel

of the 1/, -interior operators !)//1,2.inti on the domains X, of these mappings, the family

(fi (X, 1nt;) _>(X’(p1~2'int))iel with the final ¢, -interior operator ¢ ,.int:L* —L" of

(y,,.int,),_, withrespectto (f,) defined by (3.4) is a final left.
’ iel

Proof. Let a characterized L-space (Y ,0,,.int) of o, , -open subsets of ¥’ and a mapping f X >Y be
fixed. If all the mappings /" of :(X,,,.int;) > (¥ ,0,,.int) are ¥, 0|, L-continuous, that is, if
(o, ntm)o(f of ) Sy ,.int, (nof of,) holds for all 77 € L’ , then because of (3.4), we have that

©@adnt)(f () = ANyt ef)0 () A ey A

Wi, nt(meof of Yox, ) A@meof )x) =@ ,.int(172f )(x) holds for all x € X and 77 eL” . Hence,
the mapping f :(X,@,.int) > (¥ ,0,,.int) is ¢, o0, L- continuous. Thus, the family

(fi (X, 9,.int) > (X |,y ,.int; ))iEI is a final left of (y/, ,.int; ), with respect to (f' )ie[ .0

4. Initial characterized L-topological groups

In this section we show that the category CRL-TopGrp of all characterized L-topological groups is
topological category over the category Grp of all groups and hence all initial characterized L-topological groups
exist and can be characterized.

Consider a family of characterized L-topological groups ((Gi W, int, ))ie[ and for each i €/ , let
f ; G —> Gi be a homomorphism mapping from a group G into the groups Gi . Then for any characterized
L-topological group (G, ¢, ,.int ), the family (fi (G, int;) = (G, ,p,,.int; ))l ., 1s called initial

lifts for the family (f 1G>G, Ly, ant, )ie[ in the category CRL-TopGrp provided the following

conditions are fulfilled:
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(1) All the mappings f, : (G,¢,,.int; ) = (G, ,y,,.int; )are ¢, , Y, , L-continuous homomorphism

forall i €1 .
(2) For an characterized L-topological group (H ,0, ,.int,, ) and a mapping /' : H — G, the mapping

fi(H,0,.int; ) > (G,@,.int;) is 6, ¢, L- continuous homomorphism if and only if all
the composition mappings f, of :(H,0,,.int, ) > (G, ,y,,.int; )are , y,, L-continuous
H—>G
her N Ay,
G,

Fig.4.1

Hence, by an initial characterized L-topological group we mean the characterized L-topological group which
provides the initial lifits in the category CRL-TopGrp.

homomorphism for all i € [, (See Fig. 4.1)

To prove that all initial lifts and all initial characterized L-topological groups exist in the category CRL-TopGrp

we need to prove at first that in case of f, :G — G, is an injective homomorphism for each i €/, and
?, z.intG is @, , -interior operator for an initial characterized L-topology on a group G of (l//1 ,.nt )i o
we get that (G, ,.int; ) is also characterized L-topological group. Now, we consider the case of / being a

singleton.

Proposition 4.1  Let (//,0,,.int;, ) be a characterized L-topological group and let f/* :G —H be an

injective homomorphism from a group G into H . Then the initial characterized L-space
G.f (8,,.int, )) of (H ,0,,.int,; ) withrespectto f* is characterized L-topological group.

Proof. Let at first y, : (G xG,f’l(é‘l)z.intH)xf 71(5],2.intH ) =G, [ (6,.int,;)) and
Yy c(H xH, 6,.int,; x &,,.int,; ) —(H, 6,,.int,; ) are the mappings defined by (2.8) and
. -1 .
let e ’B./‘"l(f?l,z-intH) , Wwhere ’B/"’l(fi,z-imy) is the base of (G,f (J,.int,)) that generated
byf (6,,.1nt,; ). Then,p =f “(p) for some p € ﬁb‘ll'inth’ . Since (H,0,,.int,, ) is characterized L-
topological group, then y, is 51’2 51,2 L- continuous and therefore from Proposition 2.3, we have
7 (p) € Bs, . int, x5, ins,, - Because of f is an injective homomorphism, then for all X, € G we have
1 -1
Yo (x,y) = (pef ey )x,y)=(pef)xy )
-1
=p(f ) (¥ N=(pey, )T (x).f(y))

=(f %) (7 PN D),
that is, y5' 17 = xf) " (7, p). Since (G.f _1(51,2.intH )) is initial characterized L-space of

(H ,6,,.int,; ) with respect to the mapping [, then f :(G.f _l(é‘l’z.intH ) = (H ,0,,.int,, ) is
0,5 0,, L- continuous and from Lemma 3.1, it follows that the product mapping f* Xf* :G xG —H xH is

. |
05 0, L-continuous. Therefore, <) (yyp e ﬂ(f Y (B ity 5 ) and
“1g, -1
. . P . . e H X eEpP., . . e
ﬂ(fxf)’1(5].2<1nt1,><5].2.1nt1,) = 'Bf L einty Y (8 puintyy ) OO (<) (7up) 'Bf 1(8)5-inty )¢f 7 (S 5-intyy )
ol o . .
thatis, y; (17 ) € ﬂf,l(gvz_imH Yf 1 (8 2-inty) and therefore from Proposition 2.3 it follows that y, is 51’2 51’2 L-

continuous. Hence, because of Proposition 2.5, (G,f (8,,.1nt,, )) is characterized L-topological group. O
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Generally we consider the case of / is any class consistes of more than one elements .

Proposition 4.2 Let ((Gi W, 2.inth )) be a family of characterized L-topological groups and for each
’ i1 iel
i €l,letf, :G —G, be an injective homomorphism from a group G into a groupG, . If (G, ¢, ,.int; )
is the initial characterized L-space of the family ((Gi Wy, A0t )) with respect to the family (f’, ), _, , then
’ ! iel

(G, @, ,.int ) is characterized L-topological group.

Proof. Let at first the mappings p, :(G xG, @,.int;x@,,.int;) —>(G, ¢ ,.int;) and
Ve, (G, xG,, y,.nt, Xy, ,.int; ) >(G,, y,,.int,; ) are  defined by  (2.8).  Since
fioys = 76, o(f, xf,), f, and Vg, are @, ¥, , L-continuous and ¥/, , ¥, , L-continuous , respectively,
then f, oy, is @, ¥, L-continuous . Because of condition of the initial lefts in the category CRL-Top, 7,
is ¢, ¢, L-continuous and hence (G, ¢, ,.int, ) is characterized L-topological group. O

In the following proposition we show that the initial lefts and then the initial characterized L-topological groups

uniquely exist in the category CRL-TopGrp. Hence, the category CRL-TopGrp is topological category over
the category Grp of all groups.

Proposition 4.3 Let ((Gl. W, 2.intG_ )) be a family of characterized L-topological groups and for each
’ ! iel
i €l,let f; :G —G, be an injective homomorphism from a group G into a groupG, . If (G, ¢, ,.int;)

is the initial characterized L-space of the family ((Gi W, .10t )) with respect to the family of injective
’ i1 ier

homomorphism mappings (f’,)

iel

then the family (fl. (CH (lez.il’ltG ) = (G, al//1,2~intG, )) , is an initial

liftof (f, :G —G,, y,,.int, ) in the category CRL-TopGrp.
’ tiel

Proof. Because of Propositions 4.1 and 4.2, (G,(Dl,z.intG) is characterized L-topological groip. From the

definition of the initial lift in CRL-Sp, we get condition (1) from the definition of the initial lifit in CRL-
TopGrp is fulfilled, that is, all mappings /', : (G, ,,.int; ) = (G, ,.int; )are @, , Y, , L-continuous

homomorphism for all i €/ .
Let (H ,8,,.int;, ) be a characterized L-topological group and a mapping f* : H — G be a mapping. Then

from the definition of the initial lift in CRL-Sp, we have that the mapping
fi(H,6,.mt, ) > (G,¢,.int;) is 6, ¢, L- continuous if and only if the composition mappings

f.eof :(H,é'l,z.intH)—)(Gl.,l/ll’z.intG[_) are Oy, ¥, L-continuous for all i €l . Now, let [ is
homomorphism. Since f, is homomorphism for each i €/ , then f, of is also homomorphism for all
i €1 .On other hand let £, of is also homomorphism for alli €/ . Since f, is homomorphism for each
i €1 ,then forall a,b € H we have
fi(f(a-b) = of Na-b)=f,(f (@)-f; (f G) =1, (f (@)-f b))

Since f', is injective for all i €/ , it follows that f (@ -b)=f (a)-f (b) for all a,b € H , that is, [ is
homomorphism. Hence, f : (H,0,,.int,, ) = (G,@,,.int;) is &, ¢, L- continuous homomorphism if
and only if all the composition mappings f, of :(/,9,,.int, ) > (G,,y,,.int; ) are &, y,, L-

continuous homomorphism for all i € / . Thus, condition (2) from the definition of the initial lifit in CRL-
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TopGrp is fulfilled. Consequently, (f, :(G,@,,.int,)— (G,,y,,.int )) s an initial lift of
’ ’ ! ie

(f[ G -G, y,,.nt; )i _, in the category CRL-TopGrp. O

Because of Proposition 4.3, the characterized L-topological groups mentioned in Propositions 4.1 and 4.2 are
coincide with the initial characterized L-topological groups, that is, if ((Gi 91//1,2-intG,. ))l . is a family of
characterized L-topological groups and for each i €/, the mapping f, :G —G, is an injective
homomorphism and (G, @, ,.int, ) is the initial characterized L-space of the family ((Gl. Wy ,-1ntg ))[EI

with respect to the family of injective homomorphism mappings (f,),_ .

then (G,@,,.int;) is initial

characterized L-topological groups. Hence, the category CRL-TopGrp is concrete category of the category L-
Top of all topological spaces and the faithful functor #:CRL - TopGrp —L — Top is isomorphism. Thus, the

category CRL-TopGrp is algebraic category over the category L-Top in sense of [7].

In the following we consider some special cases for the initial characterized L-topological groups.
Characterized L-subgroups. Let H be non-empty subgroup of a characterized L-topological group
(G,p,.int;) and i, : H — G be the inclusion injective mapping of H into G . Then the mapping
@,.int,, 1L — L which is defined by:

@ity o= . .\/G((D1,2-intc )iy, (4.1)

1ol <

for all o € L" is initial @, , -interior operator of ¢1,2-intG with respect to the inclusion injective mapping
iy :H —G , called an induced @, -interior operator of ¢, ,.int; on the subgroup H of G and
(H »601,2-th ;) is initial characterized L-topological group called a characterized L-subgroup of the

characterized L-topological group (G, @, ,.int; ).

Proposition 4.4 Let H be non-empty subgroup of a characterized L-topological group (G, Ds .nt ). Then
the characterized L-subgroup (H ,¢,,.int;, ) of (G,@,,.int; ) always exists and the initial ¢, , -interior

operator ¢, , .nt, is given by (4.1).
Proof. Immediate from Propositions 4.2 and 4.3. O

Characterized product L-topological groups. Assume that for each i €/ , (G,,y,,.int; ) be a

characterized L-topological group and G be the cartesian product HGi of the family (G, ),_, of groups. If

iel
P, :G — G, be the related injective projection, then the mapping 5 .Ant 1LY — LY defined by:

@,-ntg =V (V/l,z-intG,. ) P, (4.2)

10P.< 1

for all i1 € LY is initial @, , -interior operator of VII,Z'intGi with respect to the injective projection mapping
P :G —>G, , called product ¢, -interior operator of the V¥, -interior operators W, ,.int; and
G, ?is .nt. ) is initial characterized L-topological group called characterized product L- topological group of
the characterized L-topological groups (Gi’l//l,Z'intG,) with respect to the family (P :G —=G,),_ of
injective projections and will be denoted by ([1G;, [Ty, -intG, ).

iel iel
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5. Final characterized L-topological groups

In this section we show that the final characterized L-topological group exists and it can be the final
characterized L-spaces. Since the concrete category CRL-TopGrp of all characterized L-topological groups is
topological category over the category Grp of all groups, then all final lifts also uniquely exist. This, even mean
that also all final characterized L-topological groups exist.

Consider ((Gi W, -0t ))l _; is a family of characterized L-topological groups and (f’),_, be a family of

iel
homomorphism mappings from the groups G, into the group G , indexed by the class / . Then for any
characterized L-space (G,,,.int;) , the family (fl. (G, nt; ) > (G, @ ,.int ))ie[ is called

final lifts for the family (f G, =G, V/l,z-intc.) in the category CRL-TopGrp, provided

iel
G, Dy .nt. ) is characterized L-topological group which fulfills the following conditions:
(1) All the mappings f, : (G, ,y,,.int; ) = (G,@,,.int; )are ¥, , @, , L-continuous homomorphism

forall i €1 .
(2) For an characterized L-topological group (H ,3,,.int,, ) and a mapping f* :G — H , the mapping

f :(G,p,.nt;) = (H ,0,,.int, ) is ¢, O, L- continuous homomorphism if and only if all
the composition mappings f of, : (G, ,y,,.int; ) — (H,5,.int,, ) are y,, O, L-continuous
G 1> H
T i
Fig.5.1

Hence, by a final characterized L-topological group we mean the characterized L-topological group which
provides the finl lifts in the category CRL-TopGrp.

homomorphism for all i €/, (See Fig. 5.1)

To prove that all final lifts and all final characterized L-topological groups exist in the category CRL-TopGrp
we need to prove that in case of f, : G, —> G is an injective homomorphism for each i €/, and ¢)1’2.intG is

@, , -interior operator for an final characterized L-topology on a group G of (W1,2~intc; )ie] we get that

G, Dy .nt, ) is also characterized L-topological group. To prove these results we need at first the following

lemma.

Lemma 5.1 If / :(G,,,.int; ) = (H ,f (¢,.int;)) is surjective homomorphism mapping from the
characterized L-topological groups (G, ¢, ,.int; ) to the group H equipped with the final characterized L-

topology generated by f (¢, ,.int ) as a base with respect to /* , then /™ is ¢, , ¢, , L-open.

Proof. Immediate from Proposition 2.4. O
Now, we consider the case of I being a singleton.

Proposition 5.1  Let (G,,,.int;) be a characterized L-topological group and let /' :G —>H be a
homomorphism from a group G onto a group H . Then the final characterized L-space (H ,f (¢, ,.int )) of

(G,@,,.int; ) with respect to_ /" is characterized L-topological group.

Proof. Let at first y, ((H xH,f (¢,.int;)xf (¢,.int;)) >(H, f (¢,.int;)) and
Ve (G xG, @ ,.int; x@,,.int; ) >(G, ¢,.int;) are the mappings defined by (2.8) and let
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HE By, iny)» Where S ) is the base of (H,f (¢, ,.int; ) which is generated by f (¢,,.int;; ) ,
then 1 ' () € B, im, - Since (G, ,.int ;) is characterized L-topological group, then y; is ¢y, ¢y, L-

continuous and therefore from Proposition 2.3, we have y' (f ' (w)) € . Because of Lemma

ﬂqolyz.intc Xy .intg

5.1, we have that the mapping f* : (G, @,,.int;)) — (H ,f (¢,.int;)) is ¢, ¢, L-open and therefore

Lemma 3.1 implies that the product mapping /' Xf :G xG —H x H is also ¢, ¢, L-open. Since,
-1 | -

v () = <)y (f "(w))), then we have ¥, (u)e ,Bf(mij Jf (@1.intg) - Therefore, because of

Proposition 2.3, it follows that 7, is ¢, ¢, L- continuous and consequently (H ,f (¢,,.int;)) is

characterized L-topological group. O

Generally, we consider the case of [ is any class consistes of more than one element. Then we have the
following result.

Proposition 5.2 Let ((Gi W, ,.nt )) be a family of characterized L-topological groups and for each
: iier
i €l,letf,:G;, -G be a homomorphism from a group G onto a groupG, . If (G, ,.int;) is the

then

iel °

initial characterized L-space of the family ((G[ ,1//12.intG_ )) , with respect to the family (f)
’ ! ie

(G,@,,.int ) is characterized L-topological group.

Proof. Let y, :(G, XG,, y,,.int; xy,,.int; ) >(G,, y,,.int; ) is a mapping defined by (2.8)
andpef, .. .Sincef, :(G,,y,,.int; ) > (G,@,.int; )isy, , ¢, L- continuous forall i €/, then

(e ﬂ'//l,z-in[(;[ for all i €/ and because of ; is ¥, , ¥, , L-continuous for all / €/, then we have

-1 -1 . . . . .
76, (f, (w)e ﬂ%.z.im@, ap i, - Consider 75 (G xG, @,.int; x@,.int; ) =>(G, @ ,.int;) is a

mapping defined by (2.8), then }/(_;1(/1) =(f, xf, )()/(;1 (fl._l (1)) and by a similar way to the proof of
Proposition 5.1, we have the product mapping f, xf, is V., ¢, L-open for all i1 €l . Hence,

1
7o (w) e By inte g ,.im, and therefore ¥ is @, , ¢, , L- continuous and consequently (G, @, ,.int; ) is

characterized L-topological group. O

In the following proposition we show that the final lefts and then the final characterized L-topological groups
uniquely exist in the concrete category CRL-TopGrp, that is, the characterized L-topological groups mentiond
in Propositions 5.1 and 5.2 fulfills the conditions of the final lifts in the category CRL-TopGrp.

Proposition 5.3 Let ((Gi W, 10t ))l . be a family of characterized L-topological groups and for each
iel,let f,:G, >G be an surjective homomorphism from the groups G, into a group G . If
(G,@,,.int; ) is the final characterized L-space of the family ((Gl. al//l,z'intG, ))l , with respect to the
family of surjective homomorphism mappings (f i , then the family
(7, (G, Ly, nt; ) > (G, it ))iel is a final lift of (f,:G, >G, w,,.int; )iel in the
category CRL-TopGrp.

Proof. The proof goes similarly by using Propositions 5.1 and 5.2 with the properties of the final lifts in the
category as in case of Proposition 4.3. O
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Because of Proposition 5.3, the characterized L-topological groups mentioned in Propositions 5.1 and 5.2 are

coincide with the final characterized L-topological groups, that is, if ((Gi NV z.inth )) , is a family of
’ ! ie
characterized L-topological groups and for each i €/, the mapping f .G, > G is an surjective
homomorphism and (G, @, ,.int; ) is the final characterized L-space of the family ((Gi Wy, A0t )) ,
’ ’ ! ie

with respect to the family of surjective homomorphism mappings (f,) then (G,@,,.int;) is final

iel
characterized L-topological groups. Hence, the category CRL-TopGrp is co-concrete category of the category

L-Top of all topological spaces and the faithful functor # * \L - Top — CRL — TopGrp is isomorphism.

In the following we consider some special cases for the final characterized L-topological groups.

Characterized L-topological quotient groups. The characterized L-topological group is special final
characterized L-topological group when the mapping f :G —>H replaced by the canonical mapping
h:G—>G /N, where N isnormal subgroup the group G .

Let N be normal subgroup of the characterized L-topological group (G,¢,.int;) and G /' N is the
corresponding quotient group. If 4 :G — G /N is the canonical homomorphism mapping defined by:
h(x)=x N forall x €G, then (G /N ,h(¢,,.int;))is final characterized L-topological group called

characterized L-topological quotient group of the characterized L-topological group (G, @, ,.int, ).

Proposition 5.4 Let (G’¢1,2‘intG) be a characterized L-topological group and /N is a normal subgroup of
G . If G/N is the corresponding quotient group, then the canonical surjective homomorphism

h:(G,p,.int;)—> (G /N ,h(p,.int;)) which is defined as A(x)=x N for all x €G is

@, ¢, L-open.
Proof. Follows directly from Lemma 5.1. O

In the following proposition we give the relation between characterized L-topological quotient groups and the
characterized product L-topological groups.

Proposition 5.5 Let / be a class and for each i €/, let (G, ,y,,.int; ) be a characterized L-topological
group and N, be a normal subgroup of G, . If G =[G, and N =[]N, are the related products of the least

iel iel

two  families (G,),, and (INV,),, . respectively, then the isomorphism  mapping

f :(G /N, h(ITy, ,.int; )) - (H G, /N,),(ITh, (y,,.int; ))) is w,, w,, L- homeomorphism, where
ier ! iel iel ’ ! ’ ’

h (G Iw, , intg, )= (G /N ATy, intg, )) and h, :(G, ,y,-intg ) (G, /N, b (y,,.intg ))

are the related canonical surjective homomorphism’s.

Proof. Because of the definition of characterized product L-topological groups and the characterized L-
topological quotient groups we have that (G /N ,h([1y,,.int; )) and
iel !
(TTIG, /N,).(I1h, (y,,.intg ))) are characterized L-topological groups. Since A, is ¥, ¥, L-
iel iel ' ’ ’

continuous for all 7 €[, then from Lemma 3.1 it follows that the product mapping

[1A, :(Gl. ([T, intg )) - (H G, /N,),(I1h, (y,,.int ))) is ¥, , ¥, , L- continuous. Hence,
iel ' iel iel ' ' ' '

iel
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(e ﬁH(hi Winta, ) implies A~ (f "' () = (113 h)'(w)e ﬁHV/I,Z'intGI- . Because of Proposition

iel iel

53,h is W, , ¥, , L- open and surjective mapping, therefore ' (1) € ’Bh(]_[w ing, - Then, fisy,y,L-
? ’ 1,2-1G; ’ ’

iel

continuous isomorphism, that is, f* is bijective ¥, , ¥/, , L- continuous.

. . . -1
Now, let 77 € ’Bh(H'//],zintc,- - Since h is v\, w,, L- continuous, then A~ (77) € ﬂHWu'imoi . Because of
iel iel
11 hi is the product of ¥, , ¥, , L- open mappings, then Lemma 3.1 implies that 11 hi is ¥,, ¥, L- open
iel ’ ’ iel ’ ;
. -1 . .
mapping. Therefore, f (77) = (1]3 h)h™(n)) e ﬁl—[ it ) that is, f is y,, w,, L- open.

iel

Consequently, f is ¥,, ¥, L- homeomorphism. O

6. Conclusion

In this paper, we introduced and studied the notions of final characterized L-spaces and initial and final
characterized L-topological groups. The properties of such notions are deeply studied. By the notion of final
characterized L-spaces, the notions of characterized quotient pre L-spaces and characterized sum L-spaces are
introduced and studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist
in the category CRL-Sp and hence CRL-Sp is topological category over the category SET of all sets. The
characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-
spaces together with their related canonical surjection are the equalizers and co-equalizers, respectively in CRL-
Sp. Moreover, we show that the initial and final lefts and then the initial and final characterized L-topological
groups uniquely exist in the category CRL-TopGrp. Hence, the category CRL-TopGrp is topological category
over the category Grp of all groups. By the notion of initial and final characterized L-topological groups, the
notions of characterized L-subgroups, characterized product L-topological groups and characterized L-
topological quotient groups are introduced and studied. However, we show that the category CRL-TopGrp is
concrete and co-concrete category of the category L-Top of all topological L-spaces and that the faithful
functors # : CRL — TopGrp —L — Top and £ L- Top — CRL — TopGrp are isomorphism’s. Thus, the category
CRL-TopGrp is algebraic and co-algebraic category over the category L-Top in sense of [7]. Many new special
classes for the final characterized L-spaces, initial characterized L-topological groups, final characterized L-

topological groups, characterized product L-topological groups and characterized L-topological quotient groups
are listed in Table (1).
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Operations Final Initial Final Characterized | Characterized
Characterized | Characterized | Characterized L- Product L- L-topol.
L-spaces L- topol. Groups topol. groups Quotient
topol.Groups groups
1 @, =int Final L-top. Initial L- Final L- topol. Product L- topol.
space topol. Group Group L-topol. Quotient
», = 1LX [18] [ 6,8] [6,8] Group [6,8] group [6,8]
2 @, =int Final ¢ L- Initial ¢ L- | Final ¢ L- topol. 0 - product 0 L —topol.
space topol. Group Group L- topol. Quotient
@, =cl Group group
3 @, =int Final s L- Initial 5 L- | Final s L- topol. s - product s L - topol.
. space topol. Group Group L- topol. Quotient
@, =intocl Group group
4 ¢ = cloint Final semi L- Initial semi Final semi L- Semi- product | Semi L- topol.
space L- topol. topol. Group L- topol. Quotient
¢, =1x Group Group group
5 @, =cloint Final (6.s) L- | Initial (o.5) Final (6.5)L- (6.5) - product | (4.5) L- topol.
space L-topol. topol. Group L- topol. Quotient
P = cl Group Group group
6 o = cloint Final (s5) L- | Initial (5.5) Final (s.5)L- (6.8)-product | (s5) L-topol.
. space L- topol. topol. Grou, L- topol. Quotient
¢, =intocl i GI'OIl)lp ’ i GI‘OII)lp group
7 @, =intocl Final pre L- | Initial pre L- Final pre L- Pre- product Pre L- t.opol.
space topol. Group topol. Group L- topol. Quotient
», =1 Group group
8 o = cloint Final (s.9) L- | Initial (s.9) Final (s.0) L- (5.0) - product | (s.0) L-topol.
space L- topol. topol. Group L- topol. Quotient
@, =scl Group Group group
9 @ = cloint Final (s.6) L- Initial (s.5) Final (s.5)L- (5.5)- product | (s.5) L-topol.
) space L- topol. topol. Group L- topol. Quotient
P, =S.inte§.cl Group Group group
101 ¢ =clointocl Final fL- | Initial § L- Final f L- [ - product f L- topol.
_ space topol. Group topol. Group L- topol. Quotient
¢2 - 1LX G
roup group
I1 1 g =intocloint | Final AL- | Initial A L- Final A L- A - product A L- topol.
—1 space topol. Group topol. Group L- topol. Quotient
Py = Group group
12 @ =Sscloint Final feebly | Initial feebly Final feebly L- Feebly Feebly L.-
L- space L- topol. topol. Group product topol. Quotient
@, =1x Group L- topol. group
Group

Table (1): Some special classes of final characterized L-spaces; initial characterized L-topological groups,
final characterized L-topological groups characterized product L-topological groups and characterized L-
topological quotient groups.
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