On Initial and Final Characterized L- topological Groups

A. S. ABD-ALLAH*

Department of Mathematics, Faculty of Science, El-Mansoura University, El-Mansoura, Egypt

Abstract:

In this research work, new topological notions are proposed and investigated. The notions are named final characterized L-spaces and initial and final characterized L-topological groups. The properties of such notions are deeply studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category **CRL-Sp** and hence **CRL-Sp** is topological category over the category **SET** of all sets. By the notion of final characterized L-space, the notions of characterized qoutien pre L-spaces and characterized sum L-spaces are introduced and studied. The characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjections are the equalizers and co-equalizers, respectively in **CRL-Sp**. Moreover, we show that the initial and final lefts and then the initial and final characterized L-topological groups uniquely exist in the category **CRL-TopGrp**. Hence, the category **CRL-TopGrp** is topological groups, the notions of characterized L-subgroups, characterized product L-topological groups and characterized L-topological quotient groups are introduced and studied., we show that the special faithful functors $\mathcal{F}: CRL - TopGrp \rightarrow L - Top$ and $\mathcal{F}^*: L - Top \rightarrow CRL - TopGrp$ are isomorphism, that is, the category **CRL-TopGrp** is algebraic and co-algebraic category over the category **L-Top** as in sense of [7].

Keywords: L-filter, topological L-space, operations, characterized L-space, categories L-Top, Grp, CRL-Sp, SCRL-Sp, CR-Sp, CRL-TopGrp and CR-TopGrp, φ_1 , L- neighborhood filters, $\varphi_{1,2} \psi_1$, L-continuous, $\varphi_{1,2} \psi_1$, L-open,

 $\varphi_{1,2} \psi_{1,2}$ L-homeomorphism, $\varphi_{1,2} \psi_{1,2}$ L-homomorphism, final characterized L-space, characterized quotient pre L-space, characterized sum L-space, characterized L-topological group, characterized L-topological group, characterized L-topological group.

1. Introduction

The notion of L-filter has been introduced by Eklund *et al.* [10]. By means of this notion a point-based approach to L- topology related to the usual points has been developed. More general concept for L-filter introduced by G \ddot{a} hler in [11] and L-filters are classified by types. Because of the specific type of L-filter however the approach of Eklund is related only to L-topologies which are stratified, that is, all constant L-sets are open. The more specific L-filters considered in the former papers are called now homogeneous. The operation on the ordinary topological space (X, T) has been defined by Kasahara ([16]) as a mapping φ from T into 2^X such that, $A \subseteq A^{\varphi}$, for all $A \in T$. In. [5], Abd El-Monsef's *et al.*extended Kasahars's operation to the power set P(X) of a set X. Kandil *et al.* ([15]), extended Kasahars's and Abd El-Monsef's operations by introducing an operation on the class of all L-sets endowed with an L-topology τ as a mapping $\varphi : L^X \to L^X$ such that int $\mu \leq \mu^{\varphi}$ for all $\mu \in L^X$, where μ^{φ} denotes the value of φ at μ . The notions of the L-filters and the operations on the class of all L-sets on X endowed with an L-topology τ are applied in [2,3,4] to introduce a more general theory including all the weaker and stronger forms of the L-topology. By means of these notions the notion of $\varphi_{1,2}$ -interior of L-sets, $\varphi_{1,2}$ L-convergence and $\varphi_{1,2}$ -interior operator for L-sets is defined as a mapping $\varphi_{1,2}$. int : $L^X \to L^X$ which fulfill (I1) to (I5) in [2]. There is a one-to-one correspondence between

^{*} **Present address**: Department of Mathematics, Faculty of Science and hum anilities studies, Salman Bin Abdulaziz Univ., P. O. Box 132012, Code No. 11941 Hotat Bani Tamim, Saudi Arabia

E-mail address: asabdallah@hotmail.com and drhmsa1961@yahho.com

the class of all $\varphi_{1,2}$ -open L-subsets of X and these operators, that is, the class $\varphi_{1,2}OF(X)$ of all $\varphi_{1,2}$ -open L-subsets of X can be characterized by these operators. Then the triple $(X, \varphi_{1,2}, int)$ as will as the triple $(X, \varphi_{1,2}OF(X))$ will be called the characterized L-space of $\varphi_{1,2}$ -open L-subsets. The characterized L-spaces are characterized by many of characterizing notions in [2,3], for example by: $\varphi_{1,2}$ L-neighborhood filters, $\varphi_{1,2}$ L-interior of the L-filters and by the set of $\varphi_{1,2}$ -inner points of the L-filters. Moreover, the notions of closeness and compactness in characterized L-spaces are introduced and studied in [4].

This paper is devoted to introduce and study the notions of final characterized L-spaces and initial and final characterized L-topological groups as a generalization of the weaker and stronger forms of the final topological L-space and initial and final L-topological group introduced in [8, 18]. In section 2, some definitions and notions related to L-sets, L-topologies, L-filters, operations on L-sets, characterized L-spaces, $\varphi_{1,2}$ Lneighborhood filters, $\varphi_{1,2} \alpha$ L-neighborhood, $\varphi_{1,2} \psi_{1,2}$ L-continuous mappings, $\varphi_{1,2} \psi_{1,2}$ L-open mappings, $\varphi_{1,2} \psi_{1,2}$ L-homeomorphism mappings and characterized L-topological groups are given. The categories of all characterized L-spaces, stratified characterized L- spaces and the characterized L-topological groups with the $\varphi_{1,2} \psi_{1,2}$ L-continuity and $\varphi_{1,2} \psi_{1,2}$ -homomorphisms as a morphisme between them are presented. Section 3, is devoted to introduce and study the notion of final characterized L-spaces. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category CRL-Sp. Further notions related to the notion of characterized L-spaces are e.g. those of a characterized qoutient pre L-spaces and a characterized sum Lspaces are investigated as special cases for the notions of final characterized L-spaces. By the initial and final lefts in CRL-Sp we show that the category CRL-Sp is topological category over the category SET of all sets in sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in CRL-Sp exist, which of course are unique up to isomorphisms. According to general procedure, we show that the characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre Lspaces together with their related canonical surjections are equalizers and co-equalizers in **CRL-Sp**, respectively. Section 4, is deviated to introduce and study the notion of initial characterized L-topological groups as a generalization of the weaken and stronger forms of the initial L-topological groups which introduced in [8]. It will be shown that the initial lefts and then the initial characterized L-topological groups are uniquely exist in the category CRL-TopGrp and therefore, the category CRL-TopGrp is topological category over the category Grp of all groups. More generally, we show that the category CRL-TopGrp is concrete category of the category **L-Top** of all topological spaces and the faithful functor \mathcal{F} : CRL – TopGrp \rightarrow L – Top is isomorphism. Thus, the category CRL-TopGrp is algebraic category over the category L-Top in sense of [7]. Finally, by the notion of initial characterized L-topological groups, the notions of characterized L-subgroups and characterized product Ltopological groups are introduced and studied. In section 5, the notion of final characterized L-topological groups are introduced and studied as a generalization of the weaken and stronger forms of the final L-topological groups introduced in [8]. It will be shown that the final lefts and then the final characterized L-topological groups are uniquely exists in the category CRL-TopGrp. More generally, we show that the category CRL-TopGrp is co-concrete category of the category L-Top of all topological L-spaces and the faithful functor

 \mathscr{F}^* : L – Top \rightarrow CRL – TopGrp is isomorphism. Thus, the category CRL-TopGrp is co-algebraic category over the category L-Top in sense of [7]. By the notion of final characterized L-topological groups, the notions of characterized L-topological quotient groups is introduced and studied. Finally, we present a relation between the characterized L-topological quotient groups and the characterized product L-topological groups.

2. Preliminaries

In this research work we consider L be a completely distributive complete lattice with different least and last elements 0 and 1, respectively. Consider $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. Sometimes we will assume more specially that L is complete chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set X, let L^x be the set of all L-subsets of X, that is, of all mappings $f : X \to L$. Assume that an orderreversing involution $\alpha \mapsto \alpha'$ of L is fixed. For each L-set $\mu \in L^x$, let μ' denote the complement of μ and it is defined by: $\mu'(x) = \mu(x)'$ for all $x \in X$. Denote by $\overline{\alpha}$ the constant L-subset of X with value $\alpha \in L$. For all $x \in X$ and for all $\alpha \in L_0$, the L-subset x_{α} of X whose value α at x and 0 otherwise is called an L-point in X. Now, we begin by recalling some facts on the L-filters.

L-filters. The L- filter on a set X ([11]) is a mapping $\mathcal{M}: L^X \to L$ such that the following conditions are fulfilled:

(F1) $\mathcal{M}(\overline{\alpha}) \leq \alpha$ for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$.

(F2) $\mathcal{M}(\mu \wedge \rho) = \mathcal{M}(\mu) \wedge \mathcal{M}(\rho)$ for all $\mu, \rho \in L^X$.

The L-filter \mathcal{M} is called homogeneous ([11]) if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. For each $x \in X$, the mapping $\dot{x} \models L^{\check{}} \to L$ defined by $\dot{x} \models L^{\check{}}(x)$ for all $\mu \in L^X$ is a homogeneous L-filter on X. For each $\mu \in L^X$, the mapping $\dot{\mu}: L^{\check{}} \to L$ defined by $\dot{\mu}(\eta) = \underbrace{\bullet}_{\nabla(\eta(x))} \eta(x)$ for all $\eta \in L^X$ is also homogeneous L-filter on X, called homogeneous L-filter at the L-subset $\mu \in L^X$. Let $\mathscr{F}_L X$ and $\mathcal{F}_L X$ will be denote the sets of all L-filters and of all homogeneous L-filters on a set X, respectively. If \mathcal{M} and \mathcal{N} are L-filters on a set X, \mathcal{M} is said to be finer than \mathcal{N} , denoted by $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(\mu) \geq \mathcal{N}(\mu)$ holds for all $\mu \in L^X$. Noting that if L is a complete chain then \mathcal{M} is not finer than \mathcal{N} , denoted by $\mathcal{M} \leq \mathcal{N}$, provided there exists $\mu \in L^X$ such that $\mathcal{M}(\mu) < \mathcal{N}(\mu)$ holds.

For each non-empty set \mathcal{A} of the L- filters on X the supremum $\bigvee_{\mathcal{M}\in\mathcal{A}} \mathcal{M}$ exists ([11]) and given by:

$$(\bigvee_{\mathcal{M}\in\mathcal{A}}\mathcal{M})(\mu)=\bigwedge_{\mathcal{M}\in\mathcal{A}}\mathcal{M}(\mu)$$

for all $\mu \in L^X$. Whereas the infimum $\bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M}$ of \mathcal{A} does not exists in general as an L-filter. If the infimum $\bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M}$ exists, then we have:

$$(\bigwedge_{\mathcal{M}\in\mathcal{A}}\mathcal{M})(\mu) = \bigvee_{\substack{\mu_1 \wedge \dots \wedge \mu_n \leq \mu, \\ \mathcal{M}_1,\dots,\mathcal{M}_n \in \mathcal{A}}} (\mathcal{M}_1(\mu_1) \wedge \dots \wedge \mathcal{M}_n(\mu_n))$$

For all $\mu \in L^X$, where *n* is a positive integer, $\mu_1, ..., \mu_n$ is a collection such that $\mu_1 \wedge ... \wedge \mu_n \leq \mu$ and $\mathcal{M}_1, ..., \mathcal{M}_n$ are L-filters from \mathcal{A} . Let X be a set and $\mu \in L^X$, then the homogeneous L-filter $\dot{\mu}$ at $\mu \in L^X$ is the L-filter on X given by:

$$\dot{\mu} = \bigvee_{0 < \mu(x)} \dot{x}$$

L- filter bases. A family $(\mathscr{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X is called a valued L- filter base ([11]) if the following conditions are fulfilled:

(V1) $\mu \in \mathscr{B}_{\alpha}$ implies $\alpha \leq \sup \mu$.

(V2) For all $\alpha, \beta \in L_0$ with $\alpha \land \beta \in L_0$ and all $\mu \in \mathscr{B}_{\alpha}$ and $\rho \in \mathscr{B}_{\beta}$ there are $\gamma \ge \alpha \land \beta$ and $\eta \ge \mu \land \sigma$ such that $\eta \in \mathscr{B}_{\gamma}$.

Each valued base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ defines the L-filter \mathcal{M} on X ([11]) by $\mathcal{M}(\mu) = \bigvee_{\rho \in \mathcal{B}_{\alpha}, \rho \leq \mu} \alpha$ for all $\mu \in L^X$. Conversely, each L- filter \mathcal{M} can be generated by a valued base, e.g. by $(\alpha \operatorname{-pr} \mathcal{M})_{\alpha \in L_0}$ with $\alpha \operatorname{-pr} \mathcal{M} = \{\mu \in L^X \mid \alpha \leq \mathcal{M}(\mu)\}$. The family $(\alpha \operatorname{-pr} \mathcal{M})_{\alpha \in L_0}$ is a family of prefilters on X and is called the large valued base of \mathcal{M} . Recall that a prefilter on X ([16]) is a non-empty proper subset \mathcal{F} of L^X such that: (1) μ , $\rho \in \mathcal{F}$ Implies $\mu \land \rho \in \mathcal{F}$ and (2) from $\mu \in \mathcal{F}$ and $\mu \leq \rho$ it follows $\rho \in \mathcal{F}$. **Topological L-spaces**. By an L-topology on a set X ([9, 14]), we mean a subset of $\mu \in L^X$ which is closed with respect to all suprema and all finite infima and contains the constant L-sets $\overline{0}$ and $\overline{1}$. A set X equipped with an L-topology τ on X is called topological L-space. For each topological L-space (X, τ) , the elements of τ are called open L-subsets of this space. If τ_1 and τ_2 are L-topologies on a set X, τ_2 is said to be finer than τ_1 and τ_1 is said to be coarser than τ_2 provided $\tau_1 \subseteq \tau_2$ holds. For each L-set $\mu \in L^X$, the strong α cut and the weak α -cut of μ are ordinary subsets of X defined by the subsets $S_{\alpha}(\mu) = \{x \in X : \mu(x) > \alpha\}$ and $W_{\alpha}(\mu) = \{x \in X : \mu(x) \ge \alpha\}$, respectively. For each complete chain L, the α -level topology and the initial topology ([17]) of an L-topology τ on X are defined as follows: $\tau_{\alpha} = \{S_{\alpha}(\mu) \in P(X) : \mu \in \tau\}$ and $i(\tau) = \inf\{\tau_{\alpha} : \alpha \in L_1\}$,

respectively, where inf is the infimum with respect to the finer relation on topologies. On other hand if (X, T) is ordinary topological space, then the induced L-topology on X is defined by Lowen in [17] as the set $\omega(T) = \{\mu \in L^X : S_{\alpha}(\mu) \in T \text{ for all } \alpha \in L_1\}$. Lowen in [17], show that ω and i are functors in special case of L = I. The topological L-space (X, τ) and also τ are said to be stratified provided $\overline{\alpha} \in \tau$ holds for all $\alpha \in L$, that is, all constant L-sets are open ([17]). Denote by L-Top and Top to the categories of all L-topological spaces and all ordinary topological spaces, respectively.

Operation on L-sets. In the sequel, let a topological L-space (X, τ) be fixed. By the operation ([15]) on a set X we mean a mapping $\varphi: L^X \to L^X$ such that $\inf \mu \leq \mu^{\varphi}$ holds, for all $\mu \in L^X$, where μ^{φ} denotes the value of φ at μ . The class of all operations on X will be denoted by $O_{(L^X,\tau)}$. The constant operation on $O_{(L^X,\tau)}$ is the operation $c_{L^X}: L^X \to L^X$ such that $c_{L^X}(\mu) = \overline{1}$, for all $\mu \in L^X$. By identity operation on $O_{(L^X,\tau)}$, we mean the operation $1_{L^X}: L^X \to L^X$ such that $1_{L^X}(\mu) = \mu$, for all $\mu \in L^X$. In case of $L = \{0,1\}$, the identity operation on the class of all ordinary operations $O_{(P(X),T)}$ on X will be denoted by $i_{P(X)}$, and it is defined by $i_{P(X)}(A) = A$ for all $A \in P(X)$. If \leq is a partially ordered relation on $O_{(L^X,\tau)}$ defined as follows: $\varphi_1 \leq \varphi_2 \iff \mu^{\varphi_1} \leq \mu^{\varphi_2}$ for all $\mu \in L^X$, then obviously, $O_{(L^X,\tau)}$ is a completely distributive lattice. As an application on the partially ordered relation \leq on the set X, we classified the operation $\varphi: L^X \to L^X$ will be called:

(i) Isotone if $\mu \leq \rho$ implies $\mu^{\varphi} \leq \rho^{\varphi}$, for all $\mu, \rho \in L^X$.

(ii) Weakly finite intersection preserving (wfip, for short) with respect to $\mathcal{A} \subseteq L^X$ if $\rho \wedge \mu^{\varphi} \leq (\rho \wedge \mu)^{\varphi}$ holds, for all $\rho \in \mathcal{A}$ and $\mu \in L^X$.

(iii) Idempotent if $\mu^{\varphi} = (\mu^{\varphi})^{\varphi}$, for all $\mu \in L^X$.

 φ -open L- sets. Let a topological L-space (X, τ) be fixed and $\varphi \in O_{(L^X, \tau)}$. The L-set $\mu : X \to L$ will be called φ -open L- set if $\mu \leq \mu^{\varphi}$ holds. We will denote the class of all φ -open L- sets on X by $\varphi OF(X)$. The L- set μ is called φ -closed if its complement $co \ \mu$ is φ -open. The two operations $\varphi, \ \psi \in O_{(L^X, \tau)}$ are equivalent and written $\varphi \sim \psi$ if $\varphi OF(X) = \psi OF(X)$.

 $\varphi_{1,2}$ -interior of L- sets. Let a topological L-space (X, τ) be fixed and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then the $\varphi_{1,2}$ -interior of the L-set $\mu: X \to L$ is the mapping $\varphi_{1,2}$. int $\mu: X \to L$ defined by:

$$\varphi_{1,2}.\operatorname{int} \mu = \bigvee_{\rho \in \varphi_1 OF(X), \rho^{\varphi_2} \le \mu} \rho$$
(2.1)

 $\varphi_{1,2}$. int μ is the greatest φ_1 -open L-set ρ such that ρ^{φ_2} less than or equal to μ ([2]). The L- set μ is said to be $\varphi_{1,2}$ -open if $\mu \leq \varphi_{1,2}$. int μ . The class of all $\varphi_{1,2}$ -open L- sets on X will be denoted by $\varphi_{1,2}OF(X)$. The complement $CO \ \mu$ of a $\varphi_{1,2}$ -open L-subset μ will be called $\varphi_{1,2}$ -closed, the class of all $\varphi_{1,2}$ -closed L-subsets of X will be denoted by $\varphi_{1,2}CF(X)$. In the classical case of $L = \{0,1\}$, the topological L-space (X,τ) is up to identification by the ordinary topological space (X,T) and $\varphi_{1,2}$. int μ is the classical one. Hence, in this case the ordinary subset A of X is $\varphi_{1,2}$ -open if $A \subseteq \varphi_{1,2}$. int A. The complement of a $\varphi_{1,2}$ -closed subsets of X will be called $\varphi_{1,2}$ -closed. The class of all $\varphi_{1,2}$ -closed if and only if $\varphi_{1,2}$. closed by $\varphi_{1,2}O(X)$ and $\varphi_{1,2}C(X)$, respectively. Clearly, F is $\varphi_{1,2}$ -closed if and only if $\varphi_{1,2}$. closed if $\varphi_{1,2}$ -closed if and only if $\varphi_{1,2}$. closed by $\varphi_{1,2}O(X)$ and $\varphi_{1,2}C(X)$, respectively. Clearly, F is $\varphi_{1,2}$ -closed if and only if $\varphi_{1,2}$. closed if $\varphi_{1,2}$ closed if and only if $\varphi_{1,2}$. closed if $\varphi_{1,2}$ closed if and only if $\varphi_{1,2}$.

Proposition 2.1 [2] If (X, τ) is a topological L-space and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then, the mapping $\varphi_{1,2}$. int $\mu: X \to L$ fulfills the following axioms:

(i) If $\varphi_2 \ge 1_{L^X}$, then $\varphi_{1,2}$. int $\mu \le \mu$ holds.

(ii) $\varphi_{1,2}$. int μ is isotone, i.e, if $\mu \leq \rho$ then $\varphi_{1,2}$. int $\mu \leq \varphi_{1,2}$. int ρ holds for all $\mu, \rho \in L^X$.

(iii)
$$\varphi_{1,2}$$
. int $\overline{1} = \overline{1}$.

(iv) If $\varphi_2 \ge 1_{L^X}$ is isotone operation and φ_1 is wfip with respect to $\varphi_1 OF(X)$, then $\varphi_{1,2}.int(\mu \land \rho) = \varphi_{1,2}.int \mu \land \varphi_{1,2}.int \rho$ for all $\mu, \rho \in L^X$.

(v) If φ_2 is isotone and idempotent operation, then $\varphi_{1,2}$. int $\mu \leq \varphi_{1,2}$. int $(\varphi_{1,2}$. int $\mu)$ holds.

(vi) $\varphi_{1,2}$.int $(\bigvee_{i \in I} \mu_i) = \bigvee_{i \in I} \varphi_{1,2}$.int μ_i for all $\mu_i \in \varphi_{1,2}OF(X)$.

Proposition 2.2 [2] Let (X, τ) be a topological L-space and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then the following are fulfilled: (i) If $\varphi_2 \ge 1_{L^X}$, then the class $\varphi_{1,2}OF(X)$ of all $\varphi_{1,2}$ -open L-sets on X forms an extended L- topology on X, denoted by $\tau^{\varphi_{1,2}}$ ([13]).

(ii) If $\varphi_2 \ge 1_{L^X}$, then the class $\varphi_{1,2}OF(X)$ of all $\varphi_{1,2}$ -open L-sets on X forms a supra L- topology on X, denoted by $\overline{\tau}^{\varphi_{1,2}}([13])$.

(iii) If $\varphi_2 \ge 1_{L^X}$ is isotone and φ_1 is wfip with respect to $\varphi_1 OF(X)$, then $\varphi_{1,2} OF(X)$ is a pre L-topology on X, denoted by $\tau_{\varphi_{n,2}}^{\wedge}$ ([13]).

(iv) If $\varphi_2 \ge 1_{L^X}$ is isotone and idempotent operation and φ_1 is wfip with respect to $\varphi_1 OF(X)$, then $\varphi_{1,2}OF(X)$ forms an L-topology on X, denoted by $\tau_{\varphi_{1,2}}([9, 14])$.

From Propositions 2.1 and 2.2, if the topological L-space (X, τ) be fixed and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then

$$\varphi_{1,2}OF(X) = \{\mu \in L^X \mid \mu \le \varphi_{1,2}. \text{ int } \mu\}$$
 (2.2)

and the following conditions are fulfilled: (I1) If $\varphi_2 \ge 1_{L^X}$, then $\varphi_{1,2}$. int $\mu \le \mu$ holds for all $\mu \in L^X$.

(I2) If $\mu \leq \rho$ then $\varphi_{1,2}$. int $\mu \leq \varphi_{1,2}$. int ρ holds for all $\mu, \rho \in L^X$.

(I3) $\varphi_{1,2}$. int $\overline{1} = \overline{1}$.

(I4) If $\varphi_2 \ge 1_{L^X}$ is isotone and φ_1 is wfip with respect to $\varphi_1 OF(X)$, then $\varphi_{1,2}$. int $(\mu \land \rho) = \varphi_{1,2}$. int $\mu \land \varphi_{1,2}$. int ρ for all $\mu, \rho \in L^X$.

(I5) If $\varphi_2 \ge 1_{L^X}$ is isotone and idempotent, then $\varphi_{1,2}$. int $(\varphi_{1,2}$. int $\mu) = \varphi_{1,2}$. int μ for all $\mu \in L^X$.

Characterized L-spaces. Independently on the L- topologies, the notion of $\varphi_{1,2}$ -interior operator for L- sets can be defined as a mapping $\varphi_{1,2}$.int : $L^X \to L^X$ which fulfills (I1) to (I5). It is well-known that (2.1) and (2.2) give a one-to-one correspondence between the class of all $\varphi_{1,2}$ -open L- sets and these operators, that is, $\varphi_{1,2}OF(X)$ can be characterized by $\varphi_{1,2}$ -interior operators. In this case the pair $(X, \varphi_{1,2}.int)$ as will as the pair $(X, \varphi_{1,2}OF(X))$ will be called characterized L- space ([2]) of $\varphi_{1,2}$ -open L- subsets of X. If $(X, \varphi_{1,2}.int)$ and $(X, \psi_{1,2}.int)$ are two characterized L-spaces, then $(X, \varphi_{1,2}.int)$ is said to be finer than $(X, \psi_{1,2}.int)$ and denoted by $\varphi_{1,2}.int \leq \psi_{1,2}.int$ provided $\varphi_{1,2}.int \ \mu \geq \psi_{1,2}.int \ \mu$ holds for all $\mu \in L^X$. The characterized L-space $(X, \varphi_{1,2}.int)$ of all $\varphi_{1,2}$ -open L-sets is said to be stratified if and only if $\varphi_{1,2}.int \ \overline{\alpha} = \overline{\alpha}$ for all $\alpha \in L$. As shown in [2], the characterized L-space $(X, \varphi_{1,2}.int)$ is stratified if the related L- topology is stratified. Moreover, the characterized L-space $(X, \varphi_{1,2}.int)$ is said to have the weak infimum property ([13]) provided for all $\mu \in L^X$ and $\alpha \in L$. The characterized L-space $(X, \varphi_{1,2}.int)$ is said to be strongly stratified ([13]) provided $\varphi_{1,2}.int$ is stratified and have the weak infimum property.

If $\varphi_1 = \text{int} \text{ and } \varphi_2 = \mathbb{1}_{L^X}$, then the class $\varphi_{1,2}OF(X)$ of all $\varphi_{1,2}$ -open L-set of X coincide with τ which is defined in [9,14] and hence the characterized L- space $(X, \varphi_{1,2}, \text{int})$ coincide with the topological L-space (X, τ) .

 $\varphi_{1,2}$ L-neighborhood filters. An important notion in the characterized L-space $(X, \varphi_{1,2}, \text{int})$ is that of a $\varphi_{1,2}$ L-neighborhood filter at the point and at the ordinary subset in this space. Let (X, τ) be a topological L-space and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. As follows by (I1) to (I5) for each $x \in X$, the mapping $\mathcal{N}_{\varphi_2}(x): L^X \to L$ which is defined by:

$$\mathcal{N}_{\varphi_{1,2}}(x)(\mu) = (\varphi_{1,2}.\operatorname{int} \mu)(x)$$
(2.3)

for all $\mu \in L^X$ is L-filter, called $\varphi_{1,2}$ L-neighborhood filter at x ([2]). If $\varphi \neq F \subseteq P(X)$, then the $\varphi_{1,2}$ L-neighborhood filter at F will be denoted by $\mathscr{N}_{\varphi_{1,2}}(F)$ and it will be defined by:

$$\mathscr{N}_{\varphi_{1,2}}(F) = \bigvee_{x \in F} \mathscr{N}_{\varphi_{1,2}}(x).$$

Since $\mathscr{N}_{\varphi_{1,2}}(x)$ is L-filter for all $x \in X$, then $\mathscr{N}_{\varphi_{1,2}}(F)$ is also L-filter on X. Moreover, because of $[\chi_F] = \bigvee_{x \in F} \dot{x}$, then we have $\mathscr{N}_{\varphi_{1,2}}(F) \ge [\chi_F]$ holds.

If the related $\varphi_{1,2}$ -interior operator fulfill the axioms (I1) and (I2) only, then the mapping $\mathcal{N}_{\varphi_{1,2}}(x) : L^X \to L$, which is defined by (2.3) is an L-stack ([15]), called $\varphi_{1,2}$ L- neighborhood stack at x. Moreover, if the $\varphi_{1,2}$ interior operator fulfill the axioms (I1), (I2) and (I4) such that in (I4) instead of $\rho \in L^X$ we choice $\overline{\alpha}$, then the mapping $\mathcal{N}_{\varphi_{1,2}}(x) : L^X \to L$, is an L-stack with the cutting property, called here $\varphi_{1,2}$ L- neighborhood stack with the cutting property at x. Obviously, the $\varphi_{1,2}$ L-neighborhood filters fulfill the following axioms: (N1) $\dot{x} \leq \mathscr{N}_{\varphi_{1,2}}(x)$ holds for all $x \in X$. (N2) $\mathscr{N}_{\varphi_{1,2}}(x)(\mu) \leq \mathscr{N}_{\varphi_{1,2}}(x)(\rho)$ holds for all $\mu, \rho \in L^X$ and $\mu \leq \rho$. (N3) $\mathscr{N}_{\varphi_{1,2}}(x)(y \mapsto \mathscr{N}_{\varphi_{1,2}}(y)(\mu)) = \mathscr{N}_{\varphi_{1,2}}(x)(\mu)$, for all $x \in X$ and $\mu \in L^X$. Clearly, $y \mapsto \mathscr{N}_{\varphi_{1,2}}(y)(\mu)$ is the L-set $\varphi_{1,2}$. int μ .

The characterized L-space $(X, \varphi_{1,2}, \text{int})$ of all $\varphi_{1,2}$ -open L-subsets of a set X is characterized as a filter pre L-topology ([2]), that is, as a mapping $\mathscr{N}_{\varphi_{1,2}}(x): X \to \mathscr{F}_L X$ such that the axioms (N1) to (N3) are fulfilled.

 $\varphi_{1,2}\alpha$ L-neighborhoods. Let (X, τ) be a topological L-spaces and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then for each $\alpha \in L_0$ and each $x \in X$, the L-set $\mu \in L^X$ will be called $\varphi_{1,2} \alpha$ L-neighborhood at x if $\alpha \leq (\varphi_{1,2}. \operatorname{int} \mu)(x)$ holds. Because of Proposition 2.1, the L-set $\mu \in L^X$ is $\varphi_{1,2} \alpha$ L-neighborhood at x if and only if $\mu \in \alpha$ -pr $\mathcal{N}_{\varphi_{1,2}}(x)$, where $\mathcal{N}_{\varphi_{1,2}}(x)$ be given by (2.3). For each $\alpha \in L_0$ and each $x \in X$ let $N_{\alpha}(x)$ be the set of all $\varphi_{1,2} \alpha$ L-neighborhood at x, that is, $N_{\alpha}(x) = \{\mu \in L^X : \alpha \leq (\varphi_{1,2}. \operatorname{int} \mu)(x)\}$, then the family $(N_{\alpha}(x))_{\alpha \in L_0}$ is the large valued L-filter base of $\mathcal{N}_{\varphi_{1,2}}(x)$.

 $\varphi_{1,2}$ L-convergence. Let a topological L-spaces (X, τ) be fixed and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. If x is a point in the characterized L-space $(X, \varphi_{1,2}, \operatorname{int})$, $F \subseteq X$ and \mathcal{M} is L-filter on X. Then \mathcal{M} is said to be $\varphi_{1,2}$ L-convergence ([2]) to x and written $\mathcal{M} \xrightarrow{\varphi_{1,2}, \operatorname{int}} x$, provided \mathcal{M} is finer than the $\varphi_{1,2}$ - neighborhood filter $\mathcal{N}_{\varphi_{1,2}}(x)$. Moreover, \mathcal{M} is said to be $\varphi_{1,2}$ -convergence to F and written $\mathcal{M} \xrightarrow{\varphi_{1,2}, \operatorname{int}} F$, provided \mathcal{M} is finer than the $\varphi_{1,2}$ -neighborhood filter $\mathcal{N}_{\varphi_{1,2}}(x)$ for all $x \in F$, that is, \mathcal{M} is finer than the $\varphi_{1,2}$ L-neighborhood filter $\mathcal{N}_{\varphi_{1,2}}(x)$ for all $x \in F$, that is, \mathcal{M} is finer than the $\varphi_{1,2}$ L-neighborhood filter $\mathcal{N}_{\varphi_{1,2}}(F)$.

 $\varphi_{1,2}$ -closure L-sets. Let a topological L-space (X, τ) be fixed and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. The $\varphi_{1,2}$ -closure of the L-set $\mu: X \to L$ is the mapping $\varphi_{1,2}$.cl $\mu: X \to L$ defined by:

$$(\varphi_{1,2}.\mathrm{cl}\ \mu)(x) = \bigvee_{\mathcal{M} \leq \mathcal{N}_{\mathfrak{P}_{1,2}}(x)} \mathcal{M}(\mu)$$

for all $x \in X$. The L-filter \mathcal{M} my have additional properties, e.g., we may assume that is homogeneous or even that is ultra. Obviously, $\varphi_{1,2}$.cl $\mu \ge \mu$ holds for all $\mu \in L^X$.

 $\varphi_{1,2} \ \psi_{1,2}$ **L-continuous and** $\varphi_{1,2} \ \psi_{1,2}$ **L-open mappings.** In the following let a topological L-spaces (X, τ_1) and (Y, τ_2) are fixed, $\varphi_1, \varphi_2 \in O_{(L^X, \tau_1)}$ and $\psi_1, \psi_2 \in O_{(L^Y, \tau_2)}$. The mapping $f: (X, \varphi_{1,2}.int) \rightarrow (Y, \psi_{1,2}.int)$ is said to be $\varphi_{1,2} \ \psi_{1,2}$ L-continuous ([2]) if and only if

$$(\psi_{1,2}.\operatorname{int}\eta) \stackrel{\text{for equation (2.4)}}{\longrightarrow}$$

holds for all $\eta \in L^{Y}$. If an order reversing involution $\alpha \mapsto \alpha'$ of L is given, then we have that f is $\varphi_{1,2} \ \psi_{1,2}$ L-continuous if and only if $\varphi_{1,2}$.cl $(\eta \land f) = (\eta \land$

 $\psi_{1,2} \varphi_{1,2}$ L-continuous mapping, that is, $(\varphi_{1,2}..\text{int }\mu) \xrightarrow{c-1} (x) = (\varphi_{1,2}..\text{int } a)$ holds for all $\mu \in L^X$. By means of the $\varphi_{1,2}$ L-neighborhood filter $\mathcal{N}_{\varphi_{1,2}}(x)$ of $\varphi_{1,2}.\text{int at } x$ and the $\psi_{1,2}$ L-neighborhood filter $\mathcal{N}_{\psi_{1,2}}(x)$ of $\psi_{1,2}.\text{int } at x$, the $\varphi_{1,2} \psi_{1,2}$ L-continuity of f is also characterized as follows:

A mapping $f : (X, \varphi_{1,2}, \text{int}) \to (Y, \psi_{1,2}, \text{int})$ is $\varphi_{1,2} \psi_{1,2}$ L-continuous if for each $x \in X$ the inequality $\mathcal{N}_{\psi_{1,2}}(f(x)) \ge \mathcal{F}_L f(\mathcal{N}_{\varphi_{1,2}}(x))$

holds. Obviously, in the case of $L = \{0,1\}$, $\varphi_1 = \psi_1 = \text{int}$, $\varphi_2 = 1_{L^{\chi}}$ and $\psi_2 = 1_{L^{\chi}}$, the $\varphi_{1,2}$ $\psi_{1,2}$ L-continuity of f is coincides with the usual L-continuity.

Proposition 2.3 [2] Let $f : (X, \varphi_{1,2}.int) \to (Y, \psi_{1,2}.int)$ be a mapping between the characterized L-spaces $(X, \varphi_{1,2}.int)$ and $(Y, \psi_{1,2}.int)$. Then the following are equivalent:

(1) f is $\varphi_{1,2} \psi_{1,2}$ L-continuous.

(2) For each L-filter \mathcal{M} on X and each $x \in X$ such that $\mathcal{M} \xrightarrow{\varphi_{1,2}, \text{int}} x$ we have $\mathcal{F}_L f(\mathcal{M}) \xrightarrow{\psi_{1,2}, \text{int}} f(x)$.

(3) For each $x \in X$, $\alpha \in L_0$ and $\psi_{1,2} \alpha$ L-neighborhood η at f(x), we have $\eta \circ f$ is an $\varphi_{1,2} \alpha$ L-neighborhood at x.

(4) $f^{-1}(\eta) \in \beta_{\varphi_{1,2}.int}$ for all $\eta \in \beta_{\psi_{1,2}.int}$, where $\beta_{\varphi_{1,2}.int}$ and $\beta_{\psi_{1,2}.int}$ are the bases of $(X, \varphi_{1,2}.int)$ and $(Y, \psi_{1,2}.int)$, respectively.

We will denoted by **CRL-Sp**, **SCRL-Sp** and **CR-Sp** to the categories of all characterized L- spaces, stratified characterized L- spaces and the ordinary characterized spaces with the $\varphi_{1,2} \psi_{1,2}$ L-continuity and $\varphi_{1,2} \psi_{1,2}$ -continuity as a morphismes between them, respectively. The objects in these categories are characterized L-spaces, stratified characterized L-spaces and characterizet spaces and will be dented by $(X, \varphi_{1,2}.int)$, $(X, \varphi_{1,2}.int^{S})$ and $(X, \varphi_{1,2}.int_{Q})$, respectively.

holds for all $\mu \in L^X$. If an order reversing involution $\alpha \mapsto \alpha'$ of L is given, then we have that f is $\varphi_{1,2}$ $\psi_{1,2}$ L-open if and only if $\varphi_{1,2}.cl(f \square f \circ (w_{1,2}.cl \mu))$ for all $\mu \in L^X$. The mapping $f : (X, \varphi_{1,2}.int) \to (Y, \psi_{1,2}.int)$ is said to be $\varphi_{1,2} \psi_{1,2}$ L-homeomorphism if and only if it is bijective $\varphi_{1,2} \psi_{1,2}$ L-continuous and $\varphi_{1,2} \psi_{1,2}$ L-open mapping.

Proposition 2.4 [1] Let $f : (X, \varphi_{1,2}.int) \to (Y, \psi_{1,2}.int)$ be a mapping between the characterized L-spaces $(X, \varphi_{1,2}.int)$ and $(Y, \psi_{1,2}.int)$. Then the following are equivalent:

(1) *f* is $\varphi_{1,2} \psi_{1,2}$ L-open.

(2) For each L-filter \mathscr{N} on Y and each $y \in Y$ such that $\mathscr{N} \xrightarrow{\psi_{1,2}, \text{int}} y$ we have $\mathscr{F}_L^{-f}(\mathscr{N}) \xrightarrow{\psi_{1,2}, \text{int}} f^{-1}(y)$, where $\mathscr{F}_L^{-f}(\mathscr{N})$ is the preimage of \mathscr{N} .

(3) For each $y \in Y$, $\alpha \in L_0$ and $\varphi_{1,2} \alpha$ L-neighborhood μ at $f^{-1}(y)$, we have $\mu \circ f^{-1}$ is an $\psi_{1,2} \alpha$ L-neighborhood at y.

(4) $f(\mu) \in \psi_{1,2}OF(Y)$ for all $\mu \in \beta_{\varphi_{1,2}, \text{int}}$, where $\beta_{\varphi_{1,2}, \text{int}}$ is a base of $(X, \varphi_{1,2}, \text{int})$.

Characterized L-topological groups. In the following let G is a multiplicative group. We denote, as usual, the identity element of G by e and the inverse of x in G by x^{-1} . Consider τ is an L-topology on G and $\varphi_1, \varphi_2 \in O_{(L^G, \tau)}$. Then the pair $(G, \varphi_{1,2}. \operatorname{int}_G)$ will be called an characterized L-topological group ([1]) if and only if the mappings:

 $\alpha : (G \times G, \varphi_{1,2}.int_G \times \varphi_{1,2}.int_G) \rightarrow (G, \varphi_{1,2}.int_G) \text{ and } \beta : (G, \varphi_{1,2}.int_G) \rightarrow (G, \varphi_{1,2}.int_G) \text{ that defined by:}$

$$\alpha((x,y)) = x \ y \qquad \forall \ (x,y) \in G \times G \tag{2.6}$$

and

$$\beta(x) = x^{-1} \qquad \forall x \in G \tag{2.7}$$

are $\varphi_{1,2} \ \varphi_{1,2}$ L- continuous, respectively.

If $\varphi_1 = \text{int} \text{ and } \varphi_2 = \mathbb{1}_{L^X}$, then the characterized L-topological group $(G, \varphi_{1,2}, \text{int}_G)$ is coincide with the L-topological group (G, τ) which is defined in [6,8]. As shown in [1], the characterized L-topological groups are characterized by an equivalent definition as will as in the following proposition:

Proposition 2.5 Let *G* be a multiplicative group, τ is an L-topology on *G* and $\varphi_1, \varphi_2 \in O_{(L^G, \tau)}$. Then, $(G, \varphi_{1,2}. \operatorname{int}_G)$ is characterized L-topological group if and only if the mapping $\gamma: (G \times G, \varphi_{1,2}. \operatorname{int}_G \times \varphi_{1,2}. \operatorname{int}_G) \to (G, \varphi_{1,2}. \operatorname{int}_G)$ which is defined by: $\gamma(x, y) = x y^{-1}$ for all $(x, y) \in G$ (2.8)

is $\varphi_{1,2} \ \varphi_{1,2}$ L- continuous.

Denote by **CRL-TopGrp** and **CR-TopGrp** for the categories of all characterized L-topological groups and all characterized topological groups with all the $\varphi_{1,2} \varphi_{1,2}$ L-continuous homeomorphisms and with all the $\varphi_{1,2} \varphi_{1,2}$ - continuous homeomorphism as morphisms mappings between them, respectively. As shown in [1], the category **CRL-TopGrp** is concrete category over the category **Grp** of all groups.

3. Initial and final characterized L-spaces

We make at first the relation between the farness on L-sets and the finer relation between characterized spaces to define the α -level and initial characterized spaces for an L-topological space (X, τ) by means of the functors ω and i. For an ordinary topological space (X, T), the induced characterized L-space is also introduced by using the functor ω . The functors ω and i are extended for any complete distributive lattice L to the functors functors $\omega_{\rm L}$ and $i_{\rm L}$. We further notions related to the notion of characterized L-spaces are e.g. those of characterized L-subspace, characterized product L-space, characterized quotient pre L-space and characterized sum L-space are investigated as special cases from the notions of initial and final characterized L-spaces. By the initial and final lefts in **CRL-Sp** we show that the category **CRL-Sp** is topological category in sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in **CRL-Sp** exist, which of course are unique up to isomorphisms. Moreover, the category **SCRL-Sp** is bireflective subcategory of the category **CRL-Sp** and it is also topological category ([1]). Spacial cases we already described using the standard specifications, namly the characterized product and coproduct L-spaces. The latter type here is called characterized sum L-space. According to general procedure [6,12], the characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjections are the equalizers and co-equalizers, respectively in **CRL-Sp**.

Let (X, τ) be a topological L-space and $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$. Then the α -level and the initial characterized spaces ([1]) of the characterized L-space $(X, \varphi_{1,2}.\text{int})$ will be denoted by $(X, \varphi_{1,2}.\text{int}_{\alpha})$ and $(X, \varphi_{1,2}.\text{int}_i)$, respectively where $\varphi_{1,2}.\text{int}_{\alpha}$ and $\varphi_{1,2}.\text{int}_i$ are the $\varphi_{1,2}$ -interior operators generates the two classes $(\varphi_{1,2}OF(X))_{\alpha}$ and $i(\varphi_{1,2}OF(X))$ which are given by

 $(\varphi_{1,2}OF(X))_{\alpha} = \{S_{\alpha}(\mu) \in P(X) : \mu \in \varphi_{1,2}OF(X)\}$ and $i(\varphi_{1,2}OF(X)) = \inf\{(\varphi_{1,2}OF(X))_{\alpha} : \alpha \in L_1\}$, respectively, where inf is the infimum with respect to the finer relation on characterized spaces. On other hand if (X, T) is ordinary topological space and $\varphi_1, \varphi_2 \in O_{(P(X),T)}$, then the induced characterized L-space on X ([1]) will be denoted by $(X, \varphi_{1,2}.int_{\omega})$, where $\varphi_{1,2}.int_{\omega}$ is the $\varphi_{1,2}$ -interior operator generates the class $\omega(\varphi_{1,2}O(X))$ which is defined as follows:

$$\omega(\varphi_{1,2}O(X)) = \{\mu \in L^X : S_\alpha(\mu) \in \varphi_{1,2}O(X) \text{ for all } \alpha \in L_1\}.$$

 ω and i are functors in sense of Lowen in [17] in special case of L = I. These functors extended for any completely distributive complete lattice L in [1] as follows:

Let (X, τ) be a topological L-space, $\varphi_1, \varphi_2 \in O_{(L^X, \tau)}$ and $\psi_1, \psi_2 \in O_{(L^L, T)}$. Then, the characterized spaces $(X, \varphi_{1,2}. \text{int}_{i_L})$ and $(X, \varphi_{1,2}. \text{int}_{\omega_L})$ are called initial characterized space and induced characterized L-space on X, respectively where $\varphi_{1,2}. \text{int}_{i_L}$ and $\varphi_{1,2}. \text{int}_{\omega_L}$ are the $\varphi_{1,2}$ -interior operators generates the classes $i_L(\varphi_{1,2}OF(X))$ and $\omega_L(\varphi_{1,2}O(X))$ which are defined by the formulas:

$$i_{L}(\varphi_{1,2}OF(X)) = \inf\{\mu^{-1}(\operatorname{UP}(\psi_{1,2}OF(L))): \mu \in \varphi_{1,2}OF(X)\}$$

and

 $\omega_{L}(\varphi_{1,2}O(X)) = \langle C((X,\varphi_{1,2}O(X)), (L, UP(\psi_{1,2}OF(L))) \rangle >>$

 $C((X, \varphi_{1,2}O(X)), (L, UP(\psi_{1,2}OF(L))))$ is the set of all $\varphi_{1,2} \ \psi_{1,2}$ -continuous mappings between $(X, \varphi_{1,2}O(X))$ and $(L, UP(\psi_{1,2}OF(L)))$, where $UP(\psi_{1,2}OF(L))$ is the upper $\psi_{1,2}$ -open L-set generated by the set $L \setminus \downarrow$ (a) for \downarrow (a) = { $x \in L : x \leq a$ }. If φ_1 = int and $\varphi_2 = 1_{L^X}$, then the initial characterized space $(X, \varphi_{1,2}.int_{i_L})$ and the induced characterized L-space $(X, \varphi_{1,2}.int_{\omega_L})$ are coincide with the initial topological space $(X, i(\tau))$ and the induced topological L-space $(X, \omega(T))$ which are defined in [8]. As shown in [1], the functors $\omega_L : CR - Sp \to CRL - Sp$, $i_L : CRL - Sp \to CR - Sp$ and $S_L : CRL - Sp \to SCRL - Sp$ are concrete functors. Moreover, the category SCRL-Sp is bireflective subcategory of the category CRL-Sp and for each object $(X, \varphi_{1,2}.int)$ of CRL-Sp the $\varphi_{1,2}\psi_{1,2}$ L-continuous mapping 1_X from the stratification $(X, \varphi_{1,2}.int^S)$ of $(X, \varphi_{1,2}.int)$ into $(X, \varphi_{1,2}.int)$ is bi-coreflection of $(X, \varphi_{1,2}.int)$.

Initial characterized L-spaces. Consider a family of characterized L-spaces $((X_i, \psi_{1,2}. \text{int}_i))_{i \in I}$ and for each $i \in I$, let $f_i : X \to X_i$ be a mapping from X into X_i . By an initial characterized L-space ([1]) of the family $((X_i, \psi_{1,2}. \text{int}_i))_{i \in I}$ with respect to $(f_i)_{i \in I}$, we mean the characterized L-space $(X, \varphi_{1,2}. \text{int})$ for which the following conditions are fulfilled:

(1) All the mappings $f_i : (X, \varphi_{1,2}.int) \rightarrow (X_i, \psi_{1,2}.int_i)$ are $\varphi_{1,2} \psi_{1,2}$ L-continuous.

(2) For an characterized L-space $(Y, \delta_{1,2}.\text{int})$ and a mapping $f: Y \to X$, the mapping $f: (Y, \delta_{1,2}.\text{int}) \to (X, \varphi_{1,2}.\text{int})$ is $\delta_{1,2} \quad \varphi_{1,2}$ L- continuous if all the mappings $f_i \circ f: (Y \to X_i, \psi_{1,2}.\text{int}) \to (X_i, \psi_{1,2}.\text{int}_i)$ are $\delta_{1,2} \quad \psi_{1,2}$ L-continuous for all $i \in I$.

The initial characterized L-space $(X, \varphi_{1,2}, \text{int})$ for a family $((X_i, \psi_{1,2}, \text{int}_i))_{i \in I}$ of characterized L-spaces with respect to the family $(f_i)_{i \in I}$ of mappings exists and will be given by

$$\varphi_{1,2}.$$
 int $\mu = \bigvee_{\mu_i} (\psi_{1,2}.$ int $_i \mu_i) \circ f_i$ (3.1)

for all $\mu \in L^X$.

As showen in [1], the initial lefts and then the initial characterized L-spaces are uniquely exist in the category **CRL-Sp.** Hence, the category **CRL-Sp** is topological category over the category **SET** of all sets. Moreover, the initial characterized L-space $(X, \varphi_{1,2}.\text{int})$ for a family of characterized L-spaces $((X_i, \psi_{1,2}.\text{int}_i))_{i \in I})$ with respect to a family of mappings $(f_i)_{i \in I}$ is stratified if and only if $(X_i, \psi_{1,2}.\text{int}_i)$ is stratified for some $i \in I$. In the following we consider some special cases for the initial characterized L-spaces

Characterized L-subspaces. Let A be non-empty subset of a characterized L-space $(X, \varphi_{1,2}.int)$ and $i_A : A \to X$ be the inclusion mapping of A into X. Then the mapping $\varphi_{1,2}.int_A : L^A \to L^A$ which is defined by:

$$\varphi_{1,2}.\operatorname{int}_{A} \sigma = \bigvee_{\mu \circ i_{\blacksquare} \leq \sigma} (\varphi_{1,2}.\operatorname{int} \mu) \circ i_{A}$$
(3.2)

for all $\sigma \in L^A$ is initial $\varphi_{1,2}$ -operator of $\varphi_{1,2}$.int with respect to the inclusion mapping $i_A : A \to X$, called the induced $\varphi_{1,2}$ -operator of $\varphi_{1,2}$.int on the subset A of X and $(A, \varphi_{1,2}.int_A)$ is initial characterized L-space called characterized L-subspace ([1]) of the characterized L-space $(X, \varphi_{1,2}.int)$. As showen in [1], the characterized L-subspaces $(A, \varphi_{1,2}.int_A)$ of the characterized L-spaces $(X, \varphi_{1,2}.int)$ always exist and the related initial $\varphi_{1,2}$ -operator of them is given by (3.2). Moreover, $(A, \varphi_{1,2}.int_A)$ is stratified if $(X, \varphi_{1,2}.int)$ is stratified.

Characterized product L-spaces. Assume that for each $i \in I$, $(X_i, \psi_{1,2}, \text{int}_i)$ be the characterized L-space of $\psi_{1,2}$ -open L-subset of X_i . Let X be the cartesian product $\prod_{i \in I} X_i$ of the family $(X_i)_{i \in I}$ and $P_i : X \to X_i$ is the related projection. Then the mapping $\varphi_{1,2}$. int : $L^X \to L^X$ which is defined by:

$$\varphi_{1,2}.int \mu = \bigvee_{\mu_1 \circ P_1 \le \mu} (\psi_{1,2}.int_i \ \mu_1) \circ P$$
 (3.3)

for all $\mu \in L^X$ is initial $\varphi_{1,2}$ -operator of $\psi_{1,2}$.int_i with respect to the projection mapping $P_i : X \to X_i$, called the $\varphi_{1,2}$ -product operator of the $\psi_{1,2}$ -interior operators $\psi_{1,2}$.int_i and $(X, \varphi_{1,2}.int)$ is initial characterized L-space called characterized product L-space ([1]) of the characterized L-spaces $(X_i, \psi_{1,2}.int_i)$ with respect to the family $(P_i : X \to X_i)_{i \in I}$ of projections and will be denoted by $(\prod_{i \in I} X_i, \prod_{i \in I} \psi_{1,2}.int_i)$.

Initial lefts in CRL-Sp. For the general notion of initial left we refer the standard books of category theory which include the categorical topology, e.g. [7,19]. The notion of initial left is meant here with respect to the forgetful functor of **CRL-Sp** to **SET**. It can be defined as follows:

The family of one and the same domain $(f_i : (X, \varphi_{1,2}.int) \rightarrow (X_i, \psi_{1,2}.int_i))_{i \in I}$, where I is any classe in the category **CRL-Sp** is called initial left ([1]) of the family $(f_i : X \rightarrow X_i, \psi_{1,2}.int_i)_{i \in I}$ provided for any characterized L-space $(Y, \sigma_{1,2}.int)$ of the $\sigma_{1,2}$ -open L-subsets of the set Y, the mapping $f : (Y, \sigma_{1,2}.int) \rightarrow (X, \varphi_{1,2}.int)$ is $\sigma_{1,2} \quad \varphi_{1,2}$ L-continuous if all the compositions $f_i \circ f : (Y \rightarrow X_i, \psi_{1,2}.int_i) \rightarrow (X_i, \psi_{1,2}.int_i)$ are $\sigma_{1,2} \quad \psi_{1,2}$ L-continuous. As showen in [1], for each family $(f_i : X \rightarrow X_i, \psi_{1,2}.int_i)_{i \in I}$ of the mappings $f_i : X \rightarrow X_i$ and of $\psi_{1,2}$ -interior operators $\psi_{1,2}.int_i$ defined on the co-domains X_i of these mappings, the family $(f_i : (X, \varphi_{1,2}.int) \rightarrow (X_i, \psi_{1,2}.int_i))_{i \in I}$ is initial left, where the initial $\varphi_{1,2}$ -interior operator $\varphi_{1,2}.int$ defined by (3.1).

Lemma 3.1 [1] Let $(X, \varphi_{1,2}.\text{int})$ and $(Y, \sigma_{1,2}.\text{int})$ are the characterized product L-spaces for the families $((X_i, \psi_{1,2}.\text{int}_i))_{i\in I}$ and $((Y_i, \delta_{1,2}.\text{int}_i))_{i\in I}$ of characterized L-spaces. Then if foe each $i \in I$, the mapping $f_i : (X_i, \psi_{1,2}.\text{int}_i) \rightarrow (Y_i, \delta_{1,2}.\text{int}_i)$ is $\psi_{1,2} \delta_{1,2}$ L-continuous (resp. $\psi_{1,2} \delta_{1,2}$ L- open) mapping, then the product mapping $f = \prod_{i\in I} f_i : (X, \varphi_{1,2}.\text{int}) \rightarrow (Y, \sigma_{1,2}.\text{int})$, which is defined by $f((x_i)_{i\in I}) = (f_i(x_i))_{i\in I}$ for all $(x_i)_{i\in I} \in X = \prod_{i\in I} X_i$ is $\varphi_{1,2} \sigma_{1,2}$ L- continuous (resp. $\varphi_{1,2} \sigma_{1,2}$ L-open).

Final characterized L-spaces. It is well-known (cf.e.g [7,19]) that in a topological category all final lifts uniquely exiats and hence also all final structures exist. They are dually defined. In case of the category **CRL-Sp** the final structures can easily be given, as is shown in the following:

Let *I* be a class and for each $i \in I$, let $(X_i, \psi_{1,2}, \operatorname{int}_i)$ be a characterized L-space of $\psi_{1,2}$ -open L-subsets of X_i and $f_i : X_i \to X$ be a mapping from X_i into a set *X*. By a final characterized L-space of the family $((X_i, \psi_{1,2}, \operatorname{int}_i))_{i \in I}$ with respect to the family $(f_i)_{i \in I}$, of mappings we mean the characterized L-space $(X, \varphi_{1,2}, \operatorname{int})$ for which the following conditions are fulfilled:

- (1) All the mappings $f_i: (X_i, \psi_{1,2}, \text{int}_i) \to (X, \varphi_{1,2}, \text{int})$ are $\psi_{1,2}, \varphi_{1,2}$ L-continuous.
- (2) For an characterized L-space $(Y, \delta_{1,2}.\text{int})$ and a mapping $f : X \to Y$, the mapping $f : (X, \varphi_{1,2}.\text{int}) \to (Y, \delta_{1,2}.\text{int})$ is $\varphi_{1,2} \quad \delta_{1,2}$ L- continuous if all the mappings $f \circ f \underbrace{\cdot (X \psi_{1,2}.\text{int}_i)}_{I_1 \to (Y, \delta_{1,2}.\text{int})} \text{ are } \psi_{1,2} \delta_{1,2}$ L-continuous for all $i \in I$, $X \xrightarrow{f} Y$ (See Fig. 3.1) $f \circ f \xrightarrow{f_i} f \circ f_i$ X_i Fig. 3.1

In the following proposition we show that the final characterized L-space $(X, \varphi_{1,2}.int)$ for a family $((X_i, \psi_{1,2}.int_i))_{i \in I}$ of characterized L-spaces with respect to the family $(f_i)_{i \in I}$ of mappings exists and will be defined.

Proposition 3.1 The final characterized L-space $(X, \varphi_{1,2}.int)$ for the family of characterized L-spaces $((X_i, \psi_{1,2}.int_i))_{i \in I}$ with respect to the family of mappings $(f_i)_{i \in I}$ always exists and it is given by:

$$(\varphi_{1,2}.\operatorname{int} \mu)(x) = \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\operatorname{int}_i (\mu \cap \psi_{1,2}) \mu(x)$$
(3.4)

for all $x \in X$ and $\mu \in L^X$.

Proof. Let $\varphi_{1,2}$ int be the operator defined (3.4). For each $x \in X$, $\mu \in L^X$ and for all $i \in I$ with $x_i \in f_i^{-1}(\{x\})$ we have $\bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}$. $\inf_i (\mu \cap \mu(x)) \ge \mu(x)$ and therefore $\varphi_{1,2}$. $\inf_i \mu \le \mu$. Hence, $\varphi_{1,2}$. $\inf_i fulfills$ condition (11). For condition (12), let $\mu, \eta \in L^X$ with $\mu \le \eta$, then $(\mu \cap \mu(x)) \ge (\mu, \eta) = (\mu, \eta)$

$$(\varphi_{1,2}.\operatorname{int} \mu \land \varphi_{1,2}.\operatorname{int} \eta)(x) = \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} (\psi_{1,2}.\operatorname{int}(\mu \land \eta)) \land (\mu \land \eta)(x)$$
$$\geq \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\operatorname{int}((\mu \land \eta)) \land (\mu \land \eta)(x)$$
$$= \varphi_{1,2}.\operatorname{int}(\mu \land \eta)(x).$$

Thus, $\varphi_{1,2}$.int fulfills condition (I4). Clearly, $\varphi_{1,2}$.int is idempotent, that is, condition (I5) is fulfilled. Hence, $(X, \varphi_{1,2}.\text{int})$ is characterized L-space. Since for all $i \in I$ with $f_i^{-1}(\{x\}) = \varphi$, we have $(\varphi_{1,2}.\text{int }\mu)(x) = \mu(x)$. Then, because of (3.4) for each $i \in I$ and $x_i \in X_i$, we have that the inequality $(\varphi_{1,2}.\text{int }\mu)(f_i(x_i)) \ge \psi_{1,2}.\text{int}(\mu \circ f_i)(x_i)$ holds and therefore, the inequality $(\varphi_{1,2}.\text{int }\mu)(f_i(x_i)) \ge \psi_{1,2}.\text{int}(\mu \circ f_i)(x_i)$ holds. Hence, for each $i \in I$ all the mappings $f_i: (X_i, \psi_{1,2}.\text{int}_i) \to (X, \varphi_{1,2}.\text{int})$ are $\psi_{1,2} \varphi_{1,2}$ L-continuous. Thus, condition (1) is fulfilled.

Now, let $(Y, \delta_{1,2}.\text{int})$ is a characterized L-space and $f: X \to Y$ be a mapping such that the mappings $f \circ f \stackrel{\cdot}{\longrightarrow} (X, \psi_{1,2}.\text{int}_i) \to (Y, \delta_{1,2}.\text{int})$ are $\psi_{1,2} \delta_{1,2}$ L-continuous for all $i \in I$. Then, we have that $(\delta_{1,2}.\text{int}, \mu) = (f \circ f \circ f_i)$ holds for all $\mu \in L^Y$ and because of (3.4) we have that $(\delta_{1,2}.\text{int}, \mu)(f(x)) = (f \circ f \circ f_i)$ holds for all $\mu \in L^Y$ and because of (3.4) we have that $(\delta_{1,2}.\text{int}, \mu)(f(x)) = (f \circ f \circ f_i)$ holds for all $\mu \in L^Y$. Hence, the mapping $f : (X, \varphi_{1,2}.\text{int}) \to (Y, \delta_{1,2}.\text{int})$ is also holds for all $\mu \in L^Y$. Hence, the mapping $f : (X, \varphi_{1,2}.\text{int}) \to (Y, \delta_{1,2}.\text{int})$ is final characterized L-space of the family $((X_i, \psi_{1,2}.\text{int}_i))_{i \in I}$ of characterized L-spaces with respect to $(f_i)_{i \in I}$.

Because of Proposition 3.1, all the final lefts and all the final characterized L-spaces are uniquely exist in the category **CRL-Sp** and hence **CRL-Sp** is a topological category over the category **SET** of all sets.

Proposition 3.2 The final characterized L-space $(X, \varphi_{1,2}, \text{int})$ for the family of characterized L-spaces $((X_i, \psi_{1,2}, \text{int}_i))_{i \in I}$ with respect to the family of mappings $(f_i)_{i \in I}$ is stratified if and only if $(X_i, \psi_{1,2}, \text{int}_i)$ is stratified for some $i \in I$.

Proof. Assume that $(X_j, \psi_{1,2}, \operatorname{int}_j)$ is stratified for $j \in I$. Then because of (3.4), we have that $(\varphi_{1,2}, \operatorname{int} \overline{\alpha})(x) = \bigwedge_{x_j \in f_j^{-1}(\{x\}), j \in I} \psi_{1,2}, \operatorname{int}_j (\overline{\alpha_j}, \overline{\alpha_j}, \overline{\alpha_j}) \wedge \overline{\alpha}(x) \leq \overline{\alpha}(x)$ holds for all $\alpha \in L$, where $\overline{\alpha}$ and $\overline{\alpha}_j$ are the constant mappings on X and X_j hose value α and α_j , respectively. Hence, $\varphi_{1,2}, \operatorname{int} \overline{\alpha} = \overline{\alpha}$ for all $\alpha \in L$ and therefore $(X, \varphi_{1,2}, \operatorname{int})$ is stratified. Conversely, let $(X, \varphi_{1,2}, \operatorname{int})$ is stratified, that is $\varphi_{1,2}, \operatorname{int} \overline{\alpha} = \overline{\alpha}$ for all $\alpha \in L$. Then $\sum_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}, \operatorname{int}_i (\overline{\alpha_j}, \overline{\alpha_j}) \cap \overline{\beta} \wedge \overline{\alpha}(x) = \overline{\alpha}(x)$ holds for all $x \in X$ and $i \in I$. Hence, there is $j \in I$ such that $(\psi_{1,2}, \operatorname{int}_j \overline{\alpha_j}) \cap \overline{\beta} \wedge \overline{\alpha}(x)$ and $\overline{\alpha}(x) \leq (\overline{\alpha_j}, \overline{\beta_j}, (x_j))$, therefore $\psi_{1,2}, \operatorname{int}_j \overline{\alpha_j} = \overline{\alpha_j}$ for some $j \in I$. Hence, $(X_j, \psi_{1,2}, \operatorname{int}_j)$ is stratified for $j \in I$. \Box

In the following we consider the notions of a characterized quotient pre L-space and a characterized sum L-space as special cases from the final characterized L-spaces.

Characterized quotient pre L-spaces. Let A be non-empty L-subset of the characterized L-space $(X, \varphi_{1,2}.\text{int})$ and $f: X \to A$ is a surjective mapping of X into A. Then the mapping $\varphi_{1,2}.\text{int}_f: L^A \to L^A$ which is defined by:

$$(\varphi_{1,2}.\text{int}_{f} \ \mu)(a) = \bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}.\text{int}(\mu \circ f) \ (x)$$
(3.5)

for all $a \in A$ and $\mu \in L^A$ is final pre $\varphi_{1,2}$ -interior operator of $\varphi_{1,2}$. int with respect to the mapping $f: X \to A$ which is not idempotent, called the quotient pre $\varphi_{1,2}$ -interior operator of $\varphi_{1,2}$. int on the L-subset A and $(A, \varphi_{1,2}. \operatorname{int}_f)$ is a final characterized L-space which is not idempotent called characterized quotient pre L-space of the characterized L-space $(X, \varphi_{1,2}. \operatorname{int})$.

Note that in this case $\varphi_{1,2}$.int is idempotent but $\varphi_{1,2}$.int_f need not be. Even in the classical case of $L = \{0,1\}$ with choices $\varphi_1 = \text{int}$ and $\varphi_2 = 1_{L^{\chi}}$, we have that $\varphi_{1,2}$.int is up to an identification the usual topology and $\varphi_{1,2}$.int_f is up to an identification the usual pretopology which need not be idempotent. An example is given in [12] (p.234).

Proposition 3.3 Let A be non-empty subset of a characterized L-space $(X, \varphi_{1,2}, \text{int})$. Then the characterized quotient pre L-space $(A, \varphi_{1,2}, \text{int}_f)$ of $(X, \varphi_{1,2}, \text{int})$ always exists and the quotient $\varphi_{1,2}$ -interior operator $\varphi_{1,2}$.int_f is given by (3.5). If $(X, \varphi_{1,2}, \text{int})$ is stratified, then $(A, \varphi_{1,2}, \text{int}_f)$ also is.

Proof. Let $a \in A$ and $\mu \in L^{A}$ such that $x \in f^{-1}(\{a\})$ holds, then $\bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}$. $\operatorname{int}(\mu \cap f) = \mu(a)$ is also holds and therefore $\varphi_{1,2}$. $\operatorname{int}_{f} \mu \leq \mu$ holds for all $\mu \in L^{A}$. Hence, $\varphi_{1,2}$. int_{f} fulfills condition (I1). For condition (I2), let $a \in A$ and $\mu, \eta \in L^{A}$ with $\mu \leq \eta$ and $x \in f^{-1}(\{a\})$, then because of (3.5) we have $(\varphi_{1,2}.\operatorname{int}_{f} \mu)(a) = \bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}.$ $\operatorname{int}(\mu \cap f) = (a)$. Thus,

condition (I2) is fulfilled. Since $\varphi_{1,2}$. int $\overline{1} = \overline{1}$ and $\mu \circ f \leq \overline{1}$ for all $\mu \in L^X$, then we have

$$(\varphi_{1,2}.\text{int}_{f} \ \overline{1})(a) = \bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}.\text{int}(\overline{1} \ \underline{1} \ \underline{$$

Hence, $\varphi_{1,2}$.int_f fulfills condition (I3). Now, let $\mu, \eta \in L^A$ and $a \in A$ such that $x \in f^{-1}(\{a\})$. Then from the distributives of L and (3.5), we have that

$$(\varphi_{1,2}.\operatorname{int}_{f} \mu \land \varphi_{1,2}.\operatorname{int}_{f} \eta)(a) = \bigwedge_{x \in f^{-1}(\{a\})} (\varphi_{1,2}.\operatorname{int}(\mu \land \eta))$$
$$\geq \bigwedge_{x \in f^{-1}(\{a\})} (\varphi_{1,2}.\operatorname{int}(\mu \land \eta)) = \varphi_{1,2}.\operatorname{int}_{f} (\mu \land \eta)(a)$$

Since $\varphi_{1,2}$.int_f is isotone, it follows $\varphi_{1,2}$.int_f $\mu \wedge \varphi_{1,2}$.int_f $\eta = \varphi_{1,2}$.int_f $(\mu \wedge \eta)$. Thus, condition (I4) is also fulfilled. Hence, $(A, \varphi_{1,2}.\text{int}_f)$ is characterized pre L-space. Since for all $a \in A$ and $\mu \in L^A$, we have $(\varphi_{1,2}.\text{int}_f \ \mu = f(x)) = (A, \varphi_{1,2}.\text{int}_f)$, then the mapping $f : (X, \varphi_{1,2}.\text{int}) \rightarrow (A, \varphi_{1,2}.\text{int}_f)$ is $\varphi_{1,2} \ \varphi_{1,2}$ L-continuous. Hence, condition (1) is fulfilled.

Now, let $(Y, \delta_{1,2}.\text{int})$ is a characterized pre L-space and $g: A \to Y$ is a surjective mapping such that the composition $f \circ g: (A, \prod_{i,2}.\text{int}_f) \to (Y, \delta_{1,2}.\text{int})$ is $\varphi_{1,2} \delta_{1,2}$ L-continuous mapping. Then, the inequality $(\delta_{1,2}.\text{int} \mu)$ for $g: (A, \prod_{i,2}.\text{int}_f) \to (Y, \delta_{1,2}.\text{int})$ is $\varphi_{1,2} \delta_{1,2}$ L-continuous mapping. Then, the inequality $(\delta_{1,2}.\text{int} \mu)$ for $g: (A, \prod_{i,2}.\text{int}_f) \to (Y, \delta_{1,2}.\text{int})$ is $\varphi_{1,2} \delta_{1,2}$ L-continuous mapping. Then, the inequality $(\phi_{1,2}.\text{int}_f \sigma)(f(a)) = \bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}.\text{int}(\sigma \circ g \circ f)(x) \ge \bigwedge_{x \in f^{-1}(\{a\})} \delta_{1,2}.\text{int}(\mu \circ g \circ f)(x) \ge \delta_{1,2}.\text{int}(\sigma \circ f)(a)$ is also holds for all $a \in A$ and $\sigma \in L^A$. Hence, the mapping $f: (Y, \delta_{1,2}.\text{int}) \to (A, \varphi_{1,2}.\text{int}_f)$ is $\delta_{1,2} \varphi_{1,2}$ L- continuous, that is, condition (2) is also fulfilled. Consequently, $(A, \varphi_{1,2}.\text{int}_f)$ is initial characterized pre L-space.

Finally, let $(X, \varphi_{1,2}.int)$ is stratified. Then, $\varphi_{1,2}.int \overline{\alpha} = \overline{\alpha}$ for all $\alpha \in L$ and therefore $\bigwedge_{x \in f^{-1}(\{a\})} \varphi_{1,2}.int(\overline{\alpha} \cap Y) \cap \overline{\alpha} \cap \overline{\alpha}) = \overline{\alpha}$, where $\overline{\alpha}$ and $\widetilde{\alpha}$ are the constant mappings on X and Ahose value α , respectively. Because of (3.5), we have $\varphi_{1,2}.int_f \quad \widetilde{\alpha} = \widetilde{\alpha}$ for all $\alpha \in L$. Hence, $(A, \varphi_{1,2}.int_f)$ is stratified. \Box

Characterized sum L-spaces. Assume that for each $i \in I$, $(X_i, \psi_{1,2}, \operatorname{int}_i)$ be an characterized L-space of $\psi_{1,2}$ -open L-subset of X_i . Let X be the disjoint union $\bigcup_{i \in I} (X_i \bullet [i])$ of the family $(X_i)_{i \in I}$ and for each $i \in I$, let $e_i : X_i \to X$ be the canonical injection of X_i into X given by $e_i(x_i) = (x_i, i)$. Then the mapping $\varphi_{1,2}$. int : $L^X \to L^X$ which is defined by:

$$\varphi_{1,2}.\operatorname{int} \mu(a,i) = \psi_{1,2}.\operatorname{int}_{i}(\mu e_{a})(a)$$
 (3.6)

for all $i \in I$, $a \in X_i$ and $\mu \in L^X$ is final $\varphi_{1,2}$ -interior operator of $(\psi_{1,2}.\text{int}_i)_{i \in I}$ with respect to the canonical injection $(e_i)_{i \in I} \cdot \varphi_{1,2}.\text{int}$ will be called a sum $\varphi_{1,2}$ -interior operator of the $\psi_{1,2}$ -interior operators $(\psi_{1,2}.\text{int}_i)_{i \in I}$ and will be denoted by $\sum_{i \in I} \psi_{1,2}.\text{int}_i$. The pair $(X, \varphi_{1,2}.\text{int})$ is final characterized L-space called characterized sum L-space of the characterized L-spaces $(X_i, \psi_{1,2}.\text{int}_i)$ with respect to the family of canonical injection $(e_i)_{i \in I}$ and will be denoted by $\sum_{i \in I} (X_i, \psi_{1,2}.\text{int}_i)$ or $(X, \varphi_{1,2}.\text{int})$ for shorts.

Proposition 3.4 For each $i \in I$, let $(X_i, \psi_{1,2}.int_i)$ be a characterized L-space of $\psi_{1,2}$ -open L-subset of X_i . Then the characterized sum L-prespace $\sum_{i \in I} (X_i, \psi_{1,2}.int_i)$ of $(X_i, \psi_{1,2}.int_i)$ always exists and the sum $\varphi_{1,2}$ -interior operator $\varphi_{1,2}.int$ is given by (3.6). If $(X_i, \psi_{1,2}.int_i)$ stratified for each $i \in I$, then the characterized sum L-space $\sum_{i \in I} (X_i, \psi_{1,2}.int_i)$ is also stratified. **Proof.** The first part is similar to that of Proposition 3.3. For the second part, let $\mathbf{i} \in I$, $a \in X_i$ and $\alpha \in L^X$, where X is the disjoint union $\bigcup_{i \in I} (X_i \bullet i)$ of the family $(X_i)_{i \in I}$. Because of (3.6) we have $(\varphi_{1,2}.\operatorname{int} \overline{\alpha})(a,i) = \psi_{1,2}.\operatorname{int}_i(\overline{\alpha} \bullet i)$ $(\psi_{1,2}.\operatorname{int}_i \overline{\alpha})(a,i) = \overline{\alpha}(a,i)$ and therefore $\varphi_{1,2}.\operatorname{int} \overline{\alpha} = \overline{\alpha}$. Hence, $\sum_{i \in I} (X_i, \psi_{1,2}.\operatorname{int}_i)$ is stratified. \Box

Final lefts in CRL-Sp. For the general notion of initial and final left we refer the standard books of category theory which include the categorical topology, e.g. [6,23]. The notion of final left is meant here with respect to the forgetful functor of **CRL-Sp** to **SET**. It can be defined as follows:

The family of one and the same co-domain $(f_i : (X_i, \psi_{1,2}, \operatorname{int}_i) \to (X, \varphi_{1,2}, \operatorname{int}))_{i \in I}$, where *I* is any close of morphisms in the category **CRL-Sp** is called final left of the family $(f_i : X_i \to X, \psi_{1,2}, \operatorname{int}_i)_{i \in I}$ provided for any characterized L-space $(Y, \sigma_{1,2}, \operatorname{int})$ of $\sigma_{1,2}$ -open subsets of *Y*, the mapping $f : (X, \varphi_{1,2}, \operatorname{int}) \to (Y, \sigma_{1,2}, \operatorname{int})$ is $\varphi_{1,2} = \sigma_{1,2}$ L-continuous if all the compositions mappings $f \circ f : (X, \psi_{1,2}, \operatorname{int}_i) \to (Y, \sigma_{1,2}, \operatorname{int})$ are $\psi_{1,2} = \sigma_{1,2}$ L-continuous.

Proposition 3.7 For each family $(f_i : X_i \to X, \psi_{1,2}. \operatorname{int}_i)_{i \in I}$ consisting of the mappings $f_i : X_i \to X$ and of the $\psi_{1,2}$ -interior operators $\psi_{1,2}.\operatorname{int}_i$ on the domains X_i of these mappings, the family $(f_i : (X_i, \psi_{1,2}.\operatorname{int}_i) \to (X, \varphi_{1,2}.\operatorname{int}))_{i \in I}$ with the final $\varphi_{1,2}$ -interior operator $\varphi_{1,2}.\operatorname{int} : L^X \to L^X$ of $(\psi_{1,2}.\operatorname{int}_i)_{i \in I}$ with respect to $(f_i)_{i \in I}$ defined by (3.4) is a final left.

Proof. Let a characterized L-space $(Y, \sigma_{1,2}.\text{int})$ of $\sigma_{1,2}$ -open subsets of Y and a mapping $f : X \to Y$ be fixed. If all the mappings $f \circ f (X, \psi_{1,2}.\text{int}) \to (Y, \sigma_{1,2}.\text{int})$ are $\psi_{1,2} \sigma_{1,2}$ L-continuous, that is, if $(\sigma_{1,2}.\text{int}\eta) (f \circ f) = (f \circ f \circ f)$ holds for all $\eta \in L^Y$, then because of (3.4), we have that $(\sigma_{1,2}.\text{int}\eta)(f(x)) = \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}_i (\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}_i (\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigwedge_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(\eta f) (f \circ f) (f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) \geq \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f)) \wedge \eta(f(x)) = \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f) (f \circ f)) \wedge \eta(f(x)) = \bigcap_{x_i \in f_i^{-1}(\{x\}), i \in I} \psi_{1,2}.\text{int}(f \circ f) (f \circ f) (f$

4. Initial characterized L-topological groups

In this section we show that the category **CRL-TopGrp** of all characterized L-topological groups is topological category over the category **Grp** of all groups and hence all initial characterized L-topological groups exist and can be characterized.

Consider a family of characterized L-topological groups $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ and for each $i \in I$, let $f_i : G \to G_i$ be a homomorphism mapping from a group G into the groups G_i . Then for any characterized L-topological group $(G, \varphi_{1,2}.int_G)$, the family $(f_i : (G, \varphi_{1,2}.int_G) \to (G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ is called initial lifts for the family $(f_i : G \to G_i, \psi_{1,2}.int_{G_i})_{i \in I}$ in the category **CRL-TopGrp** provided the following conditions are fulfilled:

- (1) All the mappings $f_i : (G, \varphi_{1,2}.int_G) \to (G_i, \psi_{1,2}.int_{G_i})$ are $\varphi_{1,2} \psi_{1,2}$ L-continuous homomorphism for all $i \in I$.
- (2) For an characterized L-topological group (H, δ_{1,2}.int_H) and a mapping f : H→G, the mapping f : (H, δ_{1,2}.int_H) → (G, φ_{1,2}.int_G) is δ_{1,2} φ_{1,2} L- continuous homomorphism if and only if all the composition mappings f_i ∘ f : (H f_{1,2}.int_H) → (G_i, ψ_{1,2}.int_{Gi}) are δ_{1,2} ψ_{1,2} L-continuous

homomorphism for all $i \in I$, (See Fig. 4.1) $\begin{array}{c} H \xrightarrow{f} G \\ f_i \circ f \searrow & \downarrow f_i \\ G_i \end{array}$

Fig. 4.1

Hence, by an initial characterized L-topological group we mean the characterized L-topological group which provides the initial lifits in the category **CRL-TopGrp**.

To prove that all initial lifts and all initial characterized L-topological groups exist in the category **CRL-TopGrp** we need to prove at first that in case of $f_i : G \to G_i$ is an injective homomorphism for each $i \in I$, and $\varphi_{1,2}$.int_G is $\varphi_{1,2}$ -interior operator for an initial characterized L-topology on a group G of $(\psi_{1,2}.int_{G_i})_{i \in I}$ we get that $(G, \varphi_{1,2}.int_G)$ is also characterized L-topological group. Now, we consider the case of I being a singleton.

Proposition 4.1 Let $(H, \delta_{1,2}. \operatorname{int}_H)$ be a characterized L-topological group and let $f : G \to H$ be an injective homomorphism from a group G into H. Then the initial characterized L-space $(G, f^{-1}(\delta_{1,2}.\operatorname{int}_H))$ of $(H, \delta_{1,2}.\operatorname{int}_H)$ with respect to f is characterized L-topological group.

Proof. Let at first $\gamma_G : (G \times G, f^{-1}(\delta_{1,2}.\text{int}_H) \times f^{-1}(\delta_{1,2}.\text{int}_H)) \to (G, f^{-1}(\delta_{1,2}.\text{int}_H))$ and $\gamma_H : (H \times H, \delta_{1,2}.\text{int}_H \times \delta_{1,2}.\text{int}_H) \to (H, \delta_{1,2}.\text{int}_H)$ are the mappings defined by (2.8) and let $\eta \in \beta_{f^{-1}(\delta_{1,2}.\text{int}_H)}$, where $\beta_{f^{-1}(\delta_{1,2}.\text{int}_H)}$ is the base of $(G, f^{-1}(\delta_{1,2}.\text{int}_H))$ that generated by $f^{-1}(\delta_{1,2}.\text{int}_H)$. Then, $\eta = f^{-1}(\rho)$ for some $\rho \in \beta_{\delta_{1,2}.\text{int}_H}$. Since $(H, \delta_{1,2}.\text{int}_H)$ is characterized L-topological group, then γ_H is $\delta_{1,2} \delta_{1,2}$ L- continuous and therefore from Proposition 2.3, we have $\gamma_H^{-1}(\rho) \in \beta_{\delta_{1,2}.\text{int}_H \times \delta_{1,2}.\text{int}_H}$. Because of f is an injective homomorphism, then for all $x, y \in G$ we have

$$\gamma_{G}^{-1}\eta(x, y) = (\rho \land y^{-1}) \circ f (x y^{-1})$$
$$= \rho(f(x)f(y^{-1})) = (\rho \land y^{-1})(f(x), f(y))$$
$$= (f \times f)^{-1}(\gamma_{H}^{-1}\rho)(x, y),$$

that is, $\gamma_G^{-1}\eta = (f \times f)^{-1}(\gamma_H^{-1}\rho)$. Since $(G_{\Lambda}f^{-1}(\delta_{1,2}.\text{int}_H))$ is initial characterized L-space of $(H, \delta_{1,2}.\text{int}_H)$ with respect to the mapping f, then $f : (G_{\Lambda}f^{-1}(\delta_{1,2}.\text{int}_H)) \to (H, \delta_{1,2}.\text{int}_H)$ is $\delta_{1,2} \delta_{1,2}$ L- continuous and from Lemma 3.1, it follows that the product mapping $f \times f : G \times G \to H \times H$ is $\delta_{1,2} \delta_{1,2}$ L-continuous. Therefore, $(f \times f)^{-1}(\gamma_H^{-1}\rho) \in \beta_{(f \times f)^{-1}(\delta_{1,2}.\text{int}_H) \times \delta_{1,2}.\text{int}_H)$ and $\beta_{(f \times f)^{-1}(\delta_{1,2}.\text{int}_H \times \delta_{1,2}.\text{int}_H)} \subseteq \beta_{f^{-1}(\delta_{1,2}.\text{int}_H) \times f^{-1}(\delta_{1,2}.\text{int}_H)}$. Hence, $(f \times f)^{-1}(\gamma_H^{-1}\rho) \in \beta_{f^{-1}(\delta_{1,2}.\text{int}_H) \times f^{-1}(\delta_{1,2}.\text{int}_H)}$, that is, $\gamma_G^{-1}(\eta) \in \beta_{f^{-1}(\delta_{1,2}.\text{int}_H) \times f^{-1}(\delta_{1,2}.\text{int}_H)}$ and therefore from Proposition 2.3 it follows that γ_G is $\delta_{1,2} \delta_{1,2}$ L-continuous. Hence, because of Proposition 2.5, $(G_{\Lambda}f^{-1}(\delta_{1,2}.\text{int}_H))$ is characterized L-topological group. \Box

Generally we consider the case of I is any class consistes of more than one elements .

Proposition 4.2 Let $((G_i, \psi_{1,2}, \operatorname{int}_{G_i}))_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G \to G_i$ be an injective homomorphism from a group G into a group G_i . If $(G, \varphi_{1,2}, \operatorname{int}_G)$ is the initial characterized L-space of the family $((G_i, \psi_{1,2}, \operatorname{int}_{G_i}))_{i \in I}$ with respect to the family $(f_i)_{i \in I}$, then $(G, \varphi_{1,2}, \operatorname{int}_G)$ is characterized L-topological group.

Proof. Let at first the mappings $\gamma_G : (G \times G, \varphi_{1,2}.\operatorname{int}_G \times \varphi_{1,2}.\operatorname{int}_G) \to (G, \varphi_{1,2}.\operatorname{int}_G)$ and $\gamma_{G_i} : (G_i \times G_i, \psi_{1,2}.\operatorname{int}_{G_i} \times \psi_{1,2}.\operatorname{int}_{G_i}) \to (G_i, \psi_{1,2}.\operatorname{int}_{G_i})$ are defined by (2.8). Since $f_i \circ \gamma_G$ is $\varphi_{1,2} \psi_{1,2}$ L-continuous and $\psi_{1,2} \psi_{1,2}$ L-continuous , respectively, then $f_i \circ \gamma_G$ is $\varphi_{1,2} \psi_{1,2}$ L-continuous . Because of condition of the initial lefts in the category **CRL-Top**, γ_G is $\varphi_{1,2} \varphi_{1,2}$ L-continuous and hence $(G, \varphi_{1,2}.\operatorname{int}_G)$ is characterized L-topological group. \Box

In the following proposition we show that the initial lefts and then the initial characterized L-topological groups uniquely exist in the category **CRL-TopGrp**. Hence, the category **CRL-TopGrp** is topological category over the category **Grp** of all groups.

Proposition 4.3 Let $((G_i, \psi_{1,2}. \operatorname{int}_{G_i}))_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G \to G_i$ be an injective homomorphism from a group G into a group G_i . If $(G, \varphi_{1,2}.\operatorname{int}_G)$ is the initial characterized L-space of the family $((G_i, \psi_{1,2}.\operatorname{int}_{G_i}))_{i \in I}$ with respect to the family of injective homomorphism mappings $(f_i)_{i \in I}$, then the family $(f_i : (G, \varphi_{1,2}.\operatorname{int}_G) \to (G_i, \psi_{1,2}.\operatorname{int}_{G_i}))_{i \in I}$ is an initial lift of $(f_i : G \to G_i, \psi_{1,2}.\operatorname{int}_{G_i})_{i \in I}$ in the category **CRL-TopGrp**.

Proof. Because of Propositions 4.1 and 4.2, $(G, \varphi_{1,2}, \operatorname{int}_G)$ is characterized L-topological group. From the definition of the initial lift in **CRL-Sp**, we get condition (1) from the definition of the initial lift in **CRL-Sp** is fulfilled, that is, all mappings $f_i : (G, \varphi_{1,2}, \operatorname{int}_G) \to (G_i, \psi_{1,2}, \operatorname{int}_{G_i})$ are $\varphi_{1,2} \psi_{1,2}$ L-continuous homomorphism for all $i \in I$.

Let $(H, \delta_{1,2}.\operatorname{int}_H)$ be a characterized L-topological group and a mapping $f : H \to G$ be a mapping. Then from the definition of the initial lift in **CRL-Sp**, we have that the mapping $f : (H, \delta_{1,2}.\operatorname{int}_H) \to (G, \varphi_{1,2}.\operatorname{int}_G)$ is $\delta_{1,2} \varphi_{1,2}$ L- continuous if and only if the composition mappings $f_i \circ f : (H \circ f_{1,2}.\operatorname{int}_H) \to (G_i, \psi_{1,2}.\operatorname{int}_G)$ are $\delta_{1,2} \psi_{1,2}$ L-continuous for all $i \in I$. Now, let f is homomorphism. Since f_i is homomorphism for each $i \in I$, then $f_i \circ f$ is also homomorphism for all $i \in I$. On other hand let $f_i \circ f$ is also homomorphism for all $i \in I$. Since f_i is homomorphism for each $i \in I$, then for all $a, b \in H$ we have

$$f_{i}(f(a \cdot b)) = (f_{i} - f_{i}(a \cdot b)) = f_{i}(f(a)) \cdot f_{i}(f(b)) = f_{i}(f(a) \cdot f(b)).$$

Since f_i is injective for all $i \in I$, it follows that $f(a \cdot b) = f(a) \cdot f(b)$ for all $a, b \in H$, that is, f is homomorphism. Hence, $f: (H, \delta_{1,2}.int_H) \rightarrow (G, \varphi_{1,2}.int_G)$ is $\delta_{1,2} \varphi_{1,2}$ L- continuous homomorphism if and only if all the composition mappings $f_i \circ f: (H - f_{1,2}.int_H) \rightarrow (G_i, \psi_{1,2}.int_G)$ are $\delta_{1,2} \psi_{1,2}$ Lcontinuous homomorphism for all $i \in I$. Thus, condition (2) from the definition of the initial lift in CRL- **TopGrp** is fulfilled. Consequently, $(f_i : (G, \varphi_{1,2}. \text{int}_G) \to (G_i, \psi_{1,2}. \text{int}_{G_i}))_{i \in I}$ is an initial lift of $(f_i : G \to G_i, \psi_{1,2}. \text{int}_{G_i})_{i \in I}$ in the category **CRL-TopGrp**. \Box

Because of Proposition 4.3, the characterized L-topological groups mentioned in Propositions 4.1 and 4.2 are coincide with the initial characterized L-topological groups, that is, if $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ is a family of characterized L-topological groups and for each $i \in I$, the mapping $f_i : G \to G_i$ is an injective homomorphism and $(G, \varphi_{1,2}.int_G)$ is the initial characterized L-space of the family $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ with respect to the family of injective homomorphism mappings $(f_i)_{i \in I}$, then $(G, \varphi_{1,2}.int_G)$ is initial characterized L-topological groups. Hence, the category **CRL-TopGrp** is concrete category of the category **L-Top** of all topological spaces and the faithful functor $\mathcal{F} : \mathbf{CRL} - \mathbf{TopGrp} \to \mathbf{L} - \mathbf{Top}$ is isomorphism. Thus, the category **CRL-TopGrp** is algebraic category over the category **L-Top** in sense of [7].

In the following we consider some special cases for the initial characterized L-topological groups.

Characterized L-subgroups. Let H be non-empty subgroup of a characterized L-topological group $(G, \varphi_{1,2}. \text{int}_G)$ and $i_H : H \to G$ be the inclusion injective mapping of H into G. Then the mapping $\varphi_{1,2}. \text{int}_H : L^H \to L^H$ which is defined by:

$$\varphi_{1,2}.\operatorname{int}_{H} \sigma = \bigvee_{\mu \circ i_{\blacksquare} \leq \sigma} (\varphi_{1,2}.\operatorname{int}_{G} \mu) \circ i_{H}$$
(4.1)

for all $\sigma \in L^H$ is initial $\varphi_{1,2}$ -interior operator of $\varphi_{1,2}$.int_G with respect to the inclusion injective mapping $i_H : H \to G$, called an induced $\varphi_{1,2}$ -interior operator of $\varphi_{1,2}$.int_G on the subgroup H of G and $(H, \varphi_{1,2}.int_H)$ is initial characterized L-topological group called a characterized L-subgroup of the characterized L-topological group $(G, \varphi_{1,2}.int_G)$.

Proposition 4.4 Let H be non-empty subgroup of a characterized L-topological group $(G, \varphi_{1,2}.int_G)$. Then the characterized L-subgroup $(H, \varphi_{1,2}.int_H)$ of $(G, \varphi_{1,2}.int_G)$ always exists and the initial $\varphi_{1,2}$ -interior operator $\varphi_{1,2}.int_G$ is given by (4.1).

Proof. Immediate from Propositions 4.2 and 4.3. \Box

Characterized product L-topological groups. Assume that for each $i \in I$, $(G_i, \psi_{1,2}.int_{G_i})$ be a characterized L-topological group and G be the cartesian product $\prod_{i \in I} G_i$ of the family $(G_i)_{i \in I}$ of groups. If

 $P_i: G \to G_i$ be the related injective projection, then the mapping $\varphi_{1,2}$.int_G: $L^G \to L^G$ defined by:

$$\varphi_{1,2}.int_G \ \mu = \bigvee_{\mu_i \circ P_i \le \mu} (\psi_{1,2}.int_{G_i} \ \mu_i) \circ P$$
 (4.2)

for all $\mu \in L^G$ is initial $\varphi_{1,2}$ -interior operator of $\psi_{1,2}$.int_{*G_i*} with respect to the injective projection mapping $P_i: G \to G_i$, called product $\varphi_{1,2}$ -interior operator of the $\psi_{1,2}$ -interior operators $\psi_{1,2}$.int_{*G_i*} and $(G, \varphi_{1,2}.int_G)$ is initial characterized L-topological group called characterized product L-topological group of the characterized L-topological groups $(G_i, \psi_{1,2}.int_{G_i})$ with respect to the family $(P_i: G \to G_i)_{i \in I}$ of injective projections and will be denoted by $(\prod_{i \in I} G_i, \prod_{i \in I} \psi_{1,2}.int_{G_i})$.

5. Final characterized L-topological groups

In this section we show that the final characterized L-topological group exists and it can be the final characterized L-spaces. Since the concrete category **CRL-TopGrp** of all characterized L-topological groups is topological category over the category **Grp** of all groups, then all final lifts also uniquely exist. This, even mean that also all final characterized L-topological groups exist.

Consider $((G_i, \psi_{1,2}, \operatorname{int}_{G_i}))_{i \in I}$ is a family of characterized L-topological groups and $(f_i)_{i \in I}$ be a family of homomorphism mappings from the groups G_i into the group G, indexed by the class I. Then for any characterized L-space $(G, \varphi_{1,2}, \operatorname{int}_G)$, the family $(f_i : (G_i, \psi_{1,2}, \operatorname{int}_{G_i}) \to (G, \varphi_{1,2}, \operatorname{int}_G))_{i \in I}$ is called final lifts for the family $(f_i : G_i \to G, \psi_{1,2}, \operatorname{int}_{G_i})_{i \in I}$ in the category **CRL-TopGrp**, provided $(G, \varphi_{1,2}, \operatorname{int}_G)$ is characterized L-topological group which fulfills the following conditions:

- (1) All the mappings $f_i : (G_i, \psi_{1,2}.int_{G_i}) \to (G, \varphi_{1,2}.int_G)$ are $\psi_{1,2} \varphi_{1,2}$ L-continuous homomorphism for all $i \in I$.
- (2) For an characterized L-topological group (H, δ_{1,2}.int_H) and a mapping f : G → H, the mapping f : (G, φ_{1,2}.int_G) → (H, δ_{1,2}.int_H) is φ_{1,2} δ_{1,2} L- continuous homomorphism if and only if all the composition mappings f ∘ f : (G | ψ_{1,2}.int_{G_i}) → (H, δ_{1,2}.int_H) are ψ_{1,2} δ_{1,2} L-continuous G = f H

homomorphism for all $i \in I$, (See Fig. 5.1)

Fig. 5.1

 G_i

 $f_i \uparrow . \land f_i \circ f_i$

Hence, by a final characterized L-topological group we mean the characterized L-topological group which provides the finl lifts in the category **CRL-TopGrp**.

To prove that all final lifts and all final characterized L-topological groups exist in the category **CRL-TopGrp** we need to prove that in case of $f_i : G_i \to G$ is an injective homomorphism for each $i \in I$, and $\varphi_{1,2}$.int_G is $\varphi_{1,2}$ -interior operator for an final characterized L-topology on a group G of $(\psi_{1,2}.int_{G_i})_{i \in I}$ we get that $(G, \varphi_{1,2}.int_G)$ is also characterized L-topological group. To prove these results we need at first the following lemma.

Lemma 5.1 If $f:(G, \varphi_{1,2}.int_G) \to (H, f(\varphi_{1,2}.int_G))$ is surjective homomorphism mapping from the characterized L-topological groups $(G, \varphi_{1,2}.int_G)$ to the group H equipped with the final characterized L-topology generated by $f(\varphi_{1,2}.int_G)$ as a base with respect to f, then f is $\varphi_{1,2} \varphi_{1,2}$ L-open.

Proof. Immediate from Proposition 2.4. □

Now, we consider the case of I being a singleton.

Proposition 5.1 Let $(G, \varphi_{1,2}. \operatorname{int}_G)$ be a characterized L-topological group and let $f : G \to H$ be a homomorphism from a group G onto a group H. Then the final characterized L-space $(H, f(\varphi_{1,2}.\operatorname{int}_G))$ of $(G, \varphi_{1,2}.\operatorname{int}_G)$ with respect to f is characterized L-topological group.

Proof. Let at first $\gamma_H : (H \times H, f(\varphi_{1,2}.\text{int}_G) \times f(\varphi_{1,2}.\text{int}_G)) \to (H, f(\varphi_{1,2}.\text{int}_G))$ and $\gamma_G : (G \times G, \varphi_{1,2}.\text{int}_G \times \varphi_{1,2}.\text{int}_G) \to (G, \varphi_{1,2}.\text{int}_G)$ are the mappings defined by (2.8) and let

 $\mu \in \beta_{f(\varphi_{1,2}, \operatorname{int}_G)}, \text{ where } \beta_{f(\varphi_{1,2}, \operatorname{int}_G)} \text{ is the base of } (H, f(\varphi_{1,2}, \operatorname{int}_G)) \text{ which is generated by } f(\varphi_{1,2}, \operatorname{int}_G),$ then $f^{-1}(\mu) \in \beta_{\varphi_{1,2}, \operatorname{int}_G}$. Since $(G, \varphi_{1,2}, \operatorname{int}_G)$ is characterized L-topological group, then γ_G is $\varphi_{1,2} \varphi_{1,2}$ Lcontinuous and therefore from Proposition 2.3, we have $\gamma_G^{-1}(f^{-1}(\mu)) \in \beta_{\varphi_{1,2}, \operatorname{int}_G}$. Because of Lemma 5.1, we have that the mapping $f: (G, \varphi_{1,2}, \operatorname{int}_G)) \to (H, f(\varphi_{1,2}, \operatorname{int}_G))$ is $\varphi_{1,2} \varphi_{1,2}$ L-open and therefore Lemma 3.1 implies that the product mapping $f \times f: G \times G \to H \times H$ is also $\varphi_{1,2} \varphi_{1,2}$ L-open. Since, $\gamma_H^{-1}(\mu) = (f \times f)(\gamma_G^{-1}(f^{-1}(\mu)))$, then we have $\gamma_H^{-1}(\mu) \in \beta_{f(\varphi_{1,2}, \operatorname{int}_G)} \times f(\varphi_{1,2}, \operatorname{int}_G)$. Therefore, because of Proposition 2.3, it follows that γ_H is $\varphi_{1,2} \varphi_{1,2}$ L- continuous and consequently $(H, f(\varphi_{1,2}, \operatorname{int}_G))$ is characterized L-topological group. \Box

Generally, we consider the case of I is any class consistes of more than one element. Then we have the following result.

Proposition 5.2 Let $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G_i \to G$ be a homomorphism from a group G onto a group G_i . If $(G, \varphi_{1,2}.int_G)$ is the initial characterized L-space of the family $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ with respect to the family $(f_i)_{i \in I}$, then $(G, \varphi_{1,2}.int_G)$ is characterized L-topological group.

Proof. Let $\gamma_{G_i} : (G_i \times G_i, \psi_{1,2}.\operatorname{int}_{G_i} \times \psi_{1,2}.\operatorname{int}_{G_i}) \to (G_i, \psi_{1,2}.\operatorname{int}_{G_i})$ is a mapping defined by (2.8) and $\mu \in \beta_{\varphi_{1,2}.\operatorname{int}_G}$. Since $f_i : (G_i, \psi_{1,2}.\operatorname{int}_G) \to (G, \varphi_{1,2}.\operatorname{int}_G)$ is $\psi_{1,2} \varphi_{1,2}$ L- continuous for all $i \in I$, then $f^{-1}(\mu) \in \beta_{\psi_{1,2}.\operatorname{int}_{G_i}}$ for all $i \in I$ and because of γ_{G_i} is $\psi_{1,2} \psi_{1,2}$ L-continuous for all $i \in I$, then we have $\gamma_{G_i}^{-1}(f_i^{-1}(\mu)) \in \beta_{\psi_{1,2}.\operatorname{int}_{G_i} \times \psi_{1,2}.\operatorname{int}_{G_i}}$. Consider $\gamma_G : (G \times G, \varphi_{1,2}.\operatorname{int}_G \times \varphi_{1,2}.\operatorname{int}_G) \to (G, \varphi_{1,2}.\operatorname{int}_G)$ is a mapping defined by (2.8), then $\gamma_G^{-1}(\mu) = (f_i \times f_i)(\gamma_{G_i}^{-1}(f_i^{-1}(\mu)))$ and by a similar way to the proof of Proposition 5.1, we have the product mapping $f_i \times f_i$ is $\psi_{1,2} \varphi_{1,2}$ L-open for all $i \in I$. Hence, $\gamma_G^{-1}(\mu) \in \beta_{\varphi_{1,2}.\operatorname{int}_G \times \varphi_{1,2}.\operatorname{int}_G}$ and therefore γ_G is $\varphi_{1,2} \varphi_{1,2}$ L- continuous and consequently $(G, \varphi_{1,2}.\operatorname{int}_G)$ is characterized L-topological group. \Box

In the following proposition we show that the final lefts and then the final characterized L-topological groups uniquely exist in the concrete category **CRL-TopGrp**, that is, the characterized L-topological groups mentiond in Propositions 5.1 and 5.2 fulfills the conditions of the final lifts in the category **CRL-TopGrp**.

Proposition 5.3 Let $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G_i \to G$ be an surjective homomorphism from the groups G_i into a group G. If $(G, \varphi_{1,2}.int_G)$ is the final characterized L-space of the family $((G_i, \psi_{1,2}.int_{G_i}))_{i \in I}$ with respect to the family of surjective homomorphism mappings $(f_i)_{i \in I}$, then the family $(f_i : (G_i, \psi_{1,2}.int_{G_i}) \to (G, \varphi_{1,2}.int_G))_{i \in I}$ is a final lift of $(f_i : G_i \to G, \psi_{1,2}.int_{G_i})_{i \in I}$ in the category **CRL-TopGrp**.

Proof. The proof goes similarly by using Propositions 5.1 and 5.2 with the properties of the final lifts in the category as in case of Proposition 4.3. \Box

Because of Proposition 5.3, the characterized L-topological groups mentioned in Propositions 5.1 and 5.2 are coincide with the final characterized L-topological groups, that is, if $((G_i, \psi_{1,2}, \operatorname{int}_{G_i}))_{i \in I}$ is a family of characterized L-topological groups and for each $i \in I$, the mapping $f_i : G_i \to G$ is an surjective homomorphism and $(G, \varphi_{1,2}, \operatorname{int}_G)$ is the final characterized L-space of the family $((G_i, \psi_{1,2}, \operatorname{int}_G))_{i \in I})$ with respect to the family of surjective homomorphism mappings $(f_i)_{i \in I}$, then $(G, \varphi_{1,2}, \operatorname{int}_G)$ is final characterized L-topological groups. Hence, the category **CRL-TopGrp** is co-concrete category of the category **L-Top** of all topological spaces and the faithful functor $\mathscr{F}^* : L - \operatorname{Top} \to \operatorname{CRL} - \operatorname{TopGrp}$ is isomorphism.

In the following we consider some special cases for the final characterized L-topological groups.

Characterized L-topological quotient groups. The characterized L-topological group is special final characterized L-topological group when the mapping $f: G \to H$ replaced by the canonical mapping $h: G \to G / N$, where N is normal subgroup the group G.

Let N be normal subgroup of the characterized L-topological group $(G, \varphi_{1,2}.int_G)$ and G / N is the corresponding quotient group. If $h: G \to G / N$ is the canonical homomorphism mapping defined by: h(x) = x N for all $x \in G$, then $(G / N, h(\varphi_{1,2}.int_G))$ is final characterized L-topological group called characterized L-topological quotient group of the characterized L-topological group $(G, \varphi_{1,2}.int_G)$.

Proposition 5.4 Let $(G, \varphi_{1,2}.int_G)$ be a characterized L-topological group and N is a normal subgroup of G. If G/N is the corresponding quotient group, then the canonical surjective homomorphism $h: (G, \varphi_{1,2}.int_G) \rightarrow (G/N, h(\varphi_{1,2}.int_G))$ which is defined as h(x) = x N for all $x \in G$ is $\varphi_{1,2} \varphi_{1,2}$ L- open.

Proof. Follows directly from Lemma 5.1. □

In the following proposition we give the relation between characterized L-topological quotient groups and the characterized product L-topological groups.

Proposition 5.5 Let *I* be a class and for each $i \in I$, let $(G_i, \psi_{1,2}. \operatorname{int}_{G_i})$ be a characterized L-topological group and N_i be a normal subgroup of G_i . If $G = \prod_{i \in I} G_i$ and $N = \prod_{i \in I} N_i$ are the related products of the least two families $(G_i)_{i \in I}$ and $(N_i)_{i \in I}$, respectively, then the isomorphism mapping $f : (G \mid N, h(\prod_{i \in I} \psi_{1,2}. \operatorname{int}_{G_i})) \to (\prod_{i \in I} (G_i \mid N_i), (\prod_{i \in I} h_i (\psi_{1,2}. \operatorname{int}_{G_i})))$ is $\psi_{1,2} \psi_{1,2}$ L- homeomorphism, where $h : (G, \prod_{i \in I} \psi_{1,2}. \operatorname{int}_{G_i}) \to (G \mid N, h(\prod_{i \in I} \psi_{1,2}. \operatorname{int}_{G_i}))$ and $h_i : (G_i, \psi_{1,2}. \operatorname{int}_{G_i}) \to (G_i \mid N_i, h_i (\psi_{1,2}. \operatorname{int}_{G_i}))$ are the related canonical surjective homeomorphism's.

Proof. Because of the definition of characterized product L-topological groups and the characterized L-topological quotient groups we have that $(G / N, h(\prod_{i \in I} \psi_{1,2}.int_{G_i}))$ and $(\prod_{i \in I} (G_i / N_i), (\prod_{i \in I} h_i (\psi_{1,2}.int_{G_i})))$ are characterized L-topological groups. Since h_i is $\psi_{1,2} \psi_{1,2}$ L-continuous for all $i \in I$, then from Lemma 3.1 it follows that the product mapping $\prod_{i \in I} h_i : (G_i, h(\prod_{i \in I} \psi_{1,2}.int_{G_i})) \rightarrow (\prod_{i \in I} (G_i / N_i), (\prod_{i \in I} h_i (\psi_{1,2}.int_{G_i})))$ is $\psi_{1,2} \psi_{1,2}$ L-continuous. Hence,

$$f(\mu) \in \beta_{\prod_{i \in I} (h_i(\psi_{1,2}.\operatorname{int}_{G_i}))} \text{ implies } h^{-1}(f^{-1}(\mu)) = (\prod_{i \in I} h_i)^{-1}(\mu) \in \beta_{\prod_{i \in I} \psi_{1,2}.\operatorname{int}_{G_i}}. \text{ Because of Proposition}$$

5.3, h is $\psi_{1,2} \psi_{1,2}$ L- open and surjective mapping, therefore $f^{-1}(\mu) \in \beta_{h(\prod_{i \in I} \psi_{1,2}.int_{G_i})}$. Then, f is $\psi_{1,2} \psi_{1,2}$ L-

continuous isomorphism, that is, f is bijective $\psi_{1,2} \psi_{1,2}$ L- continuous.

Now, let $\eta \in \beta_{h(\prod_{i \in I} \psi_{1,2}.int_{G_i})}$. Since h is $\psi_{1,2} \psi_{1,2}$ L- continuous, then $h^{-1}(\eta) \in \beta_{\prod_{i \in I} \psi_{1,2}.int_{G_i}}$. Because of

 $\prod_{i \in I} h_i \text{ is the product of } \psi_{1,2} \psi_{1,2} \text{ L- open mappings, then Lemma 3.1 implies that } \prod_{i \in I} h_i \text{ is } \psi_{1,2} \psi_{1,2} \text{ L- open mapping.}$ mapping. Therefore, $f(\eta) = (\prod_{i \in I} h_i)(h^{-1}(\eta)) \in \beta_{\prod_i (h_i(\psi_{1,2}, \text{int}_{G_i}))}$, that is, f is $\psi_{1,2} \psi_{1,2} \text{ L- open.}$

Consequently, f is ψ_1, ψ_1 , L-homeomorphism. \Box

6. Conclusion

In this paper, we introduced and studied the notions of final characterized L-spaces and initial and final characterized L-topological groups. The properties of such notions are deeply studied. By the notion of final characterized L-spaces, the notions of characterized quotient pre L-spaces and characterized sum L-spaces are introduced and studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category **CRL-Sp** and hence **CRL-Sp** is topological category over the category **SET** of all sets. The characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjection are the equalizers and co-equalizers, respectively in **CRL-Sp**. Moreover, we show that the initial and final lefts and then the initial and final characterized L-topological category over the category **Grp** of all groups. By the notion of initial and final characterized L-topological groups, the notions of characterized L-subgroups, characterized product L-topological groups and characterized L-topological groups, the notions of characterized L-subgroups, characterized product L-topological groups and characterized L-topological category **CRL-TopGrp** is concrete and co-concrete category of the category **L-Top** of all topological L-spaces and characterized L-topological groups is concrete and co-concrete category of the category **L-Top** of all topological L-spaces and that the faithful

functors \mathscr{F} : **CRL** – **TopGrp** \rightarrow **L** – **Top** and \mathscr{F}^* : **L** – **Top** \rightarrow **CRL** – **TopGrp** are isomorphism's. Thus, the category **CRL**-**TopGrp** is algebraic and co-algebraic category over the category **L**-**Top** in sense of [7]. Many new special classes for the final characterized L-spaces, initial characterized L-topological groups, final characterized L-topological groups, characterized product L-topological groups and characterized L-topological quotient groups are listed in **Table (1)**.

	Operations	Final Characterized L-spaces	Initial Characterized L- topol.Groups	Final Characterized L- topol. Groups	Characterized Product L- topol. groups	Characterized L-topol. Quotient groups
1		Final L-top. space [18]	Initial L- topol. Group [6,8]	Final L- topol. Group [6,8]	Product L-topol. Group [6,8]	L- topol. Quotient group [6,8]
2		Final θ L-space	Initial θ L-topol. Group	Final <i>θ</i> L- topol. Group	θ - productL- topol.Group	 θ L – topol. Quotient group
3		Final <i>s</i> L- space	Initial δ L-topol. Group	Final <i>δ</i> L- topol. Group	 δ - product L- topol. Group 	 δ L - topol. Quotient group
4	$\varphi_1 = \operatorname{cl} \circ \operatorname{i} \operatorname{nt}$ $\varphi_2 = \operatorname{l}_{L^X}$	Final semi L- space	Initial semi L- topol. Group	Final semi L- topol. Group	Semi- product L- topol. Group	Semi L- topol. Quotient group
5	$\varphi_1 = cl \circ int$ $\varphi_2 = cl$	Final (0.5) L- space	Initial (0.5) L-topol. Group	Final (0.5) L- topol. Group	(0.5) - product L- topol. Group	(0.5) L- topol. Quotient group
6	$\varphi_1 = \mathbf{cl} \circ \mathbf{i} \mathbf{nt}$ $\varphi_2 = \mathbf{int} \circ \mathbf{cl}$	Final (<i>s.s.</i>) L-space	Initial (<i>s.s</i>) L- topol. Group	Final (<i>δ.S</i>) L- topol. Group	(<i>s.s</i>) - product L- topol. Group	(<i>ss</i>) L- topol. Quotient group
7		Final pre L- space	Initial pre L- topol. Group	Final pre L- topol. Group	Pre- product L- topol. Group	Pre L- topol. Quotient group
8	$\varphi_1 = cl \circ int$ $\varphi_2 = s.cl$	Final (S.0) L- space	Initial (S.0) L- topol. Group	Final (S.0) L- topol. Group	(S. θ) - product L- topol. Group	(S.0) L- topol. Quotient group
9	$\varphi_1 = \mathbf{cl} \circ \mathbf{i} \mathbf{nt}$ $\varphi_2 = S . \operatorname{int} \circ S . \mathbf{cl}$	Final (S. δ) L-space	Initial (S.8) L- topol. Group	Final (S.8) L- topol. Group	(s.s) - product L- topol. Group	(S.S) L- topol. Quotient group
10	$\varphi_1 = \operatorname{cl} \circ \operatorname{i} \operatorname{nt} \circ \operatorname{cl}$ $\varphi_2 = \mathbb{1}_{L^X}$	Final β L-space	Initial β L-topol. Group	Final β L-topol. Group	eta - product L- topol. Group	β L- topol. Quotient group
11	$\varphi_1 = i \operatorname{nt} \circ \operatorname{cl} \circ i \operatorname{nt}$ $\varphi_2 = 1_{L^X}$	Final λ L-space	Initial λ L-topol. Group	Final λ L- topol. Group	λ - product L- topol. Group	λ L- topol. Quotient group
12	$\varphi_1 = s \cdot cl \circ i nt$ $\varphi_2 = l_{L^X}$	Final feebly L- space	Initial feebly L- topol. Group	Final feebly L- topol. Group	Feebly product L- topol. Group	Feebly L- topol. Quotient group

Table (1): Some special classes of final characterized L-spaces; initial characterized L-topological groups, final characterized L-topological groups characterized product L-topological groups and characterized L-topological quotient groups.

References

[1] Abd-Allah, A. S. (2014). Initial characterized L-spaces and characterized L- topological groups, Mathematical Theory and Modeling **4** (2), 86 - 106.

[2] Abd-Allah, A. S. (2002). General notions related to fuzzy filters, J. Fuzzy Math., 10 (2), 321 - 358.

[3] Abd-Allah, A. S. and El-Essawy, M. (2003). On characterizing notions of characterized spaces, J. Fuzzy Math., **11(4)**, 835 - 875.

[4] Abd-Allah, A. S. and El-Essawy, M. (2004). Closedness and compactness in characterized spaces, J. Fuzzy Math., **12 (3)**, 591 - 632.

[5] Abd El-Monsef, M. E., Zeyada, F. M., Mashour A. S. and El-Deeb, S. N. (1983). Operations on the power set P(X) of a topological space (X, T), Colloquium on topology,

Janos Bolyai Math. Soc. Eger, Hungry.

[6] Ahsanullah, T.M.G (1984). On fuzzy topological groups and semi groups, Ph.D. Thesis, Faculty of Science, Free Univ. of Brussels.

[7] Adamek , J. Herrlich, H. and Strecker, G. 1990. Abstract and Concrete Categories, John Wiley & Sons, Inc., New York et al.

[8] Bayoumi, F. (2005). On initial and final L-topological groups, Fuzzy Sets and Systems, 156, 43 - 54.

[9] Chang, C. L. (1968). Fuzzy topological spaces, J. Math. Anal. Appl., 24, 182 - 190.

[10] Eklund, P. and G \ddot{a} hler, W. Dordrecht et al. (1992). Fuzzy filter functors and convergence, in: Applications of Category Theory Fuzzy Subsets, Kluwer Academic Publishers, 109 - 136.

[11] Gähler, W. (1995). The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and Systems, 76, 205 - 224.

[12] Gähler , W. I (1977), II(1978). Grundstrukturen der Analysis, I und II, , Akademie Verlag Berlin, Birkhäuser Verlag Basel-Stuttgar.

[13] Gähler, W., Abd-Allah, A. S. and Kandil, A. (2000). On Extended fuzzy topologies, Fuzzy Sets and Systems, **109**, 149 - 172.

[14] Goguen, J. A. (1967). L-fuzzy sets, J. Math. Anal. Appl., 18, 145 - 174.

[15] Kandil, A., Abd-Allah, A. S. and Nouh, A. A. (1999). Operations and its applications on L-fuzzy bitopological spaces, Part I, Fuzzy Sets and Systems, **106**, 255 - 274.

[16] Kasahara, S. (1979). Operation-compact spaces, Math. Japon., 24(1), 97 - 105.

[17] Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56, 621 - 633.

[18] Lowen, R. (1977). Intial and final topologies and the fuzzy Tychonof Theorem, J. Math. Anal. Appl., **58**, 11 - 21.

[19] Richter, G. 1979. Kategorielle Algebra, Akademie Verlag Berlin.