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Abstract
Let f € C[—1,1]¢ change its convexity finitely many times in the interval , say s times , at Y : -1< y;; < yp; <
< Yo <1 A<y < Ypq < < ygq < 1. We estimate the degree of approximation of f by multi

polynomials of degree n, which change convexity exactly at the points Y, . We show that provided n is
sufficiently large, depending on the location of the points Y; , the rate of approximation is estimated by the multi
third Ditzian —Totik moduli of smoothness of f multiplied by a constant C(s) .

Keywords: coconvex approximation, moduli of smoothness, multi approximation.

1. Introduction and Main Results .

Let f € C[—1,1]¢ change its convexity finitely many times ,say s, at the points ¥, : -1< y;; < yp; < =+ <
Vo1 <1 ey -1< Y1g < Vag <+ < Ysq < 1in [—1,1]¢ where C[—1,1]% the space of all continuous functions
on [—1,1]¢ such that x = (xy, ..., x4),x € [-1,1]¢. For later reference set y,; = —1 and ys;,; = 1 where
j=1,...,d . Note that if f e C?[-1,1]¢ , then the above is equivalent to f"(xy,..,xq) [T5=1((xy —
Yi1) - (xg — yia)) = 0, in [-1,1]%. We wish to approximate f by means of polynomials which are coconvex
with f, that is , which change convexity exactly at the points y; = V11, -, V1d) »--» Ys = Ys1s -» Ysq) - The
first Jackson estimate involving the Ditzian — Totik moduli of smoothness is due to Leviatan [3]. As was
pointed out to us by the referee , the degree of coconvex polynomial approximation apparently was first
discussed in the Ph. D dissertation of Diana C. Myers [4] where she obtained the Jackson estimate w (f, 11—1) for

nearly coconvex approximation . The first estimates on the degree of coconvex approximation for a twice
continuously differentiable function with an arbitrary finite number of convexity changes have recently been
obtained by Kopotun [1] and the purpose of this note is to improve those result in that we do not assume the
existence everywhere , and continuity of even the first derivative . We are going to make use of some special
polynomials related to the function f which were constructed in that article [1] based upon the polynomials
introduced by Shevchuk [5] . We remark that in the above mentioned paper , Kopotun was able to estimates on
the simultaneous approximation of the function and its derivatives by the polynomials and their derivatives ,
thus obtaining simultaneously , coconvex approximation to f and comonotone approximation to its derivative .
In order to state our main result we definition of the multi mth order Ditzian —Totik moduli of smoothness
wd (f,8) . for f € C[-1,1]¢, we set

® _ :
Wn(F.8) = sup s (3 (G, - x))||
j=1,..d
h=(hy,..,hq), 6= (81 .,80), 1=, Na) = (R (x1), ., hg(x4)), Where the norm is the max-norm
, (p(x]-) = 1—xj2 , j=1,..d and

fzm (7:1) (-1)mif ((x1 - %Th + i, e, Xg — %Tld + ind))

- i=0
AP (e, xq)) = ifx +TTI € [-1,1]¢
5 ) 4

0, otherwise.

is the symmetric multi mth difference.

We define ||f((x1, ...,xd))” = . :[u]z 1]|f((x1, ...,xd))|,
j -4,

j=1,...d
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we also need the following moduli of smoothness

wm(f: 6) = 05}385' ||A7f‘ln (f' ((xll ;xd)))”
J="]
j=1,..d

For f € C[—1,1]¢ , we denote by
EX(f,Y) = infIf = pull: p € 1L, 0 A2(Y;)

the degree of coconvex approximation of f by algebraic multi polynomials,
where p,, has the form
P, s x0)) = (o1 + Ggz + -+ Goa) + @y (g + -+ + x)
+a,(xF 4+ x3) + a4+ x]).
Our main result is the following :

Theorem :Let f € C[—1,1]% have s changes of convexityatY, : —1<y;; <y, <= <ysy <1,...,—-1<
Vid < Yaa < < Ygq <1, and denote

1+ (1 + ) - - ) s .
d(Y,) = min{ (@ +y1) (4 +310) (G2 = 12) - Oz = 10)) } . Then there exists a constant
((ysl - ysl—l) (ysd - ysd—l))' ((1 - ysl) (1 - ysd))
A = A(s) which depends only on the number of convexity changes s, such that for n > :((Ys)) there is a multi
polynomial p, of degree not exceeding n, which is coconvex with f and satisfies
If = pall < C(8)wm(f, ), (1

1 1
where § = (;, ...,;).
In the sequel we will denote by C an absolute constant which may vary from one occurrence to another even in
the same line . Similarly C(-) will denote a constant which depends on a specific parameter but may change
from one occurrence to another .

2. Proof of the Theorem :

If £ has no change of convexity in [—1,1]¢ ,i.e.,s = 0 and f is convex in [—1,1]¢ , then the theorem is valid ,
thus we will assume that s > 1. We first need to construct a smoother function at y; = (y44, ..., ¥14) - The
function f is either concave or convex in [—1,y;4] X ... X [=1,¥;4], and each case will need a separate though
similar construction. We will detail the construction for the case where f is concave in [—1,y;;] X ... X
[—1,y14] . For the sake of simplicity in notation in the sequel we write a; = y,; where j = 1,...,d . Now let

_ _ rmo_ rim rdm
Xp = (X1 s Xra) » Xrm = (im0 o) Xpan) @Nd cos— = (cos—,..cos—),

such that x,; = x,j, = cos% ,7=0,...,n and j=1,...,d, be the chebyshev nodes; and denote I, =

[xrlﬂxrl—l] X ... X [xrd:xrd—l] ' hrj = hrj,n = xrj—l - xrj and

(hrl hrd)
[(er — Xp1) oo (g — X)) | + (Ryq oo Brg)

l/)r((xll "'lxd)) = ll}r,n((xl' "'lxd)) = ) (2)

It is well know that h,;,, <3h,; and that for x€ I , A,(x) < h, <50,(x;) ,where
/1—x2-
Ay (x) = (Bn(x1), ., Ay () and A, (x;) :T]+niz. We assume that a = (ay,..,ay) such that a €

50 50
Y21—@1)-(y2qa—aq) ' (1+ay)..(1+aq)

[xr()l,xrgl_l) X ... X [erd,erd_l) . Then, if n> N(Z = max{ } , We are
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assured that x,o;43 = —1 and that x,j_s < yy; . Set b = cAy(;) < %hroj , where ¢ is chosen sufficiently
small to guarantee the right inequality . Note that this implies x,q;,.1 < aj — 2h; < a;j + 2hj < Xpqj_,.

We are going to replace f on the interval [@; — hy, @y + hy] X ... X [@q — hg, @q + hy] in a way that will keep us

near the original function and at the same time the new function , will be smoother at a = (g, ..., @q) . When
s =0, then (1) holds for all n > 2. Thus , we proceed by induction. To this end we note that either

Aif((ay, ., aq)) = 0,0r A2 f((ay, ..., @q)) <O

In the first case, let Ll((xl, ...,xd)) denote the linear function interpolating f at (ay — hy, ..., @q — hy) and
(ay, ..., aq) - Then the function g = f — L, satisfies

g((a1 —hyy e, g — hd)) = g((al, ...,ad)) =0,
g((ay + hy, ,aqg +hg)) = 0and g((xy, ..., xg)) <0, -1 < xj <a;—h;.
Hence , for J, = [Xr0141, Xro1-2] X e X [Xr0d41, Xroa—2] » We have ,
0 <g((ay+hy,..,aq + hy))
< g((ay + hy, g + hy)) — g((ay — 2Ry, ..., @q — 2hy))

g((ay + hy, yaq + hy)) = 3g((ay, ., aq)) + 3g((ay + hy, .., aq + hg)) —
g((a1 - Zhl, e, g — Zhd))

< (4)3(9, h!]_O) = wS(f' h»j_o)-

Similarly , in the latter case , let Ll((xl, ...,xd)) denote the linear function interpolating f at (a; + hq, ..., aq +
hg) and (@, ..., @q) . Then the function g = f — L, satisfies

g((oz1 + hy, ., aq + hd)) = g((al, ...,ad)) =0,
g((oz1 —hyy e ag — hd)) <0, and g((xl, ...,xd)) =0, aj+h; <x; <y,;.Hence ,

0 < —g((al - hl' ...,ad - hd))

IA

g((ay + 2hy, .., aq + 2hy)) — g((ay — hy, ., @q — hy))

= g((ay + 2hy, .., aq + 2hy)) — 3g((ay + hy, .., aq + hy))
+3g((ay, .., aq)) — g((a; = hy, .., aq — ha))

< w3(g, h']_o) = w3(f, hrj_o)-
Thus , in both case we have ,

max{|g((0:1 — Ry, g — hd))|, |g((a1, ...,c_zd))|, |g((a1 +hy, .., 09+ hd))|}
S Cw3(f! h:]o):

which in turn implies that the quadratic polynomial Ly((xy, ..., x4)) , interpolating g at (a; — hy, ..., @g — hy) |,
(ay, ...,aq) and (a; + hy, ..., q + hy) is bounded by the same on [a; — hy, a; + hy] X ... X [a; — hy, a7 + hy].
Thus

|Cer — @) . (g — @@)| + (ro1 - hroa)
(hro1 - hroa)

1L ()| < C( ) w3(f, h.Jo) 3)

where x € [-1,1]%.
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At the same time applying Whitney ’s theorem for the multi approximation [2] we conclude that
lg(x) — L(x)| < C(Dw;(f, h']_o):
Where X E [(Xl - h’l’ al + hl] X e X [al - hl' (Zl + h‘l] .
Since
|x — a|+h,, 3
9G) = L@ < C(=———") ws(f,hJo), [6]
70
where x € [—1,1] and Jy = [Xy01+1, Xro—2] -
Thus
—ay) ... cg — a)| + (hyor - Broa)\ i}
90) — L@| <¢ ('("1 @) - (o = dall + (s °d)) 03 (F 1), @
(hro1 - hroa)
where x € [-1,1]% and  Jo = [Xy0141 Xro1-2] X o X [¥roa+1, Xroa—2] -
Since |A2f((x1,...,xd))| < |A,37f((x1,...,xd))| ,
_ 1 1
then ws(fLhJy) < Cw?(f,6), 5= (E E)
we obtain by (3) and (4)
lg()| < 3w (f,6) , x € [-1,1]¢, (5)
Now let
oy (—9(x), x €[-1,a7] X .x[-1,a4]
g = { gx) , otherwise
and finally ,
A(x) — {g(x) ) X e [(11 - hl' al + hl] x e X [al - hl’ 0(1 + h’l]'
9 max{g(x),0}, x € [ay —hy,aq + hy] X .. X [@; — hy, aq + hy].
By virtue of (5) we immediately have
g — gl < C wf(f,8), (6)
Also
0{(9,6) < wf(g,6) + Cwf(f,8) < Cwf(f,5), @)

where the first inequality follows from (6) , while the second is due to the fact that for x ¢ J, ,

|Af] (g((xl, ...,xd)))| = |A,27 (g((xl, ...,xd)))| = |A,27 (f((xl, ...,xd)))|,

where i} = (@ ...,@) and for x € J, we apply (5) .

It is readily seen that § € C[—1,1]¢ , that it is convex in [—1, y,,] X ... X [—1, y,,] and that it changes convexity
atY,_; =Y\ {¥11} ., {v14} . If On the other hand , f was convex in [—1,y;,] X ... X [=1,y;4] , then § would
be concave in [—1,v,,] X ... x [—1,y,4] and change convexity at Y,_,.Thus in any case g has fewer convexity

A(s-1)
a(Ys-q) '
which is coconvex with g and which satisfies the analogue of (1) . Namely by (7) ,

changes , so by induction , we may assume that for n >
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19 — anll < C(s = DwF (g,8) < C(s)wg (f,6), (8

Thus , fixing n > max{A(S_l) N, } , readily leads to the definition of A(s) . Note that since (a4, ...,az) =0 ,

a(te_,)" ®
we may assume that g, (a4, ..., ¢z) = 0 constantin (8) .

Kopotun [1] has constructed for « and g,, two polynomial v,, and w,, of degree at most 20n(s + 1) = 4nyu,
with the properties that for all x € [-1,1],

v (x)sgn(x —a) = 0.

Thus let
Vn((xp ---vxd)) =0, () + -+ v (xg)
and
Wn((xp ---'xd)) = Wy (1) + -+ + Wy (xq)
where v, (x1) = ag; + a1x; + apx? + -+ axl
v (Xq) = Qoq + Ay xg + x5 + -+ apxl
and

wy(x1) = o1 + 11 + X2 + -+ e

Wy (xXg) = Coq + C1Xg + CoX5 + - + cpx
two multi polynomials of degree at most 20n(s + 1) = 4nu with the properties that for all x € [-1,1]¢ ,
(Un(x1) + -+ v, (xg)) (sgn (ry — @) + -+ sgn (xq — @q))
2 v (x1) sgn (% — aq) + -+ vp(xg)sgn (g —aqg) =0

1 x]-—a’j>0

where sgn (x; — a;) = {_1 % —a; < 0

and sgn((x, — @y, .., xg — ag)) = sgn (x; — a;) + -~ + sgn (xg — ag),
A (CERH (PR | CA(CHER) — an((@ ., @0) ) sgn((ry = ty, o Xg = @) 2 0
|(vn Ger) + -+ 4 v(x0)) = (sgn (x3 — ;) + -+ + sgn (xg — ay))|
< vp(xy) —sgn (g — a)dl + -+ (v (xg) — sgn (xg — aq)
SAGRS (CIEM)} 9)
|(WnGer) + -+ wy(xa)) = (sgn (g — ay) + -+ sgn (xq — ag))|
< Iwp(xg) —sgn (x; — ag)| + -+ [wy(xq) — sgn (x4 — ag)l
A RN (CTNER) (10)

Vi (Cers e x))| = Tom () + o+ + v (x0)
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< v ()| + -+ [vp ()|
< C(s) Yo (1, oo %0)) (i o hirga), (11)

and finally

Wy (g, oer x0))sgngn((ay, . g)) < 0,
X € [Vart, Yorie1l X oo X Wara» Yora+1] 7 =0,...,[s /2], and

W, ((xy, - x0))sgnan((ay, .., aq)) 2 0,

X € [Yor1e1 Yorie2] X oo X [Vorast, Yoras2l , 7=0,..,[(s — 1)/2].

We are ready to define the multi polynomial

X1 x4
Pa((y, e x0)) = f f [(4 (s 1)) = @h((@r, s @) ) Vot 1))
aq adq
+ q,’l((al, ...,ad))Wn((ul, ...,ud))] duy ...dug,
of degree at most Snu , which evidently is coconvex with f . Note that B, ((xy, ..., xq)) = Ly ((xy, ., x0)) +
pn((xl, ...,xd)) is of the same degree and it too is coconvex with f . Hence , we conclude the induction step by
proving (1) for B,.
We begin with
|f((x1, ...,xd)) — Pn((xl, ...,xd))| = |g((x1, ...,xd)) — pn((xl, ...,xd))|
= |g’ ((xl, ...,xd))sgn((x1 —Qqy e, Xg — ad)) - pn((xl, ...,xd))|

< |1 = gll + g (1, -, x0))sgn((x1 — @y, oo, Xg = @g)) = P (1, o, x0))|
< ng’(f, )+ |(§ ((xl, ...,xd)) - qn((xl, ...,xd))) sgn((x1 — Qe Xg — ad))|

+ qn((xl, ...,x(,l))sgn((x1 — Qg e, Xg — ad))

X1 Xd
- J J (@, oo, u) Vo ((Wy, ooy ug))dy .o duy
aq aq
X1

+ q,’l((al,...,ad)) J (Vn((ul,...,ud)) — Wn((ul, ...,ud))) du, ...duy

a;  ag
=E +E,+E;+E,, say.
By virtue of (8) ,
E, < C(5)w?(f,0), (12)

Recalling that q,,((ay, ..., @4)) = 0, integration by parts and (11) yield ,
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E; = qn((xl, ...,xd)) (sgn((x1 — @y, e, Xg — ad)) — Vn((xl, ...,xd)))
+ f f qn((ul, ...,ud))l/;{ ((ul, ...,ud))du1 wdug

< C) | |gn(Ger o x)) [0Eo (G, s x2))

X1 Xq
+ f f |gn (g, oo ) [k (U, ooy ua)) (R o i) Ay .. dug
a; ad
< C()wl(f,6), (13)

where the last inequality in (13) follows from (5), (6) and (7) ,
|qn((x1' ""xd))| S |g((x1' 'xd))| + |g((x1' ;xd)) - qn((xli ---;xd))|
< |g(Cer, o x))| + 115 = Gl + 11 — gl

< CYriwg (f,6),

and the easy inequality

X1 Xd
f f VY ((Uy, ooy ug))dty o dug < Clhyoy o hroa), V=2, (14)
a; ad

Finally , in order to estimate E, , we need an estimate on q,’l((al, ...,ad)). To this end we observe that since g,
isconvexin [—1,y,,] X ... X [—1,y,4] , then q,, is monotone increasing there .

If q{l((al, ...,ad)) > 0,then by (5) , for some & € (aq, @1 + hyo1) X .. X (g, g + hroq)

0= q;[((ap ...,Ofd)) < qr’l((fll l{:d))

_ %((“1 + Npoqy e, @ + hrod)) - %((“1; ---:ad))
(hro1 - hyoa)

= (hyd1 - hga) @n((@q + hyor, ooy @ + Rroq))
< C(hyoy - hrga) @ (f, 6).
And if g;((ay, ..., az)) < 0, then by (5), for some € € (a; — hyo1, @1) X ... X (@g = Ryoa, @a)
0< —gn((aq, oy 20)) < —qn((E1, s €0))

_ Qn((a’1 = Nypo1y e Ag — hrod)) - Qn((ap ey ad))
(hro1 - hroa)

= (hr_o11 hr_old) %((“1 = hyoty s g — hrod))

< C(higy - higa) 0§ (f, ).

Hence by (9) ,(10) and (14)
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X1 Xd

E, < |q4((@y o a))| f f 1V (Gt 1)) = Wty oy )| ity .. duig

< C(hyor - hrod) |an((ay, ..., a2))| < Cwl (£, 6), (15)

Combining (12) ,(13) and (15) we see that

If = Pll < C(s)ws (f,6).
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