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Abstract  

 Let    [    ]  change its convexity finitely many times in the interval , say s times , at    : -1         
         ,..., -1                 . We estimate the degree of approximation of   by multi 

polynomials of degree   , which change convexity exactly at the points     . We show that provided   is 

sufficiently large, depending on the location of the points    , the rate of approximation is estimated by the multi 

third Ditzian –Totik moduli of smoothness of   multiplied by a constant  ( ) .  
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1. Introduction and Main Results . 

Let    [    ]    change its convexity finitely many times ,say   , at the points    : -1           
       ,..., -1                 in [    ]  where  [    ]  the space of all continuous functions 

on [    ]  such that   (       )   [    ] . For later reference set        and          where 

          . Note that if      [    ]  , then the above is equivalent to    (       )∏ ((    
   

   ) (      ))    , in [    ] . We wish to approximate   by means of polynomials which are coconvex 

with  , that is , which change convexity exactly at the points     (         )         (         ) . The 

first Jackson estimate involving the Ditzian – Totik  moduli of smoothness is due to Leviatan  [ ] . As was 

pointed out to  us by the referee , the degree of coconvex polynomial approximation apparently was first 

discussed in the Ph. D dissertation of Diana C. Myers [ ] where she obtained the Jackson estimate  (  
 

 
) for 

nearly coconvex approximation . The first estimates on the degree of coconvex approximation for a twice 

continuously differentiable function with an arbitrary finite number of convexity changes have recently been 

obtained by Kopotun [ ] and the purpose of this note is to improve those result in that we do not assume the 

existence everywhere , and continuity of even the first derivative . We are going to make use of some special 

polynomials related to the function   which were constructed in that article [ ] based upon the polynomials 

introduced by Shevchuk [ ] . We remark that in the above mentioned paper , Kopotun was able to estimates on 

the simultaneous approximation of the function and its derivatives by the polynomials and their  derivatives  , 
thus obtaining simultaneously , coconvex approximation to   and comonotone approximation to its derivative .    

In order to state our main result we definition of the multi  th  order Ditzian –Totik moduli of smoothness 

  
 
(   ) . for    [    ]  , we set  

  
 (   )     

       

       

‖  
 (  ((       )))‖ , 

  (       )      (       ),   (       )  (   (  )      (  )),  where the norm is the max-norm 
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                     and  

  
  ((       ))  
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is the symmetric multi  th difference. 

             ‖ ((       ))‖     
   [    ]

       

| ((       ))|  
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we also need the following moduli of smoothness  

  (   )     
       

       

‖  
 (  ((       )))‖  

For    [    ]   , we denote by 

  
( )(    )     ‖    ‖         (   ) 

the degree of coconvex approximation of   by algebraic multi polynomials, 

where      has the form  

  ((       ))  (             )    (        )  

                                  (  
      

 )      (  
      

 )   

Our main result is the following : 

Theorem :Let     [    ]  have   changes  of convexity at                                 
                ,  and denote  

 (  )     {
((     ) (     )) ((       ) (       ))   

  ((         ) (         )) ((     ) (     ))
} . Then there exists a constant 

    ( ) which depends only on the number of convexity changes   , such that for   
 ( )

 (  )
 there is a multi 

polynomial       of  degree  not  exceeding   ,  which  is  coconvex  with      and  satisfies  

‖    ‖   C( )  
 (   )                                                          ( ) 

where   (
 

 
   

 

 
). 

In the sequel we will denote by   an absolute constant which may vary from one occurrence to another even in 

the same line . Similarly  C( ) will denote a constant which depends on a specific parameter but may change 

from one  occurrence to another .  

 

2. Proof of the Theorem : 

If   has no change of convexity in  [    ]  , i.e. ,     and   is convex in [    ]  , then the theorem is valid , 

thus we will assume that    . We first need to construct a smoother function at    (         ) . The 

function   is either concave or convex in [      ]    [      ], and each case will need a separate though 

similar construction. We will detail the construction  for the case where f is concave in  [      ]    
[      ] . For the sake of simplicity in notation in the sequel we write        where            . Now let  

   (         ) ,      (             ) and    
  

 
 (   

   

 
     

   

 
)   

such that              
   

 
  ,            and           , be the chebyshev nodes; and denote    

[         ]    [         ] ,                      and 

            ((       ))       ((       ))  
(       )

|(      ) (      )|  (       )
                     ( ) 

It is well know that            and that for       ,   (  )         (  ) ,where 

  ( )  (  (  )     (  ))  and   (  )  
√    

 

 
 

 

    We assume that   (       )  such that   

[           )    [           )  . Then,  if         {
  

(      ) (      )
  

  

(    ) (    )
}  , we are 
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assured that           and that             . Set       (  )  
 

 
     , where c is chosen sufficiently 

small to guarantee the right inequality . Note that this implies                            . 

We are going to replace   on the interval [           ]    [           ] in a way that will keep us 

near the original function and at the same time the new function , will be smoother at     (       ) . When  

    , then (1) holds for all    . Thus , we proceed by induction. To this end we note that either 

  
  ((       ))   , or   

  ((       ))    .  

In the first case, let   ((       ))  denote the linear function interpolating   at (             )  and 

(       ) . Then the function           satisfies   

   ((             ))   ((       ))    ,  

 ((             ))    and   ((       ))    ,              .  

Hence , for    ̅  [             ]    [             ] , we have , 

    ((             )) 

       ((             ))   ((               )) 

     

 

  ((             ))    ((       ))    ((             ))  

 ((                                                                                                                                   )) 

        (      ̅)    (      ̅)  

Similarly , in the latter case , let   ((       ))   denote the linear function interpolating   at (           

  ) and (       ) . Then the function            satisfies  

 ((             ))   ((       ))     

 ((             ))      and   ((       ))    ,                Hence  ,  

    ((             )) 

       ((               ))    ((             )) 

      ((               ))    ((             )) 

                                 ((       ))   ((             )) 

   (      ̅)    (      ̅)                                                                                                                                            
Thus , in both case we have , 

   {| ((             ))| | ((       ))| | ((             ))|}                                                         

      (      ̅), 

which in turn implies that the quadratic polynomial   ((       )) , interpolating   at (             ) , 

(       ) and (             ) is bounded by the same on [           ]    [           ]. 
Thus  

      |  ( )|   (
|(     )  (     )|  (         )

(         )
)

 

  (      ̅)                                 ( )  

where   [    ] . 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.2, 2014 

 

141 

 

At the same time applying Whitney  s theorem for the multi approximation [ ] we conclude that  

                  | ( )     ( )|   ( )  (      ̅)   

where      [           ]    [           ] .                                                                                      
Since 

                 | ( )     ( )|   (
|   |    

   

)

 

    (      )     [ ] 

where    [    ]  and    [           ] . 

Thus   

    | ( )     ( )|    (
|(     ) (     )|  (         )

(         )
)

 

  (      ̅)                       ( ) 

where    [    ]  and      ̅  [             ]    [             ] . 

Since  |  
  ((       ))|  |  

  ((       ))|  ,  

                        (      ̅)     
 (   )                          (

 

 
    

 

 
) 

we obtain by ( ) and ( ) 

      | ( )|      
    

 (   )                     [    ]                                                                                  ( ) 

Now let  

 ̃( )  {
  ( )                         [     ]    [     ]  

 ( )                                                                   
              

and finally , 

 ̂( )  {
 ̃( )                             [           ]    [           ] 

   { ̃( )  }     [           ]    [           ] 
 

By virtue of ( ) we immediately have  

                                      ‖ ̃   ̂‖      
 (   )                                                                                                   ( )  

Also  

                                         
 ( ̂  )    

 ( ̃  )     
 (   )      

 (   )                                                                     ( ) 

where the first inequality follows from ( ) , while the second is due to the fact that for     ̅ ,  

|  ⃛
 ( ̃((       )))|  |  ⃛

 ( ((       )))|  |  ⃛
 ( ((       )))|, 

where   ⃛  (
 (  )

 
   

 (  )

 
) and for     ̅ we apply ( )   

It is readily seen that  ̂   [    ]  , that it is convex in [      ]    [      ] and that it changes convexity 

at     
     {   }   {   } . If on the other hand ,   was convex in [      ]    [      ] , then  ̂ would 

be concave in  [      ]    [      ] and change convexity at     
 .Thus in any case  ̂ has fewer convexity 

changes , so by induction , we may assume that for   
 (   )

 (    
 )

 , there exists an nth degree multi polynomial    

which is coconvex with  ̂ and which satisfies the analogue of ( ) . Namely by ( ) , 
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                    ‖ ̂    ‖   (   )  
 ( ̂  )   ( )  

 (   )                                                                        ( ) 

Thus , fixing      {
 (   )

 (    
 )

   } , readily leads to the definition of  ( ) . Note that since  ̂(       )     , 

we may assume that   (       )     constant in ( ) .  

Kopotun [ ] has constructed for   and     two polynomial    and    of  degree at most    (   )     , 

with the properties that for all   [    ]   

  ( )   (   )     

Thus let 

  ((       ))    (  )      (  )      

and  

                                        ((       ))    (  )      (  ) 

where                        (  )               
        

  

  

  (  )               
        

  

and                  

                                      (  )               
        

  

  

  (  )               
        

  

two multi polynomials of degree at most    (   )      with the properties that for all   [    ]  ,  

(  (  )      (  ))(     (     )         (     )) 

      (  )      (     )      (  )     (     )    

where  sgn (     )  {
                   

                       
 

and    ((             ))       (     )         (     ), 

  
 ((       ))  

  ((       )) (  
 ((       ))                 

 ((       )))    ((             ))    

|(  (  )      (  ))  (     (     )         (     ))| 

                |  (  )       (     )|    |  (  )       (     )| 

                 ( )    
 

((       ))                                                                                                                                        ( )  

|(  (  )      (  ))  (     (     )         (     ))| 

                |  (  )       (     )|    |  (  )       (     )| 

                 ( )    
 

((       ))                                                                                                                       (  ) 

|  
 ((       ))|  |  

 (  )      
 (  )| 
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                                  |  
 (  )|    |  

 (  )| 

                                   ( )    
 

((       ))(    
       

  )                                                                            (  ) 

and finally 

  
 ((       ))     

 ((       ))    , 

   [           ]    [           ]    ,          [   ]  and 

  
 ((       ))     

 ((       ))     

  [             ]    [             ]           [(   )  ⁄ ]  

We are ready to define the multi polynomial 

  ((       ))  ∫  

  

  

∫ [(  
 ((       ))    

 ((       )))  ((       ))

  

  

   
 ((       ))  ((       ))]           

of degree at most     , which evidently is coconvex with   . Note that   ((       ))    ((       ))  

  ((       )) is of the same degree and it too is coconvex with   . Hence , we conclude the induction step by 

proving ( ) for   . 

 We begin with  

| ((       ))    ((       ))|  | ((       ))    ((       ))| 

 | ̃ ((       ))   ((             ))    ((       ))| 

 ‖ ̃   ̂‖  | ̂ ((       ))   ((             ))    ((       ))| 

    
 (   )  |( ̂ ((       ))    ((       )))    ((             ))|

 |  ((       ))   ((             ))

 ∫  

  

  

∫   
 ((       ))  ((       ))       

  

  

|

 |  
 ((       )) ∫  ∫ (  ((       ))    ((       )))        

  

  

  

  

| 

             , say . 

By virtue of ( ) ,  

                                           ( )  
 (   )                                                                                                (  ) 

Recalling that   ((       ))   , integration by parts and (11) yield , 
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    |  ((       )) (   ((             ))    ((       )))     

 ∫  

  

  

∫   ((       ))  
 

  

  

((       ))       |  

  ( ) (|  ((       ))|   
 

((       ))   

 ∫  

  

  

∫ |  ((       ))|   
 

((       ))(    
       

  )       

  

  

) 

                        

   ( )  
 (   )                                                                                                                                                          (  )   

where the last inequality in (13) follows from (5), (6) and (7) ,  

|  ((       ))|  | ̃((       ))|  | ̃((       ))    ((       ))| 

                                  | ((       ))|  ‖ ̃   ̂‖  ‖ ̂    ‖ 

                                       
    

 (   )  

and the easy inequality  

    ∫  

  

  

∫    
 

  

  

((       ))         (         )                                                                 (  ) 

Finally , in order to estimate    , we need an estimate on   
 ((       ))  To this end we observe that since    

is convex in [      ]    [      ] , then   
  is monotone increasing there . 

If   
 ((       ))     then by (5) , for some   (          )    (          ) , 

    
 ((       ))    

 ((       ))  

                               
   ((                 ))    ((       ))

(         )
 

                      (    
       

  )   ((                 )) 

                                                              (    
       

  )   
 (   )          

And if   
 ((       ))    , then by (5), for some   (          )    (          ) , 

     
 ((       ))     

 ((       )) 

                          
   ((                 ))    ((       ))

(         )
 

                (    
       

  )   ((                 )) 

                  (    
       

  )   
 (   )  

Hence by (9) ,(10) and (14)  
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   |  
 ((       ))| ∫  

  

  

∫ |  ((       ))    ((       ))|

  

  

         

  (         )|  
 ((       ))|     

 (   )                                                                  (15) 

 

Combining (12) ,(13) and (15) we see that  

‖    ‖   ( )  
 (   ). 
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