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Abstract 

In this paper, we have given some definitions and theorems about ultra-metric, ultra-normed spaces 

which are shown in mathematical literature. Then, we have defined some new type ultra-Banach spaces 
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Furthermore, some inclusion theorems are proved about these new type ultra-Banach spaces. 
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1. Introduction and Background 

One of the important branch as of the normed space theory is ultra-normed spaces. In general, we know 

that ordinary ultra-metric spaces are special kind of the metric spaces and one can obtain an ultra-normed 

space from the ultra-metric space. It can be seen that, in literature, the concept of ultra-metric is used in 

different areas of science, for instance, Flagg-Kopperman [1], Lemin [2], Priess-Crampe-Ribenboim [3] 

and Rammal [4]. Recently, Diagana has obtained some new type ultra-normed spaces and given some 

interesting properties of them [8-10]. 

 

In this paper, in the light of developments mentioned above, we have investigated a new type ultra-

Banach space. Now we will give some preliminary and definitions.  

Let 𝑋 be a linear space, real valued function �̃�: 𝑋x𝑋 → ℝ+ and �̃� satisfies the following conditions: 

 

(𝑑1)  �̃�(𝑥, 𝑦) = 0  if and only if 𝑥 = 𝑦, 

(𝑑2)  �̃�(𝑥, 𝑦) =  �̃�(𝑦, 𝑥), 

(𝑑3)  �̃�(𝑥, 𝑦) ≤ max{ �̃�(𝑥, 𝑧) , �̃�(𝑧, 𝑦)} 

 

 

Then the function �̃� is called ultra-metric or super-metric on the set 𝑋. It is clear that, if the expression 

�̃�(𝑥, 𝑦) ≤ max{�̃�(𝑥, 𝑧), �̃�(𝑧, 𝑦)} is held then �̃�(𝑥, 𝑦) ≤ �̃�(𝑥, 𝑧) + �̃�(𝑧, 𝑦) also held but vice versa is not 

true. The conditions 𝑑1-𝑑3 are called ultra-metric conditions and the couple (𝑋, �̃�) is called ultra-metric 

or super-metric space. From here, we can say that every ultra-metric space is a metric space but vice 

versa is not true. Let 𝐹 be a field. Let us consider function |. |: 𝐹 → ℝ is satisfying following conditions: 

(𝑎1)  |𝑥| ≥ 0 ; |𝑥| = 0 if and only if 𝑥 = 0 

(𝑎2)  |𝑥𝑦| = |𝑥||𝑦| 

(𝑎3)  |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 

then the function |. | is called absolute value function and |𝑥| is an absolute value of 𝑥 ∈ 𝐹. In this case, 

the couple (𝐹, |. |) is called Archimedean field [8]. 
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If we take 

        (𝑎3)′   |𝑥 + 𝑦| ≤ max {|𝑥| , |𝑦|} 

instead of  (𝑎3)  then the function |. | is called non-Archimedean absolute value. The condition (𝑎3)′ is 

called strong triangle inequality or ultra-metric inequality. In this case, the field 𝐹 is also called as a non-

Archimedean field. From here, the non-Archimedean absolute value we will be denoted with 〈|. |〉. A 

simple examples of Archimedean fields are (ℝ, |. |) and (ℂ, |. |), where the function |. | does not provide 

the condition (𝑎3)′.   

 

Example 1.1. Let 𝐹 be a field and consider the function   

 

〈|𝑥|〉 = {
1     , 𝑥 ≠ 0   
0     , 𝑥 = 0   

        (1.1) 

defined from 𝐹 → ℝ+. 

In this case the function 〈|. |〉 satisfies the conditions (𝑎1), (𝑎2) and (𝑎3)′ so, the pair (𝐹, 〈| |〉) is called 

trivial non-Archimedean field. 

Example 1.2. Let us consider function 𝑑: ℝxℝ → ℝ+, defined as 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, where the notation 

|. | is absolute value function. Clearly, 𝑑 satisfies axioms of ordinary metric space. But the function 𝑑 

does not satisfy the axiom (𝑎3)′, therefore the couple (ℝ, 𝑑) is not an ultra-metric space. 

Let 𝑋 be a non empty set and consider function �̃�: 𝑋x𝑋 → ℝ+ defined by  

 

                         �̃�(𝑥, 𝑦)={
0, 𝑥 = 𝑦
1, 𝑥 ≠ 𝑦

                                (1.2) 

 

Then the function �̃� satisfies the conditions of ultra-metric, so 𝑋 is an ultra-metric space [9], [10]. Thus 

we can suggest that  “ Every discrete metric space is an ultra-metric space” . Let 𝑋 be a linear space 𝐹 be 

a field and 𝑥, 𝑦 ∈ 𝑋, 𝛼 ∈ 𝐹. If a single argument non negative real valued function 𝑢 satisfies the 

following conditions then 𝑢 is a called ultra-norm. 

(𝑛1
′ )  𝑢(𝑥) = 0 ⇔ 𝑥 = 𝜃, 

(𝑛2
′ )  𝑢(𝛼𝑥) = |𝛼| 𝑢(𝑥), 

(𝑛3
′ )  𝑢(𝑥 + 𝑦) ≤ max{𝑢(𝑥), 𝑢(𝑦)} 

 

It is clear that, if the inequality 𝑢(𝑥 + 𝑦) ≤ max{𝑢(𝑥), 𝑢(𝑦)} is held then the 𝑢(𝑥 + 𝑦) ≤ 𝑢(𝑥) + 𝑢(𝑦) 

is held but vice versa is not true. Let 𝑢 be an ultra-norm on 𝑋 and for all 𝑥, 𝑦 ∈ 𝑋 we define function 

�̃�(𝑥, 𝑦) = 𝑢(𝑥 − 𝑦) from 𝑋 x 𝑋  to ℝ. Then the function �̃�  satisfies ultra-metric conditions [16]. This 

shows that every ultra-normed space are ultra-metric space. 

 

Definition 1.1 Let us suppose that (𝑋, 𝑢) be an ultra-normed space and (𝑥𝑘) be a sequence 𝑋. 

(i) If for all 𝜀 > 0 there exists a 𝑘0 positive integer such that 𝑢(𝑥𝑘 − 𝑥0) < 𝜀  for all 𝑘 ≥ 𝑘0, 

then (𝑥𝑘) is called ultra-convergent (or super-convergent) to 𝑥0 and denoted by          𝑥𝑘
𝑢
→ 𝑥0, 𝑘 → ∞. If 𝑥0 equal to zero then (𝑥𝑘) is called ultra-null(super-null) sequence. 

(ii) The sequence  (𝑥𝑘) is called ultra-Cauchy (or super-Cauchy), if for all 𝜀 > 0 there exists a 

𝑘0 positive integer such that 𝑢(𝑥𝑘 − 𝑥𝑖) < 𝜀  for all 𝑘, 𝑖 ≥ 𝑘0. 

(iii) The sequence  (𝑥𝑘) is called ultra-bounded (or super-bounded), if 𝑢(𝑥𝑘) ≤ 𝐾  for 𝐾 ≥ 0. 

(iv) Let (𝑋, 𝑢) be ultra-normed space. If every ultra-Cauchy sequence in (𝑋, 𝑢) ultra-convergent 

to 𝑥0 ∈ 𝑋 then 𝑋 called ultracomplete(or ultraBanach) space, [17]. 

Let 𝐹 be a non-Archimedian field. In this case set 𝑤 = {(𝑥𝑘): 𝑓: 𝐼𝑁 → 𝐹, 𝑓(𝑘) = 𝑥𝑘} is called the sets 
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of all sequences. The sets of ultra-bounded, ultra-convergent and ultra-null sequences are denoted by 

𝑙∞(𝐹), 𝑐(𝐹) and 𝑐0(𝐹),  respectively and defined as follow, 

 𝑙∞(𝐹) = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup
𝑘∈ℕ

〈|𝑥𝑘|〉 < ∞}, 

 𝑐(𝐹) = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝑥𝑘

𝑢
→ 𝑥0, 𝑘 → ∞, 𝑥0 ∈ 𝐹}, 

 𝑐0(𝐹) = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝑥𝑘

𝑢
→ 0 𝑘 → ∞}. 

This shows that the spaces 𝑙∞(𝐹), 𝑐(𝐹) and 𝑐0(𝐹) are ultra-Banach spaces with the norm defined by 

 𝑢𝑙∞(𝐹)(𝑥) = 𝑢𝑐(𝐹)(𝑥) = 𝑢𝑐0(𝐹)(𝑥) = sup
𝑘

〈|𝑥𝑘|〉,  

where |. | is satisfies the property (𝑎3)′. Some new type ultra-normed sequence spaces defined by 

Diagana [8-10] as follows: 

 𝑙∞(𝐹, ⍴) = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup
𝑘∈ℕ

〈|𝑥𝑘|〉𝜌𝑘 < ∞}, 

 𝑐(𝐹, 𝜌) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim
𝑘

〈|𝑥𝑘|〉𝜌𝑘exists}, 

 𝑐0(𝐹, 𝜌) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim
𝑘

〈|𝑥𝑘|〉𝜌𝑘 = 0} 

and these are ultra-Banachspaces with defined ultra-norm 

     𝑢𝑙∞(𝐹,⍴)(𝑥) = 𝑢𝑐(𝐹,𝜌)(𝑥) = 𝑢𝑐0(𝐹,𝜌)(𝑥) = sup
𝑘

〈|𝑥𝑘|〉𝜌𝑘. 

since every ultra-normed space is a normed space, if take 𝜌𝑘 = 1  for all k, then the spaces 𝑙∞(𝐹, ⍴),

𝑐(𝐹, 𝜌) and 𝑐0(𝐹, 𝜌) are reduced to, 𝑙∞(𝐹), 𝑐(𝐹) and 𝑐0(𝐹)  respectively. In other words, the spaces 

𝑙∞(𝐹, ⍴), 𝑐(𝐹, 𝜌) and 𝑐0(𝐹, 𝜌) are large than the spaces 𝑙∞(𝐹), 𝑐(𝐹), 𝑐0(𝐹), 𝑙∞, 𝑐 and 𝑐0, where 𝑙∞, 𝑐 

and 𝑐0 denotes ordinary bounded, convergent and null sequence spaces in Achimedian field, respectively. 

Now, we will give a new definition. 

 

Definition 1.2 (Ultra-isometry) Let 𝑋 and 𝑌 be vector space on non Archimedian field F and the mapping 

𝑇: 𝑋 → 𝑌 be given. If, for all 𝑥 ∈ 𝑋, 𝑢(𝑇𝑥)𝑌 = 𝑢(𝑥)𝑋 then the map 𝑇 is called ultra-isometry from 𝑋 to 

𝑌. In this case, the spaces 𝑋 and 𝑌 are called as ultra-isometric spaces. In addition, if the mapping 𝑇 is 

bijective, then the spaces 𝑋 and  𝑌 are called as ultra-isomorphic spaces and denoted by 𝑋 ≅ 𝑌 [17]. 

 

2. Zweier Type Ultra-normed Spaces 

Each linear subspace of 𝑤 is called a sequence space. Let λ and 𝜇 be two sequence spaces and 𝐴 =

 (𝑎𝑛𝑘) (n, k = 0,1, 2, ...)  be an infinite matrix of real or complex numbers 𝑎𝑛𝑘. Then, we can say that 𝐴 

defines a matrix mapping from λ to 𝜇, and we denote it by writing 𝐴: λ → 𝜇 if for every sequence (𝑥𝑘) ∈

𝜆  the sequence 𝐴𝑥 = {(𝐴𝑥)𝑛} the 𝐴- transform of x is in 𝜇 where  

          

                           (𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘𝑘                                                (2.1) 

 

By (λ∶ 𝜇), we denote the class of matrices 𝐴 such that 𝐴: λ → 𝜇 Thus, 𝐴 ∈ (𝜆 ∶ 𝜇), if and only if the series 

on the right side of (2.1) converges for each positive integer 𝑛 and every (𝑥𝑘) ∈ 𝜆  we have 𝐴𝑥 =

{(𝐴𝑥)𝑛} ∈ 𝜇 for all (𝑥𝑘) ∈ 𝜆 . 

The matrix domain 𝜆𝐴 of an infinite matrix 𝐴 in a sequence space 𝜆  is defined by 

 

                                             𝜆 𝐴 = {x = (xk) ∈ w: Ax ∈ 𝜆  }                                                                  (2.2) 

 

If we take 𝜆 = 𝑐 then 𝑐𝐴 is called convergence domain of 𝐴. 

By using of the matrix domain of a particular limitation method so many sequences spaces have been 
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built and published in many maths journals. By reviewing the literature, one can reach them easily ( for 

instance, see Altay and Başar [11-13], Kirişçi and Başar [14], Şengönül and Kayaduman [5], Şengönül 

[6]. Finally, the new technique for deducing certain topological properties, such as AB-, KB-, AD-

properties, solidity and monotonicity etc., and determining the 𝛼−, 𝛽 −$  and 𝛾 −duals of the domain of 

a triangle matrix in a sequence space is given by Altay and Başar [11], [12]. [13]. 

 

Definition 2.1. Let 𝑛, 𝑘 ∈ ℕ  and consider infinite matrix 𝑍 = (𝑧𝑛𝑘) defined by 

𝑧𝑛𝑘 = {
𝑝,       𝑛 = 𝑘

 1 − 𝑝,        𝑛 − 1 = 𝑘
         0,             others

  , 𝑝 ∈ ℝ − {−1}. 

The infinite matrix 𝑍 = (𝑧𝑛𝑘) is called Zweier matrix, [9]. Let 𝑥 = (𝑥𝑘) be a sequence and 𝑍-transform 

of 𝑥 = (𝑥𝑘) is defined as follows [6]: 

 

                                          𝑦𝑘 = (𝑍𝑥)𝑘 = 𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1                                 (2.3) 

 

Now we will define some new type ultra-normed sequence spaces as follows: 

      𝑐0̃(𝑍, 𝐹) = {𝑥: 𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1

𝑢
→ 𝑥0, 𝑘 → ∞}, 

        �̃�(𝑍, 𝐹) = {𝑥: 𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1

𝑢
→ 𝑥0, 𝑘 → ∞, 𝑥0 ∈ 𝐹}, 

   𝑙∞(𝑍, 𝐹) = {𝑥: sup
𝑘

〈|𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1|〉 < ∞}. 

It is clear that the sets 𝑐0̃(𝑍, 𝐹),  �̃�(𝑍, 𝐹) and 𝑙∞(𝑍, 𝐹) are defined with 𝑍𝑥 transforms in 𝑐0(𝐹), 𝑐(𝐹) and 

𝑙∞(𝐹), respectively. And these spaces are ultra (super) normed spaces defined by ultra (super) norm; 

 

                                                𝑢𝑙∞(𝑍,𝐹)(𝑥) = sup
𝑘

〈|𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1|〉                               (2.4) 

 

If we write �̃�(𝑍, 𝐹) ∈ {𝑐0̃(𝑍, 𝐹),  �̃�(𝑍, 𝐹), 𝑙∞(𝑍, 𝐹)} and λ(𝐹) ∈ {𝑐0(𝐹), 𝑐(𝐹), 𝑙∞(𝐹)} then we can give a 

theorem as follows: 

 

Theorem 2.2. Let us consider transformation   

            Z: �̃�(𝑍, 𝐹) → 𝜆(𝐹),  

                     𝑥 → Zx = y,   y = y𝑘 , y𝑘 = 𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1.  

In this case, the map Ƶ is ultra-isomorphism and the spaces �̃�(𝑍, 𝐹) and 𝜆(𝐹) are also ultra-isometric. 

Proof. Let us suppose that 𝑥, 𝑦 ∈ �̃�(𝑍, 𝐹) and 𝛼 ∈ 𝐹. It is clear that 𝑍 is linear. Furthermore, if Zx = θ, 

so 𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1 = 𝜃 then 𝑍−1(Zx) = 𝑍−1θ and we obtain that 𝑥 = 𝜃. This result shows to us the 

transformation Z  is one to one from �̃�(𝐹) to 𝜆(𝐹). Since every element of the space �̃�(𝐹) is obtainied 

from transform of 𝑥 ∈ �̃�(𝐹), it is clear that Z is onto. Secondly, we must show that the transform Z 

preserves ultra-norm between the spaces �̃�(𝐹) and 𝜆(𝐹). For this, let us define the sequence 𝑥𝑘 =

∑ (−1)𝑘−𝑗 (1−𝑝)𝑘−𝑗

𝑝𝑘−𝑗+1
𝑘
𝑗=0 𝑦𝑗 , [15,17].  

 𝑢(𝑥) = sup
𝑘

〈|𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1|〉 

             = sup
𝑘

〈|𝑝 ∑(−1)𝑘−𝑗
(1 − 𝑝)𝑘−𝑗

𝑝𝑘−𝑗+1

𝑘

𝑗=0

𝑦𝑗 + (1 − 𝑝) ∑(−1)𝑘−𝑗
(1 − 𝑝)𝑘−𝑗

𝑝𝑘−𝑗+1

𝑘

𝑗=0

𝑦𝑗|〉 

    = sup
𝑘

〈|𝑦𝑘|〉 = sup
𝑘

〈|𝑍𝑥|〉 = 𝑢(Z𝑥). 

Then here the proof ends. 
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Theorem 2.3. The spaces 𝑐0̃(𝑍, 𝐹), �̃�(𝑍, 𝐹), 𝑙∞(𝑍, 𝐹) are ultra-Banach spaces defined by ultra-norm 

(2.4). 

Proof. Since proofs are similar, we have only considered 𝑙∞(𝑍, 𝐹). It is clear that ultra-norm defined by 

(2.4) satisfies the conditions (𝑛1
′ ) , (𝑛2

′ )  and (𝑛3
′ ) . 

Let suppose that (𝑥𝑛) be ultra-Cauchy in 𝑙∞(𝑍, 𝐹). In this case, we see that there exists a positive integer 

𝑛0 such that 

𝑢𝑙∞(𝑍,𝐹)(𝑥𝑘
𝑚 − 𝑥𝑘

𝑛) = sup
𝑘

〈|(𝑝𝑥𝑚
𝑘 + (1 − 𝑝)𝑥𝑚

𝑘−1) − (𝑝𝑥𝑛
𝑘 + (1 − 𝑝)𝑥𝑛

𝑘−1)|〉 

                                                             = 𝑢𝑙∞(𝑍,𝐹,⍴)(𝑍(𝑥𝑘
𝑚 − 𝑥𝑘

𝑛)) < 𝜀 for  𝑚, 𝑛 ≥ 𝑛0. 

From her we can write 

〈|(𝑝𝑥𝑚
𝑘 + (1 − 𝑝)𝑥𝑚

𝑘−1) − (𝑝𝑥𝑛
𝑘 + (1 − 𝑝)𝑥𝑛

𝑘−1)|〉 = 〈|(𝑍(𝑥𝑘
𝑚 − 𝑥𝑘

𝑛)) |〉 < 𝜀. 

This shows to us, the sequence (𝑍(𝑥𝑘
𝑚 − 𝑥𝑘

𝑛)) is a ultra-Cauchy sequence in 𝑙∞(𝐹).  If we take into 

account 𝑙∞(𝐹) is ultra-complete and the space 𝑙∞(𝐹)and 𝑙∞(𝑍, 𝐹) are linearly ultra-isometric, then we 

can easily claim that  every ultra-Cauchy sequence in 𝑙∞(𝑍, 𝐹) is convergent. Let us suppose that 𝑥𝑘
𝑛

𝑢
→ 𝑥𝑘, 𝑛 → ∞, 𝑘 = 0,1,2, … .  Now we will show that the sequence 𝑥 = (𝑥𝑘) ∈ 𝑙∞(𝑍, 𝐹). We know that 

from Theorem 2.1, the mapping 𝑍 is bijective from 𝑙∞(𝑍, 𝐹) to 𝑙∞(𝐹). It is deduce that 𝑥 = (𝑥𝑘) ∈

𝑙∞(𝑍, 𝐹). 

Consequently the space (𝑙∞(𝑍, 𝐹), 𝑢) is a ultra-Banach space. 

Theorem 2.4. The inclusions 

(𝑖1) 𝑙∞(𝑍, 𝐹) ⊆ 𝑙∞(𝐹) 

(𝑖2) 𝑐0̃(𝑍, 𝐹) ⊆ 𝑐̃(𝑍, 𝐹) ⊆ 𝑙∞(𝑍, 𝐹) 

(𝑖3) 𝑐0 ⊆ 𝑐0̃(𝑍, 𝐹)  and  𝑐 ⊆ 𝑐̃(𝑍, 𝐹) are hold. 

Proof. The proof of the (𝑖2) and (𝑖3) are clear so we will give a proof for only (𝑖1). 

     (𝑖1)  If 𝑥 ∈ 𝑙∞(𝑍, 𝐹), then  

     𝑢(𝑥)𝑙∞(𝑍,𝐹) = sup
𝑘

〈|𝑝𝑥𝑘 + (1 − 𝑝)𝑥𝑘−1|〉 ≤ sup
𝑘

{max{|𝑝𝑥𝑘|, |(1 − 𝑝)𝑥𝑘−1|}}

= 𝐾 sup
𝑘

{max{|𝑥𝑘|, |𝑥𝑘−1|}} = 𝐾𝑢𝑙∞(𝑍,𝐹)(𝑥) 

where 𝐾 = max{|𝑝|, |1 − 𝑝|}. This shows to us 𝑥 ∈ 𝑙∞(𝐹). Similarly, we can easily prove that the 

inclusions �̃�(𝑍, 𝐹) ⊆  𝑐(𝐹) and 𝑐0̃(𝑍, 𝐹) ⊆ 𝑐0(𝐹) are hold. 

 

3. Open Problems 

1- Lets us suppose that 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and x= (𝑥𝑘) be sequence in 𝑙∞(𝐹) (or 

𝑐(𝐹),  𝑐0(𝐹)). Then when does (𝐴𝑥) ∈ 𝑙∞(𝐹) for all x= (𝑥𝑘) ∈ 𝑙∞(𝐹)? And other classes? 

2-Similarly to the open problem 1, when does (𝐴𝑥) ∈ 𝑙∞(𝑍, 𝐹) for all 𝑥 = (𝑥𝑘) ∈ 𝑙∞(𝑍, 𝐹)? 

3- If λ is super-Banach space then the sets  

  𝜆𝛼 = {𝑎 = (𝑎𝑘): 𝑎𝑥 ∈ 𝑐𝑠(𝐹) for all 𝑥 ∈ 𝜆} 

   𝜆𝛽 = {𝑎 = (𝑎𝑘): 𝑎𝑥 ∈ 𝑏𝑠(𝐹) for all 𝑥 ∈ 𝜆} 

𝜆𝛾 = {𝑎 = (𝑎𝑘): 𝑎𝑥 ∈ 𝑙(𝐹) for all 𝑥 ∈ 𝜆} 

are called 𝛼−, 𝛽 − ,   and  𝛾 −duals of the super-Banach space 𝜆. 
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In this case, what is the 𝛼−, 𝛽 − ,   and  𝛾 −duals of the spaces 𝑙∞(𝐹), 𝑐(𝐹), 𝑐0(𝐹) other spaces? 

Conclusions 

In this paper, we have obtained a new type ultra-Banach space is called Zweier ultra-Banach space and 

investigated some inclusisons theorems. 
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