
International Journal of Scientific and Technological Research                               www.iiste.org 
 ISSN 2422-8702 (Online), DOI: 10.7176/JSTR/5-2-15 
Vol 5, No.2, 2019 
 
 

129 | P a g e  
www.iiste.org  
 
 

On Low Dimensional Leibniz Algebras 

 

Nil Mansuroglu (Corresponding author) 

Department of Mathematics, Kirsehir Ahi Evran University 

 Kirsehir 40100, Turkey 

  E-mail: nil.mansuroglu@ahievran.edu.tr 

 

Mucahit Ozkaya 

Department of Mathematics, Kirsehir Ahi Evran University 

 Kirsehir 40100, Turkey  

E-mail: muco.ozk@icloud.com 

 

 

Abstract 

Leibniz algebras are generalization of Lie algebras. In literature, there are many studies on one 

dimensional and two dimensional Leibniz algebras. The structure of three dimensional Leibniz algebras 

are more complicated than the structure of one dimensional and two dimensional Leibniz algebras. In 

this study, our main aim is to investigate three dimensional non-Lie Leibniz algebras. Moreover, we prove 

that for any three dimensional non-Lie Leibniz algebra L, there exists at least one Leibniz algebra which 

is isomorphic to 𝐿. 
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1. Introduction 

Leibniz algebras have been a substantial topic of research since the 1960’s. Leibniz algebras were first 

seen in the papers of A.M. Bloh [Bloh 1965, 1971] and they were called 𝐷-algebras. Then [Loday 1993] 

J.L. Loday rediscovered these algebras and he called them Leibniz algebras. There are many results on 

Leibniz algebras analogous to results on Lie algebras. For instance, the well-known Lie’s Theorem, 

Engel’s Theorem, Cartan’s Criterion and Levi’s Theorem on Lie algebras [Jacobson, 1979]. However, 

some of these results are proved for left Leibniz algebras and some of them are proved for right Leibniz 

algebras in literature. This paper is organized as follows. In Section 2 we define the basic definitions for 

Leibniz algebras and in Section 3 we investigate the structure of one dimensional and two dimensional 

Leibniz algebras. Then in Section 4 we focus on three dimensional non-Lie Leibniz algebras and we 

prove that if 𝐿 is a three dimensional non-Lie Leibniz algebra, then there exists at least one Leibniz 

algebra which is isomorphic to 𝐿. 

 

2. Preliminary 

In this section we begin by setting up some definitions and notations for Leibniz algebras that will be 

needed in the sequal. A useful reference for more details is [Loday 1993]. Let 𝐿 and 𝑅 be algebras over 

a field 𝐹 with binary operations + and [,]. 𝐿 is called a left Leibniz algebra if it satisfies the Leibniz 

identity 

[[𝑥, 𝑦], 𝑧] = [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] 

 

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿 and 𝑅 is said to be a right Leibniz algebra if it satisfies the Leibniz identity 

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] − [[𝑥, 𝑧], 𝑦] 

for all 𝑥, 𝑦, 𝑥 ∈ 𝑅. Note that the classifications of left and right Leibniz algebras are different. Throughout 
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of this paper, we prefer to work with left Leibniz algebra. It is possible to make a transfer from a left 

Leibniz algebra to a right Leibniz algebra or from a right Leibniz algebra to a left Leibniz algebra. An 

algebra 𝐿 is said to be a symmetric Leibniz algebra if it is both a left and a right Leibniz algebra. Leibniz 

algebras are non-anticommutative generalization of Lie algebras. As an immediate consequence, every 

Lie algebras are Leibniz algebras. A Leibniz algebra 𝐿 is a Lie algebra if and only if [𝑥, 𝑥] = 0 for every 

element 𝑥 ∈ 𝐿. A Leibniz algebra 𝐿 is said to be abelian if [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐿. Indeed, an abelian 

Leibniz algebra is a Lie algebra. 

  Since 𝐿 is a vector space, for the subspaces 𝑋 and 𝑌 of 𝐿, [𝑋, 𝑌] will be a subspace generated by the 

elements [𝑥, 𝑦] where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. A subspace 𝐴 is called a Leibniz subalgebra of 𝐿, if [𝑥, 𝑦] ∈ 𝐴 

for all 𝑥, 𝑦 ∈ 𝐴. A subalgebra 𝐴 is called a left (respectively right) ideal of 𝐿, if [𝑦, 𝑥] ∈ 𝐴 (respectively 

[𝑥, 𝑦] ∈ 𝐴) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐿. If a subalgebra 𝐴 is both a left and a right ideal, it is called an ideal 

of 𝐿, that is, [𝑥, 𝑦], [𝑦, 𝑥] ∈ 𝐴 for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐿. Then we can consider the cosets 

𝑥 + 𝐴 = {𝑥 + 𝑎| 𝑎 ∈ 𝐴} 

for 𝑥 ∈ 𝐿 and a factor-algebra 

𝐿 𝐴⁄ = {𝑥 + 𝐴| 𝑥 ∈ 𝐿} 

is also a Leibniz algebra. 

We use the notation Leib(L) to denote the subspace generated by the elements [𝑥, 𝑥] for 𝑥 ∈ 𝐿. This 

subspace is called the Leibniz kernel of 𝐿. For all [𝑥, 𝑥] ∈ 𝐿𝑒𝑖𝑏(𝐿) and 𝑦 ∈ 𝐿, we obtain 

(2.1)                       [[𝑥, 𝑥], 𝑦] = [𝑥, [𝑥, 𝑦]] − [𝑥, [𝑥, 𝑦]] = 0. 

Hence [[𝑥, 𝑥], 𝑦] = 0. Moreover, a straightforward calculation shows that 

[[𝑥, 𝑥] + 𝑦, [𝑥, 𝑥] + 𝑦] = [[𝑥, 𝑥], [𝑥, 𝑥]] + [[𝑥, 𝑥], 𝑦] + [𝑦, [𝑥, 𝑥] + [𝑦, [𝑥, 𝑥]] + [𝑦, 𝑦] 

= [𝑦, [𝑥, 𝑥]] + [𝑦, 𝑦]. 

Then, we obtain [𝑦, [𝑥, 𝑥]] = [[𝑥, 𝑥] + 𝑦, [𝑥, 𝑥] + 𝑦] − [𝑦, 𝑦]. Since [[𝑥, 𝑥] + 𝑦, [𝑥, 𝑥] + 𝑦], [𝑦, 𝑦] ∈
𝐿𝑒𝑖𝑏(𝐿), we have [𝑦, [𝑥, 𝑥]] ∈ 𝐿𝑒𝑖𝑏(𝐿). This result implies that Leib(L) is an ideal of L. Furthermore, 

from (2.1), we infer that Leib(L) is an abelian Leibniz algebra. 

Say K = Leib(L). Then in factor-algebra 𝐿 𝐾⁄ = {𝑥 + 𝐾| 𝑥 ∈ 𝐿}, we have 𝑥 + 𝐾, 𝑥 + 𝐾] = [𝑥, 𝑥] + 𝐾 =
𝐾 

for each element 𝑥 ∈ 𝐿. This means that 𝐿 𝐾⁄  is a Lie algebra. Let 𝐿1 and 𝐿2 be two Leibniz algebras 

over a field F. A map 𝜑: 𝐿1 → 𝐿2 is called a homomorphism if 𝜑 is a linear map and 𝜑([𝑥, 𝑦]) =
[𝜑(𝑥), 𝜑(𝑦)]  for all 𝑥, 𝑦 ∈ 𝐿1. If  𝜑 is also bijective, we say that 𝜑 is an isomorphism. Let L be a Leibniz 

algebra. Define the composition chain of ideals 

𝐿1 = 𝐿, 𝐿2 = [𝐿, 𝐿], … , 𝐿𝑘+1 = [𝐿𝑘, 𝐿] 

for 𝑘 ≥ 1. Then the Leibniz algebra L is called a nilpotent Leibniz algebra if there exists a positive integer 

𝑘 ≥ 1 such that 𝐿𝑘 = 0. Now, we define the composition chains of ideals 

𝐿(0) = 𝐿, 𝐿(1) = [𝐿(0), 𝐿(0)], … , 𝐿(𝑛+1) = [𝐿(𝑛), 𝐿(𝑛)] 

for 𝑛 ≥ 1. If for some positive integer 𝑛 ≥ 1, we have 𝐿(𝑛) = 0, the Leibniz algebra L is said to 

be a solvable Leibniz algebra. Furthermore information about nilpotent Leibniz algebra and solvable 

Leibniz algebra can be found in [Demir, Misra & Stitzinger 2014, Kurdachenko & Chupordia 2017].  

 

3. Low dimensional Leibniz algebras 

In this section firstly we observe one and two dimensional Leibniz algebras and then we give some of 

results studied on three dimensional non-Lie Leibniz algebras. Recall that a Leibniz algebra L is a finite 

dimensional, if the dimension of L as a vector space over a field F is finite. In literature, there are many 

studies of the structure of one dimensional and two dimensional Leibniz algebras [Demir, Misra & 

Stitzinger 2014, Kurdachenko & Chupordia 2017]. Suppose that L is a one dimensional Leibniz algebra 
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over a field F. Then we have L = F x for some 𝑥 ∈ 𝐿 and so [𝑥, 𝑥] = 𝛼𝑥 where 𝛼 ∈ 𝐹. Therefore we have 

0 = [[𝑥, 𝑥], 𝑥] = [𝛼𝑥, 𝑥] = 𝛼[𝑥, 𝑥] = 𝛼2𝑥. 

This shows that 𝛼2 = 0, that is, 𝛼 = 0. In the light of this, it is obvious that [𝑥, 𝑥] = 0. Hence, L is 

an abelian Leibniz algebra. 

Now suppose that L is a two dimensional non-Lie Leibniz algebra. Then 𝐾 = 𝐿𝑒𝑖𝑏(𝐿) ≠ 0 and so it is 

clear to see that there exists an element x in L such that 𝑦 = [𝑥, 𝑥] ≠ 0. Thus, 𝐿 = 𝐹𝑥 ⊕ 𝐹𝑦 and we have 

[𝑦, 𝑥] = 0. The fact that K is an ideal of L implies that [𝑥, 𝑦] = 𝛽𝑦 for some 𝛽 ∈ 𝐹. Assume that 𝛽 ≠ 0  

and say 𝑧 = 𝛽−1𝑥. Then [𝑧, 𝑦] = [𝛽−1𝑥, 𝑦] = 𝛽−1[𝑥, 𝑦] = 𝛽−1𝛽𝑦 = 𝑦. Therefore, we have 

[𝑧, 𝑧] = [𝛽−1𝑥, 𝛽−1𝑥] = 𝛽−2[𝑥, 𝑥] = 𝛽−2𝑦 = 𝑡 

and 

[𝑧, 𝑡] = [𝑧, 𝛽−2𝑦] = 𝛽−2[𝑧, 𝑦] = 𝛽−2𝑦 = 𝑡. 

By these choice, {𝑧, 𝑡} is a basis of L. Consequently, we obtain the following two non-isomorphic 

algebras 𝐿1 = 𝐹𝑥 ⊕ 𝐹𝑦 with the products given by  

[𝑥, 𝑥] = 𝑦, [𝑥, 𝑦] = 𝛽𝑦, [𝑦, 𝑦] = [𝑦, 𝑥] = 0 

and 𝐿2 = 𝐹𝑧 ⊕ 𝐹𝑡  with the products given by 

[𝑧, 𝑧] = 𝑡, [𝑧, 𝑡] = 𝑡, [𝑡, 𝑡] = [𝑡, 𝑧] = 0. 

Suppose that 𝛽 = 0, then we have [𝑥, 𝑦] = 0 and so the Leibniz algebra L is nilpotent. 

 

4. Main Result 

The structure of three dimensional Leibniz algebras are more complicated than the structure of one 

dimensional and two dimensional Leibniz algebras. In [Demir, Misra & Stitzinger 2014], I. Demir, K.C. 

Misra and E. Stitzinger showed the existence of Leibniz algebras isomorphic to three dimensional 

nilpotent non-Lie Leibniz algebras. In this paper, this result is generated to any three dimensional non-

Lie Leibniz algebra. Now by the following theorem we give our main result on three dimensional non-

Lie Leibniz algebras. 

Theorem 4.1. Let L be a non-Lie Leibniz algebra and dimL = 3. Then there exists at least one Leibniz 

algebra which is isomorphic to L. 

Proof. Let L be a three dimensional non-Lie Leibniz algebra. Afterwards, K = Leib(L) is non-zero. Since 

K is abelian, 𝐾 ≠ 𝐿. It follows that there exists an element a in L such that 𝑏 = [𝑎, 𝑎] ≠ 0 for 𝑎 ∉ 𝐾. If 

𝑎 ∈ 𝐾, then since K is abelian, [𝑎, 𝑎] = 0. Then we have [𝑏, 𝑏] = 0, [𝑏, 𝑎] = 0 and since K is an ideal of 

L, [𝑎, 𝑏] ∈ 𝐾. Namely, this implies that [𝑎, 𝑏] = 𝛽𝑏 for some 𝛽 ∈ 𝐹. Now we take an arbitrary element 

c in L. We have two cases : 

Case 1: If 𝑐 ∈ 𝐾, then we have [𝑐, 𝑐] = 0 and 𝑐 = [𝑑, 𝑑] ≠ 0 for 𝑑 ∉ 𝐾. Here, there are two possibilities: 

if 𝑑 = 𝑎, then 𝑐 = [𝑎, 𝑎] = 𝑏. Therefore, we have 

                      [𝑎, 𝑏] = [𝑎, 𝑐] = 𝛽𝑏, [𝑏, 𝑎] = [𝑐, 𝑎] = 0, [𝑐, 𝑐] = 0. 

It follows that L is a two dimensional Leibniz algebra, this is a contradiction. If 𝑑 ≠ 𝑎, namely, 𝑐 ≠ 𝑏, 

then 𝐿 = 𝐹𝑎 ⊕ 𝐹𝑏 ⊕ 𝐹𝑐 ⊕ 𝐹𝑑, a contradiction. 

Case 2: If 𝑐 ∉ 𝐾, then 𝐿 = 𝐹𝑎 ⊕ 𝐹𝑏 ⊕ 𝐹𝑐 and we have [𝑏, 𝑐] = [[𝑎, 𝑎], 𝑐] = 0. Since K is an ideal of 

L,  [𝑐, 𝑐] ∈ 𝐾, [𝑐, 𝑐] = 𝛼𝑏 and [𝑐, 𝑏] ∈ 𝐾, [𝑐, 𝑏] ∈ 𝐾, [𝑐, 𝑏] = 𝛾𝑏 for some 𝛼, 𝛾 ∈ 𝐹. 

       [𝑎, 𝑐] = 𝛼1𝑎 + 𝛼2𝑏 + 𝛼3𝑐, [𝑐, 𝑎] = 𝛽1𝑎 + 𝛽2𝑏 + 𝛽3𝑐. 

Now we choose an element in L, say 𝑑 = 𝛽−1𝑎. Suppose that 𝛽 ≠ 0. We compute 

        [𝑑, 𝑎] = [𝛽−1𝑎, 𝑎] = 𝛽−1b=e, 

        [𝑎, 𝑑] = [𝛽−1𝑎, 𝑏] = 𝑏, 
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        [𝑎, 𝑑] = [𝑎, 𝛽−1𝑎] = 𝑒, 

        [𝑑, 𝑏] = [𝛽−1𝑎, 𝑏] = 𝑏, 

        [𝑏, 𝑑] = [𝑏, 𝛽−1𝑎] = 0, 

[𝑑, 𝑐] = [𝛽−1𝑎, 𝑐] = 𝛽−1[𝑎, 𝑐] = 𝛽−1(𝛼1𝑎 + 𝛼2𝑏 + 𝛼3𝑐) = 𝛼1𝑑 + 𝛽−1𝛼2𝑏 + 𝛽−1𝛼3𝑐, 

[𝑐, 𝑑] = [𝑐, 𝛽−1𝑎] = 𝛽−1[𝑐, 𝑎] = 𝛽−1(𝛽1𝑎 + 𝛽2𝑏 + 𝛽3𝑐) = 𝛽1𝑑 + 𝛽−1𝛽2𝑏 + 𝛽−1𝛽3𝑐, 

        [𝑑, 𝑑] = [𝛽−1𝑎, 𝛽−1𝑎] = 𝛽−2𝑏 = 𝛽−1𝑒. 

Say 𝑒 = 𝛽−1𝑏, so we have 

    [𝑎, 𝑒] = [𝑎, 𝛽−1[𝑎, 𝑏] = 𝛽𝑒, 

[𝑒, 𝑎] = [𝛽−1𝑏, 𝑏] = 0, 

[𝑒, 𝑏] = [𝛽−1𝑏, 𝑏] = 0, 

[𝑏, 𝑒] = [𝑏, 𝛽−1𝑏] = 0, 

[𝑒, 𝑐] = [𝛽−1𝑏, 𝑐] = 0, 

 [𝑐, 𝑒] = [𝑐, 𝛽−1𝑏] = 𝛾𝑒, 

[𝑑, 𝑒] = 𝛽−2[𝑎, 𝑏] = 0, 

[𝑒, 𝑑] = 𝛽−1[𝑏, 𝑑] = 0, 

                                  [𝑒, 𝑒] = 𝛽−2[𝑏, 𝑏]. 

Now we say 𝑓 = 𝛽−1𝑐, we have 

                         [𝑎, 𝑓] = [𝑎, 𝛽−1𝑐] = 𝛼1𝑑 + 𝛼2𝑒 + 𝛼3𝑓, 

 [𝑎, 𝑓] = [𝑎, 𝛽−1𝑐] = 𝛽−1(𝛼1𝑑 + 𝛼2𝑒 + 𝛼3𝑓), 

                         [𝑓, 𝑎] = 𝛽−1[𝑐, 𝑎] = 𝛽1𝑑 + 𝛽2𝑒 + 𝛽3𝑓, 

                         [𝑏, 𝑓] = 𝛽−1[𝑏, 𝑐] = 0, 

                         [𝑓, 𝑏] = 𝛽−1[𝑐, 𝑏] = 𝛼𝑒, 

                         [𝑓, 𝑐] = 𝛽−1[𝑐, 𝑐] = 𝛼𝑒, 

[𝑑, 𝑓] = 𝛽−1[𝑑, 𝑐] = 𝛽−1(𝛼1𝑑 + 𝛼2𝑒 + 𝛼3𝑓), 

[𝑓, 𝑑] = 𝛽−1[𝑐, 𝑑] = 𝛽−1(𝛽1𝑑 + 𝛽2𝑒 + 𝛽3𝑓), 

                         [𝑒, 𝑓] = 𝛽−2[𝑏, 𝑐] = 0, 

                         [𝑓, 𝑒] = 𝛽−2[𝑐, 𝑏] = 𝛽−1𝛾𝑒, 

                         [𝑓, 𝑓] = 𝛽−2[𝑐, 𝑐] = 𝛽−1𝛼𝑒. 

By this choice, {𝑑, 𝑒, 𝑓} is a basis of L. Therefore, we obtain the following two isomorphic algebras 

𝐿1 = 𝐹𝑎 ⊕ 𝐹𝑏 ⊕ 𝐹𝑐,  with the products given by 

[𝑎, 𝑎] = 𝑏, [𝑏, 𝑏] = 0, [𝑐, 𝑐] = 𝛼𝑏, 

[𝑎, 𝑏] = 𝛽𝑏, [𝑐, 𝑏] = 𝛾𝑏, [𝑎, 𝑐] = 𝛼1𝑎 + 𝛼2𝑏 + 𝛼3𝑐, 

[𝑏, 𝑎] = 0, [𝑏, 𝑐] = 0, [𝑐, 𝑎] = 𝛽1𝑎 + 𝛽2𝑏 + 𝛽3𝑐, 

and 𝐿2 = 𝐹𝑑 ⊕ 𝐹𝑒 ⊕ 𝐹𝑓, (𝑑 = 𝛽−1𝑎, 𝑒 = 𝛽−1𝑏, 𝑓 = 𝛽−1𝑐) with the products given by 

[𝑑, 𝑑] = 𝛽−1𝑒, [𝑒, 𝑒] = 0, [𝑓, 𝑓] = 𝛽−1𝛼𝑒, 

[𝑑, 𝑒] = 𝑒, [𝑓, 𝑒] = 𝛾𝛽−1𝑒, [𝑑, 𝑓] = 𝛽−1(𝛼1𝑑 + 𝛼2𝑒 + 𝛼3𝑓),  

[𝑑, 𝑒] = 0, [𝑒, 𝑓] = 0, [𝑓, 𝑑] = 𝛽−1(𝛽1𝑑 + 𝛽2𝑒 + 𝛽3𝑓) 

which completes the proof of the theorem. 
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