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Abstract 

A watershed refers to any topographically delineated area that can collect water and is drained by river system w

ith an outlet. The objective of this study is to evaluate the impact of watershed interventions on soil properties 

micro-watershed of Kechi distirict, Dawuro zone, SNNPR Ethiopia. In this study the researcher adopted a 

combination of both quantitative and qualitative methodologies. The necessary information was collected from 

both from primary and secondary sources. Soil samples were collected using 15-cm depth auger and 294.375 

cm3 core sampler at a depth of 0–30 cm. A total of 24 composite and core soil samples from Conserved and Non 

conserved watershed were collected. Soil samples were collected from upstream, midstream, and downstream 

part of the watershed to make representative for the whole watershed. Soil sample which was taken from 

representative area was analyzed by soil laboratory analysis. Watershed interventions have resulted in a 

statistically significantly higher mean value of total nitrogen, exchangeable Na+ and Mg2+ at p < 0.01, and of 

soil organic carbon and organic matter at p < 0.05 in the watershed. The clay content, soil reaction, cation 

exchange capacity, and exchangeable K+ showed non-significant, but higher mean values in conserved plots. 

Furthermore, the effects of conservation practices on soil properties were found more effective in cultivated land 

uses as compared to that of grazing land uses. This is because conservation treatments had significant effects on 

organic carbon, total nitrogen, exchangeable Na+ and Mg2+ in cultivated land uses but only on exchangeable 

Na+ in grazing land uses. The interaction effect of treatments and land uses did not reach a statistically 

significant result for any of the soil properties considered in this study. Watershed interventions have important 

implications for improving soil fertility in the kechi micro watershed. Therefore, proper guidance and follow-up, 

use of agro-forestry and grass strips, and maintenance are required for the watershed’s sustainability and good 

soil  
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INTRODUCTION 

Government of Ethiopia have initiated watershed development since 1970’s and 1980’s respectively and 

increasingly been managed and developed for poverty alleviation and environmental conservation (Chimdesa, 

2016).In Ethiopia 85 percent of the population are directly dependent on the agricultural economy. Watershed 

resource degradation is a serious problem in the Ethiopian which threatening agricultural development and rural 

livelihood. Since the economy of the country is agrarian in nature, the decline in agricultural productivity 

adversely affects the economic growth of the country. However, the productivity of that economy is being 

seriously eroded by unsustainable land management practices, both in areas of food crops and in grazing lands 

(FAO, 2016). The Government has been recognized that protection of watersheds cannot be achieved without the  

improving the livelihood of  local people and taking lessons from the past shortcomings and it has been initiated 

community based watershed management (Habtamu, 2011). At socio-economic  level  a  watershed  includes 

people, their farming system and  interactions with  their land resources, coping  strategies, social, economic and 

cultural aspects (Adane, 2010). Watershed management is the management of land and other resources on a 

watershed to achieve well-defined environmental, social, and economic goals. Watershed degradation, in turn, 

leads to accelerated ecological degeneration, reduced economic opportunities and increased social problems 

(Berry, 2016).   

Most watershed interventions are implemented with the twin objectives of soil and water conservation and 

enhancing the livelihoods of the rural poor. Different types of treatment activities carried out in a watershed 

include soil and moisture conservation measures in agricultural lands (contour/ field bunding and summer 

ploughing), drainage line treatment measures (loose boulder check dam, minor check dam, major check dam, 

and retaining walls), water resource development/management (percolation pond, farm pond, and drip and 

sprinkler irrigation), crop demonstration, horticulture plantation and afforestation The aim has been to ensure the 

availability of drinking water, fuel wood and fodder and raise income and employment for farmers and landless 

labourers through improvement in agricultural production and productivity (Rao, 2017).  
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Soil erosion is the main cause of land degradation and a leading factor contributing to poor agricultural 

development in developing countries (Gemechu 2016). Currently, soil resources are the main sources of 

livelihoods for most people of the world, such human exploitation being the foremost factor for soil degradation 

(Molla and Sisheber 2017). In developing countries, many people have been settled in the highlands due to 

favorable agricultural and ecological conditions, leading to high population densities and causing resource 

degradation (Haregeweyn et al. 2017; Nyssen et al. 2008).   

The soils of the study area have been continuously cultivated and depleted. Although knowledge of soil 

physical and chemical properties plays a vital role in enhancing production and productivity on sustainable basis, 

there is limitation of knowledge and detail information on the characteristic features of soils around study area of 

Kechi District, Southern Ethiopia. 

Thus, this study was to investigate the impacts of watershed intervention on the selected soil physico-

chemical properties of the study area. The findings of the study are expected to contribute to the improvement 

soil properties and to fill-in the knowledge gap in watershed management problems in the study area.  

 

MATERIAL AND METHODS 

Description of the Study Area 

The study was conducted in Kechi District, Dawuro Zone of Southern Nations, Nationalities and People's 

Regional State (SNNPRS), Ethiopia. Geographically, the study area lies between 6°54′29.96'' to 6°55′16.78″ N 

and 37°13'49.10'′ to 37°14'18.05'' E. It is at about 500 km south west of Addis Ababa, the capital of Ethiopia. 

The woreda shares boundary with Gessa District in the east, Tocha District  in north, Konta special woreda in 

the west, Loma District south east and Essera district  in the south. The study area lies between 2286 and 2516 

masl receiving a total annual rainfall range from 1355.4 to 2565.6 mm with mean monthly temperature varying 

from 11.7 to 23.5°C. The rainfall is a bimodal type: the short rainy season is between March and May, and the 

long between June and September. According to Tefera et al. (1999), the geology of the study area is abundant 

with rhyolites and trachy basalts mainly overlying in the Precambrian basement and tertiary volcanism. Most of 

the area is mountainous, having well drained and moderately weathered brown soil (Nitisols) and Orthic Acrisols 

(BoPED, 1998 

 

Method of Data collection 

The impacts of Watershed intervention were evaluated using adjacent conserved and non-conserved plots in the 

kechi micro watershed. Sites having conserved and non-conserved plots adjacently were identified through 

reconnaissance survey. For several reasons, some plots had not been conserved adjacent to the conserved plots in 

different portions of the watershed. This was vital to make sample sites relatively similar in physical and 

environmental conditions for comparison and the variation could be due to watershed intervention measures. Soil 

samples were collected using 15-cm depth auger and 294.375 cm3 core sampler at a depth of 0–30 cm. A total of 

24 composite and core soil samples (two treatments [conserved and non-conserved plots] * two land uses * six 

replicates) were collected. Soil samples were collected from upstream, midstream, and downstream part of the 

watershed to make representative for the whole watershed. Soil samples from upper (0.5 m from the upper bund), 

middle (midpoint between two successive bunds), and lower (0.5 m from the lower bund) part of two successive 

bunds were composited for conserved soil samples to make it more representative, because upper, middle, and 

lower portion of the area between terraces may have different soil fertility. One kilogram composite soil was 

packed from each soil sampling site for laboratory analysis. Purposive sampling was applied to select adjacent 

conserved and non-conserved watershed plots and to represent large area. Core samples were taken along with 

each composite sample. Samples from cultivated land were taken after crop harvest with similar crop land uses.  
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Photos taken during soil sample collection from representative soil samples in kechi micro watershe 

 

Soil Analysis  

 



Journal of Resources Development and Management                                                                                                                       www.iiste.org 

ISSN 2422-8397     An International Peer-reviewed Journal  

Vol.74, 2021 

 

26 

Composite soil samples were air-dried, grinded, and sieved to pass through a 2 mm sieve to make it ready 

for lab analysis. The soil laboratory analysis was done at Jimma Agricultural research center. Selected soil 

fertility indicators such as soil texture, soil pH, bulk density, total nitrogen, organic carbon, available phosphorus, 

exchangeable bases, and caution exchange capacity were analyzed using standard laboratory procedures. For the 

analysis of total nitrogen and organic carbon content, the soil sample was further sieved by 0.5 mm sieve. The 

soil bulk density was determined by core sampler method described in Black et al. (1965). The determination of 

soil particle size proportions were carried out by hydrometer method suggested by Sakar and Haldar (2005). 

Following this, the determination of soil texture and textural classification ware identified using equilateral 

triangle suggested by United States Department of Agriculture (USDA) and described by Osman (2013). Soil 

reaction (soil pH) was determined by a 1:2.5 soil: water ratio using a pH meter as described by Van Reeuwijk 

(2002). The soil organic carbon (SOC) concentration was determined by using Walkley and Black rapid titration 

method as described in Sakar and Haldar (2005). Soil organic matter (SOM) was determined by multiplying 

percent organic carbon by 1.724 (Jones 2001). Total nitrogen (TN) was determined by the modified Kjeldahl 

methods as modified by Sakar and Haldar (2005). The available phosphorus (av. P) content was determined 

using Olsen extraction method as described by Van Reeuwijk (2002). The exchangeable bases and CEC were 

determined by using ammonium acetate method (Sakar and Haldar 2005). Ca2 + and Mg2 + were determined by 

atomic absorption spectrophotometer; flame photometer method was used for determination of Na+ and K  

 

Statistical analysis 

Mean and mean differences were used as a descriptive statistical analysis method. One-way ANOVA was used 

to test whether there is a significant difference in soil physicochemical properties between conserved and non-

conserved plots. Two-way ANOVA was applied to test whether soil properties are affected significantly due to 

the interaction effect of land uses and SWC treatment. In addition, bivariate correlation analysis was used to 

show the relationships between soil physicochemical properties.  

 

RESULTS AND DISCUSSION 

Selected Soil Physical Properties under Different Land Use Types 

Soil particle size distributions 

The textural classes were identified using soil equilateral triangle recommended by USDA and described by 

Osman (2013). Accordingly, the mean particle size proportion showed that the soil was fine textured in 

conserved and non-conserved plots. The soil in the study area has been dominated by clay content experiencing a 

mean value of 67.8% and 60.5% in conserved and non-conserved soil respectively (Table 1), which implies that 

the mean value of clay content was higher under conserved plots. The mean sand fraction is the lowest 

proportion of soil particle content in the area. It was also indicated that the mean sand fraction was relatively 

lower in conserved plots. This might be attributed to the relative effect of SWC on soil erosion, which reduces 

the removal of top fine soil particles. On the contrary, higher sand content of the soil in non-conserved plots may 

be resulted due to removal of fine particles via soil erosion. A land that receives a high amount of rainfall and 

continuously cultivated without any conservation measure could allow free and easy removal of fine particles via 

rainfall runoff. The silt content of the soil was higher in non-conserved plots against the conserved plots. 

However, the differences in the mean soil particle size distribution (sand, clay, and silt) among conserved and 

non-conserved plots were not statistically significant at p < 0.05 (Table 1).  

 

Soil bulk density 

The effect of watershed intervention on the mean soil bulk density was found to be minimal and slightly lower 

values were observed in conserved plots. A relatively higher bulk density in non-conserved plots could be related 

with washing out of fine organic matter rich soils by erosion and thereby exposed slightly heavier soil 

particulates. The ANOVA result indicated that the variation in bulk density was not statistically significant 

following treatment (p < 0.05; Table 2). 
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Table 1 Test of normality and homogeneity of variance for soil physical and chemical properties in both land 

uses and per micro watershed  

Soil properties Both land uses 

 (n=24) 

   Cultivated land  

                (n=12) 

Grazing land 

(n=12) 

 

Tura  Tuta      Tura  Tuta  Tura  Tuta  

PH (H2O) 0.35ns 3.94 ns 0.627 ns 0.400 ns 0.318 ns  

SOC (%) 0.272 ns 0.002* 0.496 ns 0.629 ns 0.111 ns 0.152 ns 

TN (%) 0.269 ns 0.102 ns 0.507 ns 0.487 ns 0.143 ns 0.941 ns 

Bulk density (gcm3) 0.446 ns 0.053 ns 0.285 ns 0.661 ns 0.645 ns 0.659 ns 

Sand(%) 0.811 ns 0.021 ns 0.391 ns 0.084 ns 0.086 ns 0.139 ns 

Clay(%) 0.571 ns 0.049 ns 0.467 ns 0.042* 0.331 ns 0.117 ns 

Silt (%) 0.433 ns 0.014* 0.468 ns 0.605 ns 0.080 ns 0.036* 

Av.P (ppm) 0.344 ns 0.021* 0.919 ns 0.391 ns 0.972 ns 0.517 ns 

CEC and Each cations(cmol(+)kg-1)  

CEC 

0.608 ns 0.808 ns 0.475 ns 0.987 ns 0.425 ns 0.219 ns 

Na+ 0.091 ns 0.223 ns 0.907 ns 0.071 ns 0.104 ns 0.770 ns 

K+ 0.83 ns 0.143 ns 0.876 ns 0.200 ns 0.797 ns 0.910 ns 

Ca2+ 0.972 ns 0.474 ns 0.898 ns 0.545 ns 0.934 ns 0.102 ns 

Mg2+ 0.614 ns 0.385 ns 0.867 ns 0.476 ns 0.360 ns 0.425 ns 

Av.P  available phosphorus,  CEC cation exchange capacity, ns not significant at p<0.005, p p value, SOC soil 

organic carbon, * significant at p<0.005, TN  total nitrogen.         

 

The Impact of watershed intervention on soil chemical properties  

Soil reaction (soil pH) 

The acidity level of the watershed in general was rated as medium acidic based on Osman (2013) acidity and 

alkalinity categories of soil pH. The mean pH of the soil in the study watershed was 5.77 and 5.66 in conserved 

and non-conserved land respectively (Table 2). The acidity of the soil could be related with its sub-humid nature 

of the area and high amount of rainfall. This is true that greater rainfall increases soil acidity and humid areas are 

more acidic than arid and semi-arid areas (Osman 2013). 

 

Soil organic carbon (SOC) and soil organic matter (SOM)  

The analysis of variance result for SOC and SOM showed a statistically significant mean difference following 

treatments (p < 0.05; Table 3). The mean organic carbon and organic matter content of the soil in conserved plots 

were higher (SOC = 2.49%, SOM = 4.3%) than non-conserved plots (SOC = 1.66%, SOM = 2.83%). Besides, 

the mean soil organic carbon (SOC) content was rated low in conserved and very low in non-conserved plots 

according to the rating standard developed for tropical soils (Landon 2013). It could be explained by soil erosion, 

continuous cultivation, harvesting crop residues, and animal dung. The use of animal dung for fuel instead of 

manure may reduce the effectiveness of SWC practices in SOC concentration (Mengistu et al. 2016).  

 

Total nitrogen 
The total nitrogen (TN) content of the soil was significantly affected by SWC practices (p p <0.01; Table 3). TN 

content of the soil in Kechi watershed was rated medium and low in conserved and non-conserved plots 

respectively (Landon 2013). The mean total nitrogen of the soil was greater in conserved (0.27%) than non-

conserved plots (0.138%). 

Table 2 the mean and their significant variations (one-way ANOVA) of soil physical properties in kechi micro 

Watershed 

 Soil particle size proportions Soil  

texture 

Soil 

textural 

class 

Bulk 

density 

(gcm3) 
 Sand 

(%) 

Clay (%) Silt (%) 

Treatment  Conserved 761 645 187 Fine Clay  1.250 

Non-conserved 87 557 243 Fine  Clay  1.247 

F ratio 643 950 1178  Clay  .002 

P .265 .18 .267 - - .963 

Source Author, 2021  
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Table 3. The mean and their significant variations (one way ANOVA) of soil chemical properties in conserved 

and non-conserved Micro watershed 

       CEC and Each cations(cmol(+)kg-1) 

 PH 

(H2O) 

SOC 

(%) 

SOM 

(%) 

TN 

(%) 

Av.P 

(ppm) 

CEC Na+ K+ Ca2+ Mg2+ 

 

Treatment  

Conserved 5.54 2.46 4.2 .270 6.96 33.4 31 .52 19.3 8.67 

Non 

conserved 

5.34 1.67 2.76 .136 7.9 31.9 .18 .46 21.4 5.45 

F ratio 0.67 4.367 4.357 8.503 .354 .186 12.35 361 .453 8.525 

P 0.381 0.046* 0.046* .008** .558* .663 .002** .553 .523 .005** 

Source Author, 2021  

 

Available phosphorous  

Available phosphorous of the soil was not significantly affected by conservation measures (p > 0.05). Its mean 

value was lower in conserved plots (6.96 ppm) as compared to non-conserved plots (7.9 ppm) (Table 3). The 

varations in the use of artificial fertilizer (diammonium phosphate) may be the reason for the previaled varations 

in the soil. As compared to the requirements of crops that have been dominantly practiced in the area, the 

phosphorous content of the soil was questionable (4.1– 8 ppm) and deficient (< 11 ppm) for low demand crops 

(such as cereals and maize) and high demand crops (such as potatoes, onions) respectively (Landon 2013).  

 

Cation exchange capacity 

According to the rating standards of Landon (2013), the cation exchange capacity (CEC) of the soil in kechi 

micro  watershed was rated as high (25–40 cmol(+) kg−1 ) in both conserved and non-conserved micro 

watershed. The study result revealed that watershed intervention had a positive effect on the CEC content of the 

soil. The mean difference was higher in Tura (33.6 cmol(+) kg−1 ) than Tuta (31.9 cmol(+) kg−1 ) (Table 3), but 

not statistically significant (p > 0.05). This is believed to be caused by the relative effect of conservation 

measures in the watershed.  

 

Exchangeable cations (Na+ , K+ , Ca2+, and Mg2+)  

The relative abundance of basic cations in the exchange complex was Na+ < K+ < Mg2+ < Ca2+ for both 

conserved and non-conserved soils. Exchangeable Ca2+ (19.3 cmol(+) kg−1 , 21.4 cmol(+) kg−1 ) and Na+ 

(0.31 cmol(+) kg−1 , 0.18 cmol(+) kg−1 ) constitutes the highest and lowest proportion in Tura and Tuta micro 

watershed respectively (Table 3). One-way analysis of variance result for exchangeable Na+ and Mg2+ showed 

a statistically significant difference (p < 0.01) between conserved and non-conserved micro watershed. By 

contrast, the effect of conservation practices for exchangeable Ca2+ and K+ was not statistically significant (p > 

0.05). 

 

The effectiveness of Watershed intervention in different land uses 

As shown in Table 4, the analysis of variance result for the mean differences of all soil particle size distributions 

was not significantly affected by conservation practices in both land uses (p > 0.05). However, mean differences 

were observed in cultivated and grazing land uses following treatments. The highest sand fraction was recorded 

from non-conserved cultivated land and lowest in conserved grazing land. The mean clay content of the soil was 

65.67% and 62% in v cultivated plots. The mean difference for bulk density was slightly higher in cultivated 

land, with higher mean values in the non-conserved than in the conserved land (Table 4). It was not the case for 

grazing land uses, in which conserved plots experience higher mean values than non-conserved plots. The 

ANOVA result indicated that the variation in bulk density was not statistically significant between the conserved 

and non-conserved lands for either cultivated or grazing land uses due to watershed intervention (p > 0.05; Table 

4). The influence of land use on the effect of conservation measures for the mean difference of soil pH was slight. 

Higher SOC concentration was observed in grazing land uses than in cultivated land uses. Our analysis result by 

land use revealed that the mean difference in SOC and SOM was higher and statistically significant (p < 0.05) 

between conserved and non-conserved cultivated land uses. Higher TN content of the soil was observed in Tura 

grazing land uses (0.32%) followed by Tura cultivated land uses (0.219%) and non-conserved cultivated lands 

constitute the lowest (0.105%) (Table  5). The ANOVA result revealed a significant effect on effectiveness of 

conservation measures on cultivated plots at p < 0.01. Conversely, conservation measures did not show a 

statistically significant variation for SOM, SOC, and TN in grazing lands (p < 0.05). The SWC treatments for 

available phosphorous were not significantly affected by land uses (p > 0.05). Instead, greater concentrations 

were observed in Tuta (9.755 ppm) than in Tura cultivated land (7.78 ppm) (Table 5). Grazing land uses revealed 

very small mean difference for available phosphorous following watershed interventions. The use of inorganic 
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fertilizer (diammonium phosphate) to enhance crop production in cultivated land could probably increase av. P 

concentrations in cultivated plots. The CEC content of the soil in conserved and non-conserved land uses 

revealed 31.97 cmol(+) kg−1 , 35.3 cmol(+) kg−1 in cultivated land and 29.56 cmol(+) kg−1 , 34.3 cmol(+) 

kg−1 in grazing land respectively (Table 5). The influence of conservation structures on CEC was not 

determined by land uses and the mean difference was not statistically significant for both land uses. However, 

the impact of watershed intervention has been better in cultivated land uses as compared to grazing land uses. 

The effect of watershed intervention  in cultivated and grazing land uses showed a statistically significant 

difference in exchangeable Na+ for both land uses (p < 0.05) and exchangeable Mg2+ only in cultivated land use 

(p < 0.01). A two-way between groups analysis of variance was conducted to explore the impact of SWC 

treatment and land use types on soil fertility variation. The result showed a statistically significant main effect 

for SWC treatment on SOC, SOM at p < 0.05, and TN, Na+ , and Mg2+ at p < 0.01. The main effect for land 

uses was statistically significant only for SOC, SOM, and bulk density at p < 0.05. However, the interaction 

effect of watershed intervention and land uses did not show a statistically significant mean difference for any of 

the selected soil fertility indicators (p < 0.05; Table 6). 

Table 4 the effect of SWC practices on soil physical properties in different land uses (cultivated and grazing land) 

 Soil particle size proportions Soil 

texture 

Soil 

textural 

class 

Bulk 

density  

(g cm-3) 
Sand (%) Clay (%) Silt (%) 

Cultivated land  CL  9.333   65.67   25  Fine  Clay   1.29 

NCL  11  62  27  Fine  Clay  1.318 

F ratio  .312  .258  .098  Fine  Clay  .846 

p  .589ns  .623ns  .76ns  _ _ .379ns 

Grazing land CL  6.33  70  23.7  Fine  Clay   1.21  

NCL  9.67   59  31.3   Fine  Clay   1.18 

F ratio  .509   1.76   1.509   Fine   Clay   .122 

p  .492ns  .214ns  .247ns  _ _ .734ns 

CL conserved land, NCL non-conserved land, P p value, ns not significant at p < 0.05 

 

Table 5 the effect of SWC practices on soil chemical properties in different land uses (cultivated and grazing 

land) 

 PH 

(H2O) 

SOC 

(%)  

SOM 

(%)  

TN 

(%) 

Av. P 

(ppm) 

CEC and Exch. cations [cmol(+) kg−1 ] 

CEC  Na+  K+  Ca2+  Mg2+ 

Cultivated 

land 

CL  5.712  3.494  .219  7.778  7.778  31.97  .305  .562  17.13   8.817  

NCL  5.6  1.248  2.152  .105  9.755  29.56  .178  .463  19.1  5.25  

F 

ratio  

.316  11.577  11.577  12.607  .474  .301  5.346  .545  .223  14.101 

p  .586ns  .007**  .007**  .005**  .507ns  .595ns  .043*  .477 

ns  

.647 

ns  

.004** 

Grazing 

land 

CL  5.82  2.96  5.1  .320  6.13  35.3  5.82  .32 .47  21.4  8.55 

NCL  5.72  2.07  2.07  3.56  .172  6.05  34.3  .18 .47  23.7  6.48 

F 

ratio  

.461  1.647  1.647  3.408  .006  .021  5.93  003  .205  1.638 

p  .512ns  .228ns  .228ns  .095ns  .941ns  .886ns  .035*  .958ns  .66ns  .229ns 

Av. P available phosphorous, CEC cation exchange capacity, CL conserved land, NCL non-conserved land, ns 

not significant at p < 0.05, P p value, SOC soil organic carbon, SOM soil organic matter; **,* significantly 

different at p < 0.01 and p < 0.05 respectively (two-tailed); TN total nitrogen 
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Table 6. The two-way ANOVA result showing the interaction effect of land uses and SWC treatment on soil 

physicochemical properties 

 PH 

(H2O) 

SOC 

(%)  

SOM 

(%)  

TN 

(%) 

Av. P 

(ppm) 

CEC and Exch. cations [cmol(+) kg−1 ] 

CEC  Na+  K+  Ca2+  Mg2+ 

WI F ratio  .73  5.21  5.21  9.24  .002  .81  1.78  1.17  .38  9.04 

p  .4ns  .03*  .03*  .006**  .96 ns  .38 ns  .2 ns  .29 ns  .55 

ns  

.007** 

LU F ratio  .88 

5.7  

5.7  3.76  4.88  .61 .06  .11  3.02  1.09  1.86  .27  

p  .36 ns  .027*  .027*  .07 ns  .04*  .44 ns  .91 ns  .63 ns  .19 

ns  

.61 ns 

WI LU F ratio  .002  .02 .02  .15 .38  .09 .45  .4 .45  .04 .04  .26  .64 .002  .64 

p  .96 ns  .88 ns  .88 ns  .71 ns  .55 ns  .77 ns  .53 ns  .51 ns  .97 

ns  

.43 ns 

Av. P available phosphorous, BD bulk density, CEC cation exchange capacity, LU land use, ns not significant at 

p < 0.05, P p value, SOC soil organic carbon, SOM soil organic matter; **,* significantly different at p < 0.01 

and p < 0.05 respectively (two-tailed); WI  watershed intervention, TN total nitrogen 

 

The interrelationship among soil physicochemical properties 

The simple linear correlation (Pearson) results revealed the strength and magnitude of relationship among 

physicochemical properties. The pH of the soil showed a positive significant relationship with SOM (0.673**), 

TN (0.628**), CEC (0.619**), and all exchangeable bases except magnesium (Table 7). It also showed 

significantly negative relationship with BD (−0.426*). The correlation matrix further revealed a positive very 

strong significant relationship (0.959**) between TN and SOM and strong positive significant correlation (0.7**, 

0.783**, 0.734**) with CEC, exchangeable Na+ , and Mg2+ content. Similarly, bulk density showed strong 

negative significant relationship (−0.702**, −0.756**, −0.747**) with OM, CEC, and exchangeable Ca2+ 

content of the soil respectively. However, available phosphorous showed no regular trends and weakly varied 

with other soil physicochemical properties in kechi micro watersheds (Table 7). 

Table 7 The relationship (Pearson’s product movement coefficient of correlation) between soil physicochemical 

properties 
 PH 

(H2O) 

SOC 

(%)  

SOM 

(%)  

TN (%) BD 

(g cm-3) 

Sand 

(%) 

Clay 

(%) 

Silt 

(%) 

Av. P 

(ppm) 

CEC and Exch. cations [cmol(+) kg−1 ] 

CEC  Na+  K+  Ca2+  Mg2+ 

PH (H2O)  1              

SOC (%)  673** 1             

SOM (%)  .673**  1.000**  1             

TN (%)  .628**  .959**  .959**  1           

BD(g cm-3)  _.426*  −.702**  −.702**  −.661**  1          

Sand (%)  -.248  − .403    − .403  − .481*  .598**   1         

Clay (%)  .230  .354  .354  .461*  −.417*  −.608**  1        

Silt (%)  .133 −.192  − .192  − .277  .150  .140  −.871**  1       

Av. P (ppm)  .232   − .221  − .221   − .227  ..212   .029   − .102 − .145    1       

CEC&Exch. 

cations 

[cmol(+) 

kg−1 ] 

CEC .619**  .765**  .765**  .699**  −.756**.  − .425*  .339  −.160  .083  1     

Na+ .640**  .756**  .756**  ..783**  −.496*  −.504*  .463*   −.266  ..093  ..763**  1    

K+ .188 .115  .115  .082   −.228  − .257  − .130  .321  −.053  .232  .331  1   

Ca2+ .669**  .641**  .641**  .553** −.747**  −.428*  .261  −.061  .183  .931**  .621**  .179  . 1  

Mg2+ .505*  .741**  .741**  .734**  −.501*  − .304  .295  −.180  −.073  .768**  .807**  ..380  .529**  1 

Av. P available phosphorous, BD bulk density, CEC cation exchange capacity, SOC soil organic carbon, SOM 

soil organic matter; **,* the correlation is significant at p < 0.01 and p < 0.05 respectively (two-tailed); TN total 

nitrogen 

 

Discussion  

The impact of soil and water conservation practices on soil properties  

Watershed intervention implemented in the Kechi micro-watershed has improved the soil condition as a result of 

reduction in runoff and sediment transport. This is indicated by the significant variations in soil physicochemical 

properties between conserved and non-conserved plots. SWC structures decreased the slope length and steepness 

and consequently led to better infiltration, slow movement, and less accumulation of runoff. As a result, the 

removal of soil particles, crop residues, and other organic components can be limited, which improves the soil 

condition as compared to the non-conserved soils. The particle size proportion of the soil was fine textured in 

both conserved and non-conserved soils. The soil of the watershed was dominated by clay content indicating 

relatively higher mean value in conserved plots. Similarly, Mengistu et al. (2016) reported higher mean clay 

content in the conserved Minchit than in non-conserved Zikire sub-watershed. Higher soil erosion, removal of 

fine materials, clay contents, and organic matter could be possible reasons for relativly lower clay content in 

non-conserved plots. Clay contents are fine particulates and more vulnerable to be washed out by erosion unless 

treated with SWC measures (Hishe et al. 2017; Selassie et al. 2015). A clay soil has an inherent advantage of 
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good water and nutrient holding capacity and low level of leaching (Osman 2013). This nature of the soil helps 

the area to be more productive, even though it has been influenced by high soil erosion, continuous cultivation, 

and other natural and manmade influences. However, significant variation was not observed between conserved 

and non-conserved plots. This might be related with the prevailing parent materials and its inherent properties; 

such nature of the soil determines the texture of a soil, even if erosion, deposition, and other human activities 

may modify (Osman 2013). SWC practices affected the bulk density of the soil in kechi watershed. A relatively 

higher bulk density in non-conserved plots could be related with washing out of fine organic matter-rich soils by 

erosion and thereby exposing slightly heavier soil particles. On the other side, several potential causes may 

explain lower bulk density in conserved plots such as lesser effects of soil erosion (SWC structures as a barrier) 

and relatively higher SOM content resulted from accumulation of crop residues decay, plant leaves’ decay, and 

less vulnerability for easy removal of this components. The study finding was consistent with the results reported 

by Hishe et al. (2017) and Hailu et al. (2012) for Middle Silluh valley, northern Ethiopia, and Goromti watershed 

western Ethiopia respectively. On the other hand, Challa et al. (2016), Husen et al. (2017), and Selassie et al. 

(2015) reported a statistically significantly lower bulk density in Tura plots than in Tuta plots. Soil pH showed 

slightly higher mean values in Tura plots. Relatively higher soil acidity in Tuta plots may be related with high 

rainfall, associated with leaching and removal of important soil nutrients. Amare et al. (2013) and Osman (2013) 

explained that high amount of rain water leaches soluble bases and consequently contributes to soil acidity. 

Similarly, longterm cropping, high rainfall, topographic steepness, and the application of inorganic fertilizer 

could probably increase soil acidity (Selassie et al. 2015). The analysis of variance result show that soil pH was 

not statistically significantly affected by conservation practices (Table 3). Similar results were reported by Challa 

et al. (2016) and Husen et al. (2017) in the central highland of Ethiopia. The effect of conservation measures on 

SOC, SOM, and TN has been significant in the watershed. This coincides with Challa et al. (2016), Hailu et al. 

(2012), Hishe et al. (2017), Selassie et al. (2015), and Sinore et al. (2018), who reported statistically significantly 

higher SOC in terraced landscapes. It could be mainly related with conservation structures and biomass 

accumulation (Selassie et al. 2015). Soils exposed for severe erosion has been more vulnerable to decomposition 

of SOC than slightly eroded soils (Abegaz et al. 2016). This implies that non-conserved soils are more 

vulnerable to erosion and most likely to have low SOC concentration as compared to conserved soils. As a result, 

supporting SWC structures by agro-forestry practice has been suggested for better carbon sequestration in the 

soil (Abegaz et al. 2016; Degefu et al. 2011). Similarly, supporting terracing with susbania and elephant grasses 

could result in high SOC and SOM due to high biomass return, which contributes to symbiotic fixation and soil 

erosion reduction (Sinore et al. 2018). However, we identified during on-site observation that as an agro-forestry 

and gully rehabilitation system, eucalyptus tree plantations were predominantly used to limit soil erosion and 

other related benefits in the study watershed. However, it was reported that the use of eucalyptus tree limits 

undergrowth and its contribution for SWC has been poor (Fikreyesus et al. 2011) and it is highly nutrient and 

water consuming species (Wolancho 2015). Hence, there is a need to recommend other better alternative tree 

plantations in the area. The variation is primarily explained by conservation effects on soil erosion, because soil 

bund reduces loss of fine soil particles and residues (Husen et al. 2017; Mengistu et al. 2016; Selassie et al. 2015; 

Sinore et al. 2018). This process further improves the concentration of SOM and SOC which consequently leads 

to increase TN in the soil. The result was consistent with Challa et al. (2016), Hailu et al. (2012), Husen et al. 

(2017), Selassie et al. (2015), and Sinore et al. (2018), who stated that conserved plots resulted in significantly 

higher TN content. On the other side, the result did not agree with the findings of Hishe et al. (2017) who 

reported statistically non-significant difference in plots following treatments. The available phosphorous content 

of the soil between conserved and non-conserved plots did not have consistent pattern with conservation 

measures. The application of diammonium phosphate (DAP) may be the reason for its indistinguishable 

availability in the soil. This result coincides with the result reported by Hishe et al. (2017) for Middle Silluh 

valley, Northern Ethiopia. Hailu et al. (2012) did not find a statistically significant difference between treated 

and non-treated fields. Our result was not in agreement with Mengistu et al. (2016) and Selassie et al. (2015) 

who observed insignificant but higher available phosphorous concentration in conserved soils. The concentration 

of av. P in the soil in kechi watershed was deficient. This could be explained by different factors; the medium 

acidity nature of the soil and soil erosion through runoff may contribute to its limited availability in the soil. The 

limited availability of phosphorous in the soil may limit the growth and productivity of plants in the area. 

Phosphorous in the soil is highly required by plants and may cause slow growth when its concentration is very 

low (Hishe et al. 2017). The CEC and exchangeable basis content of the soil in the watershed was rated as high. 

This might be due to the inherent characteristics of the soil because fine textured soils have more exchangeable 

basis (Osman 2013). Soils having high clay and SOM content have strong probability to hold positively charged 

ions and consequently hold high CEC concentration (Selassie et al. 2015; Sinore et al. 2018). Conservation 

measures caused a relatively higher CEC and cation exchange capacity in conserved soils than in non-conserved 

plots. but the difference did not show statistical significance. Different researchers reported that the effect of 

SWC measures showed non-significant difference in the CEC content of the soil (such as Hailu et al. 2012; 
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Hishe et al. 2017). On the other hand, the findings of Challa et al. (2016), Mengistu et al. (2016), and Selassie et 

al. (2015) reported significantly higher CEC contents in conserved soil. The variation among research reports 

may be attributed to the level of effectiveness of SWC measures due to variations in conservation types, proper 

construction, and maintenance. Sinore et al. (2018) reported a significantly higher CEC and exchangeable bases 

in a soil treated with susbania and elephant grasses than in controlled soil. Supporting terracing with such plants/ 

grasses strengthens the bund, generates high biomass, and increases OM and better control of erosion, 

consequently increases CEC in the soil. 

 

The impact of watershed intervention in different land uses 

The impact of watershed intervention found to be different in grazing and cultivated land uses. This is indicated 

by a significant variation in SOC, SOM, TN, exchangeable Na+ and Mg2+ in conserved and non-conserved 

cultivated land uses and only exchangeable Na+ in grazing land uses. The highest sand fraction was recorded 

from non-conserved cultivated land and lowest in conserved grazing land. Similarly, Hishe et al. (2017) reported 

greater sand content in non-terraced farm land. The effect of conservation measures caused greater mean 

variation of clay content in grazing land uses than in cultivated land uses. The highest (31.3%) and lowest 

(23.7%) silt content was observed in conserved and non-conserved grazing land uses, respectively (Table 4). 

This result did not agree with the findings of Hishe et al. (2017) who reported that lowest silt content was 

recorded in non-terraced cultivated land uses. A relatively lower bulk density, higher SOC, SOM, and total 

nitrogen were observed in conserved cultivated land than in grazing land uses as compared to their counterpart. 

Higher SOC concentration was observed in grazing land uses than in cultivated land uses. Abegaz et al. (2016) 

explained that higher concentration of SOC was observed in cultivated land which makes this land uses to loss 

SOM more quickly than grazing land uses. The effect of SWC measures has reduced the removal of soil particles, 

residues, and other organic matter. On the other hand, non-conserved soils are exposed to greater removal of 

these components that may lead to relatively better effectiveness of conservation measures in cultivated land 

uses. The analysis result showed that the effectiveness of SWC was better and significant (for some soil fertility 

indicators) in cultivated land than in grazing land. This might be related with high removal of fine nutrient-rich 

soil particles due to soil erosion in cultivated land (Belayneh et al. 2019) and conservation structures reduced soil 

loss in conserved plots. The key informant interview indicated that little or no attention was given for 

maintenance of conservation structures mainly in grazing land. This is due to communal ownership of most of 

the grazing land uses and waiting for any community mass-mobilization. On the other hand, the destruction of 

conservation structures was very high due to year-round open grazing. The result was supported by Wolancho 

(2015), who stated that controlling watershed intervention in communal grazing lands was poor and its effect 

was minimal. 

 

The correlation between soil properties  

The correlation matrix implies that most of the soil physical and chemical properties vary together. Soil pH had a 

positive significant relationship with SOM, TN CEC, exchangeable Na+ , K+ , and Ca2+. This indicated that 

many of the soil properties vary together with soil pH and it determines the availability of other physicochemical 

properties of the soil and vice versa. The presence of high organic matter, CEC, and basic cations improved the 

pH of the soil (Sinore et al. 2018). Moderately significant negative relationships were also observed between 

bulk density and TN, clay content, and basic cations except Ca2+. This could be due to the availability of high 

organic matter and fine soil particles in the soil (Hishe et al. 2017); Sinore et al. 2018). Principally, the 

availability of SOM, SOC, TN, CEC, and basic cations showed strong relationship. With respect to this, the 

implementation of watershed intervention improved most of these soil properties significantly (such as SOC, 

SOM, TN, and some cations) in this study and other studies (Challa et al. 2016; Hishe et al. 2017; Sinore et al. 

2018; Mengistu et al. 2016; Selassie et al. 2015). Therefore, it gives an important lesson that the improvement in 

SOM, CEC, and clay content can also indirectly influence other properties and rehabilitates the soil to be 

healthier through its aggregate effect. 

 

Conclusion  
Watershed intervention has been an important means to reverse the degraded land and limit further damages to 

the land resources. They have been a tool for the communities to care for their local environment. This study 

evaluated the impact of watershed intervention in improving soil physicochemical properties in kechi micro 

watershed. In this regard, the study revealed that SWC resulted in improvement in soil nutrient content in kechi 

micro watershed. Soil organic matter, soil organic carbon, total nitrogen, and exchangeable Na+ and Mg2+ 

showed significantly higher mean values in conserved plot as compared to non-conserved plots. Furthermore, the 

mean values of soil pH, bulk density, clay content, caution exchange capacity, and exchangeable Ca2+ were 

better following conserved and non-conserved plots, even if the difference was not statistically significant. Our 

results also showed that the effectiveness of SWC measures was better in cultivated land than in grazing land. 
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This could be mainly related with poor management and maintenance of conservation structures in grazing land, 

year-round open grazing with little attention for treatments. SWC practices are effective ways in minimizing soil 

erosion and improving soil fertility mainly in cultivated lands. However, in general, the issue of continuity 

(spatial and temporal), maintenance, and reconstruction of structures has been given little attention, which is 

among the main challenges for limited effect of SWC practices in the watershed.  

As a result, regular community mobilization for conservation, assistance, maintenance, and reconstruction 

of demolished structures needs better attention from the concerned stakeholders, mainly the local government. 

Since conservation structures were constructed through community mass-mobilization in a campaign form, some 

individual farmers have been reluctant to retain and maintain structures for long. In addition, supporting SWC 

structures with grasses and trees is very important for strengthening their effectiveness in improving soil fertility 

and decrease soil erosion in the watershed. 
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