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Abstract 

In this work, we developed the unit step model as an approximate solution to the single-band Hubbard 

Hamiltonian to solve variationally strongly correlated interacting elections on a two-dimensional (2D) square 

lattice. We also showed primarily how to derive possible electronic states available for several 2D N x N square 

lattices, although, with special emphasis on a 2D 5 x 5 square lattice. The results emerging from our present 

study was compared with the results of Gutzwiller variational approach (GVA) and correlated variational 

approach (CVA), at the large limit of the Coulomb interaction strength (U/4t).The approximation to the Hubbard 

Hamiltonian study is actually necessary because of the strong limitation and difficulty pose by the Hubbard 

Hamiltonian as we move away from finite - size lattices to larger N - dimensional lattices. Thus this work has 

provided a means of overcoming the finite - size lattice defects as we pass on to a higher dimension. We have 

shown in this study, that the repulsive Coulomb interaction which in part leads to the strong electronic 

correlations, would indicate that the two electron system prefer not to condense into s-wave superconducting 

singlet state (s = 0), at high positive values of the interaction strength. This study reveals that when the Coulomb 

interaction is zero, that is, for free electron system (non-interacting), the variational parameters which describe 

the probability distribution of lattice electron system is the same. The spectra intensity increases with increase in 

the interaction strength and it decreases to zero when the interaction strength is made negatively large. 

Keywords: unit step Hamiltonian, Hubbard Hamiltonian, 3D cubic lattice, interaction strength, total energy, 

lattice separation. 

 

1.0 Introduction 

In recent years, the Hubbard model has received increasing attention for its relevance for high-Tc 

superconductivity, antiferromagnetism, and ferromagnetism, thus playing a central role in the theoretical 

investigation of strongly correlated systems (Domaski et al. 1996). In spite of the enormous successes of the 

approach based on the effective single particle wave equation for many 3-dimensional metals and 

semiconductors, the understanding of the so-called correlated fermionic systems is still lacking (Rycerz & 

Spalek 2001).  

This is because in their description of the electronic states the role of the long-range Coulomb interaction is 

crucial, as the charge screening becomes less effective. An electron located at a given lattice site would always 

feel the presence of another electron which is located at a different lattice site. This interaction is due to the 

presence of spin and charge between them. So long as this relationship exists the electrons are said to be 

correlated (Stintzing & Zwerger 1997).  

The Hubbard model was originally proposed as a simple model to describe the physics of metallic 

ferromagnetism. Apart from the fact that it exhibits anti-ferromagnetism, it also gives rise to ferromagnetism for 

large values of the on-site Coulomb repulsion within mean field theory as well as within other approximations 

(Jaklic & Prelovsek 1993). However, subsequent work has shown that an on-site Coulomb repulsion by itself 

will not give rise to metallic ferromagnetism except in special situations, such as a single hole in a half-filled 

band or special lattice geometries (Guerrero et al. 1998, Samuel et al. 2005).  

It appears in general, that electrons of anti-parallel spin can more easily avoid paying the price of on-site 

Coulomb repulsion by developing spatial correlations rather than by spin polarization, contrary to the predictions 

of mean field theory (Wang 1996). The most important problem associated with the applicability of the models 

of highly correlated electron systems is the nature of the ground-state of the correlated systems, what types of 

particles are condensed and what the structure of the excitations of this ground-state are, and the exact nature of 

the interaction between particles which can be studied using pair correlation functions (Balatsky 1990).     

The suggestion that the Hubbard Hamiltonian plays the key role to understanding the high temperature 

superconductors has stimulated interest in the physics of strongly correlated electron systems and many methods 

have been used to study the Hubbard model and approximations to it. However, even when the Hubbard model 

is conceptually simple, this model is very difficult to solve in general, with few tractable limits (Elric et al. 1993, 

Vallejo et al. 2003). 

In this work, a quantitative approximation to the one-band Hubbard model is presented using a variational 
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analytic approach. The goal of this work, therefore, is to explore quantitatively the lowest ground-state energy 

and the pairing correlations in 2D N x N lattices of the Hubbard model. Although, we demonstrated the 

effectiveness of the unit step model to a 5 x 5 square lattice. 

The passage from an exact approach to a variational approach becomes necessary because of the large 

uncontrollable matrix size which results from the dimensional increase in the lattice size. Any variational 

approach is an approximation to an exact treatment. In view of the fact that the many-body problem in 

condensed matter physics is quite complicated it is not unusual in the study of highly correlated electron systems 

to encounter approximation methods.    

The Hubbard model has the following features: (i) the model exhibits non-fermi liquid (FL) (quantum liquid in 

which the spin fluctuation is unmodified by interaction) behaviour as long as U > 0 for a finite particle density, 

(ii) there is no correspondence between the states of free and interacting particles even at nearly zero density, (iii) 

it allows double occupancy at a given site, (iv) consequent upon (iii) the size of the Hilbert space for a given 

cluster is much larger than for the t - J model, (v) the model exhibits anti-ferromagnetism rather than 

ferromagnetism, (vi) the Hubbard Hamiltonian becomes very cumbersome to handle when the size of the Hilbert 

space of a given dimensional lattice increases (Marsiglo 1997).  

The results emerging from our present study was compared with the results of Gutzwiller variational approach 

(1963) and correlated variational approach at large limit of the Coulomb interaction strength (U/4t ≈ 50).The 

approximation to the Hubbard Hamiltonian study is actually necessary because of the strong limitation and 

difficulty pose by the Hubbard Hamiltonian as we move away from finite - size lattices to larger N - dimensional 

lattices. Thus this work has provided a means of overcoming the finite - size lattice defects as we pass on to a 

higher and larger dimension. 

The organization of this paper is as follows. In section 2 we provide the method of this study by giving a brief 

description of the single - band Hubbard Hamiltonian and the trail wave function to be utilized. We also present 

in this section an analytical solution for the two particles interaction on a 2D 5 x 5 square lattice using the unit 

step model. In section 3 we present numerical results. The result emanating from this study is discussed in 

section 4. This paper is finally brought to an end with concluding remarks in section 5 and this is immediately 

followed by an appendix and lists of references.  

2.1 Mathematical Theory 

The single-band Hubbard Hamiltonian (Marsiglo 1997, Weng et al. 1997) reads; 

( ) ↓↑
+ ∑∑ ++−=

i
i

i
ij

ji nnUchCCtH
σ

σσ ..                                            (2.1) 

where ji,  denotes nearest-neighbour (NN) sites, ( )σσ ji CC+
 is the creation (annihilation) operator with spin  

↓=↑ orσ  at site i , and σσσ iii CCn +=  is the occupation number operator, and of course ..ch ( σσ ij CC
+

)  is 

the hermitian conjugate . The transfer integral ijt  is written as ttij = , which means that all hopping processes 

have the same probability. The parameter U is the on-site Coulomb interaction. It is worth mentioning that in 

principle, the parameter U is positive because it is a direct Coulomb integral. The exact diagonalization of (2.1) 

is the most desirable one. However, this method is applicable only to smaller dimensional lattice system, since 

the dimension of the Hamiltonian matrix increases very rapidly with the number of sites and number of particles. 

 

2.2 The correlated variational approach (CVA) 

 The trial wave function for the correlated variational approach which was adopted by Chen and Mei (1989) is of 

the form 

( ) }{}{ ,,,, ↑↓−↓↑
≠

+↓↑=Ψ −Σ∑ jiji
ji

XiiiiX jIIi

i

                   (2.2) 

Where, ( ),...,2,1,0=iX i  are variational parameters and σσ ji ,  is the eigen state of a given electronic 

state, l  is the lattice separation. With a careful application of the two equations above we can conveniently solve 

for the wave function and hence the ground-state energy of the two interacting electrons on finite-size lattice 

provided the two basic conditions stated below are duly followed. 

(i) the field strength tensor  





≠

=
=

jiiff

jiiff
ji ij 0

1
δ                                                                                       (2.3) 
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(ii)  the  Marshal rule for non-conservation of parity [14]                         

↑↓−=↓↑ ijji ,,                                                                               (2.4) 

However, to overcome the finite - size lattice defects, we developed the unit step model as an approximate 

solution to the Hubbard Hamiltonian in other to solve effectively any higher and larger dimensional lattices. 

Now let us consider for example two electrons interacting on a two dimensional (2D) N x N lattice. If one 

electron is at site ),( yx and the second one is at site ),(
11

yx , then the state will be σσ
11

, yxxy where the 

relative spins of the two electrons are )()( ↓=↑σσ . In consideration of the lattice symmetry for the 2D 5 x 5 

cluster as shown in the appendix, we have generally summarized the details of the two electrons interaction on 

the 2D 5 x 5 cluster of a square lattice in table 2.1 below.                                                                                      

 

Table 2.1:   The summary of the relevant information derived from the analytical geometry of the 2D 5 x 5 

cluster on a square lattice lattice. 

Lattice separation l  

Between the two 

electrons and actual 

separation distance d  

 

 

Pair wave 

function 

lψ  

 

Number of pair electronic states 

at 

lattice separation l  

ll ψψ  

 

 

Pair electronic states 

↓↑ ji ,  

l  d  

0  0  0ψ  25 ,11,11 ↓↑ ↓↑ 55,55,K  

1  a  1ψ  100 ,12,11 ↓↑ ↓↑ 55,54,K  

2  a2  2ψ  100 ,22,11 ↓↑ ↓↑ 51,45,K  

3  a2  3ψ  100 ,13,11 ↓↑ ↓↑ 55,53,K  

4 a5  4ψ
 

200 

,23,11 ↓↑ ↓↑ 55,43,K

 
or 

,32,11 ↓↑ ↓↑ 55,34,K

 
 

5 a8  5ψ
 

100 ,33,11 ↓↑ ↓↑ 53,35,K

 
Total number of electronic states 

N = 5 ; ( N2 x N2 ) or (N x N )2 625 625 
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Table 2.2:   Summary of   how to generate the respective lattice separation length and distance that is available 

for the two interacting electrons in the 2D 5 x 5 square lattice 

Lattice separation l  

Between the two 

electrons and actual 

separation distance d  

 

Total number of 

sites at a 

separation length 

l  

 

Description of lattice separation 

l  

 

 

 

Method for determining the 

lattice separation length l  

l  d  

0  0  1 On-site with no separation 
01 =− xx  or 01 =− yy  

 

1  a  

 

4 Linear lattice length 
a  

01 =− xx  or 11 =− yy  

11 =− xx  or 01 =− yy  

2  a2  

 

4 

Diagonal with one nearest 

neighbour sites 

22
)()( 11 ayyaxx −+−  

11 =− xx  or 11 =− yy  

 

3  a2  

 

4 Linear lattice length 
)( aa +  

01 =− xx  or 21 =− yy  

21 =− xx  or 01 =− yy  

4 a5  
8 

Diagonal lattice length 

 

22
)()( 11 ayyaxx −+−  

21 =− xx  or 11 =− yy  

11 =− xx  or 21 =− yy  

5 a8  

 

4 

Diagonal lattice length 

22
)()( 11 ayyaxx −+−  

21 =− xx  or 21 =− yy  

 

 

The above conditions stated in table 2.1, generally hold except for boundary sites, where coordinates of y remain 

invariant along x axis and coordinates of x are also invariant along y axis. In which case, when calculating the 

separation length, 5 is taken as 0, for off boundary sites along x and y axis. 

Example, ↓↑ 51,11 = ↓↑ 01,11 , then 11 =− xx  or 01 =− yy  )0,1(⇒ )1,0(⇒ , and this is a state in 1=l . 

Hence when calculating the separation length or distance co-ordinates; ),( yx and ),( xy are the same state since 

the model we have developed in this work does not recognize parity conservation. 

 

Table 2.3: Electronic states available to the two interacting electrons in a 2D N x N even square lattice 

Lattice 

Dimension 

Central lattice site 

 

Even 

Number of separation length l  

 

Even 

Number of 

electronic 

state 

Number of 

on-site 

electrons 

2D 

)( NN ×  







2
,

2

NN
 






 ++

8

)2)(4( NN
 

2
)( NN ×  

)( NN ×  

4 X 4 (2 , 2) 6 256 16 

6 X 6 (3 , 3) 10 1296 36 

8 X 8 (4 , 4) 15 4096 64 

10 X 10 (5 , 5) 21 10000 100 
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Table 2.4:  Electronic states available to the two interacting electrons in a 2D N x N odd square lattice 

Lattice 

dimension 

Central lattice site 

 

Odd 

Number of separation length l  

 

Odd 

Number of 

electronic 

state 

Number of 

on-site 

electrons 

2D 

)( NN ×  





 ++

2

1
,

2

1 NN
 







 ++

8

)1()3( NN
 

2
)( NN ×  

)( NN ×  

3 X 3 (2 , 2) 3 81 9 

5 X 5 (3 , 3) 6 625 25 

7 X 7 (4 , 4) 10 2407 49 

9 X 9 (5 , 5) 15 6561 81 

Details of how to calculate the respective actual separation distance for various separation lengths between the 

two interacting electrons in a 2D N x N square lattice can be found in (Akpojotor et al. 2002).  
2.3 The Unit Step Hamiltonian in 2D N x N square lattice. 

The approximation to the Hubbard Hamiltonian study is actually necessary because of the strong limitation and 

difficulty pose by the Hubbard Hamiltonian as we move away from finite - size lattices to larger N - dimensional 

lattices. Thus this work has provided a means of overcoming the finite - size lattice defects as we pass on to a 

higher dimension. 

The unit step model takes advantage of the symmetry of the Hubbard model given by (2.1). The kinetic hopping 

term ( t ) can only distribute the electrons within only nearest-neighbour (NN) sites in a given lattice according to 

+1 or -1. The U part can only act on the on-site electrons (double occupancy) while it is zero otherwise. Also 

from the geometry of the 2D 5 x 5 square lattice (see appendix) we can recast (2.2) as  

                                                                   
ll

l

l

X Ψ=Ψ ∑
=0

                                                                      (2.5) 

where lΨ  are the eigen states for a given separation, l
 
is the total number of separations. Now suppose we let 

mlkji ,,,,  and n  represent the eigen state of a given lattice site such that for the 3D cluster on a simple cubic 

lattice it will be ( ) ( )↓↑ lkji , . Then the operation of the Unit step Hamiltonian in 2D (even or odd) square 

lattice is define as 

( ) ( ) +↓↑±+↓↑±−=↓↑ )(,)1()(,)1(, { lkjilkjitlkjiH   

               })1(,)()1(,)( ↓±↑+↓±↑ lkjilkji   

                ↓↑+ )(,)(.1. iiiiU                                                                               (2.6) 

( ) ( ) ( ) ( ) ( ) ( ) +↓↑−+↓↑+−=↓↑ lkjilkjitlkjiH ,1,1, {

                                                             
+↓↑−+↓↑+ )(,)1()(,)1( lkjilkji

 

                                                             +↓−↑+↓+↑ lkjilkji )1(,)()1(,)(    

                                  })1(,)()1(,)( ↓−↑+↓+↑ lkjilkji  

                                                    ↓↑+ )(,)( iiiiU                                                 (2.7) 

2.4 On the evaluation of the unit step Hamiltonian 

The N - dimensional unit step Hamiltonian contains the kinetic hopping term t and the on-site Coulomb 

repulsion term U. In practice the U term makes a contribution only when all lattice sites are equal (double 

occupancy). It is zero for inter-site lattice. The implementation of the Hubbard model on the trail wave function 

would demand using (2.1) to run through all pair electronic states one after the other.  

That is, for 2D 10 x 10 square lattice where there are a total of 10000 pair electronic 

states; 10000,,3,2,1,0: K=Ψ llH . While for 2D 9 x 9 square lattice where there are a total of 6561 pair 

electronic states; then
 

6561,,3,2,1,0: K=Ψ llH . This process as we all know is actually cumbersome 

and it will be very difficult to handle without error. 
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The advantage of the unit step Hamiltonian as an approximation to the single band Hubbard Hamiltonian, which 

we presented in this work is that instead of using (2.1) to run through all the pair electronic states one after the 

other as the case demands, we rather use (2.6) to act on only one single electronic in each separation and sum the 

result. We know that ΨΨ H  is always a commuting or Hermitian matrix. The eigen vectors of the Hermitian 

matrix are orthogonal and form a complete set, i.e., to say that any vector of this space is a linear combination of 

vectors of this set.  

Consequent upon this, we use (2.6) to evaluate only a given eigen state from each of the given set lΨ  and 

generalize the result since the vectors are commuting. Thus generally, when the unit step model acts on (2.5) we 

can sum the result as follows. 

             

=Ψ=Ψ ∑
l

llXHH
ll

jj

jlll
XU

Xn
t

llj

Ψ+
ΨΨ

ΨΨΨ
− ∑













∑
)(

                      (2.8) 

where n is the total number of states generated within a given lattice separation, ll ΨΨ  is the inner product 

of the state acted on by the unit step Hamiltonian, 
jj

ΨΨ  is the total number or the inner product of the 

new state generated after operating on the eigen state, l  is the particular lattice separation, 
j

Ψ is the new 

state generated. To understand completely how the unit step Hamiltonian works, we shall demonstrate it 

elementarily for only two cases and assume the same routine for the rest separations. Now
 
 

=ΨH +Ψ+Ψ+Ψ+Ψ
33221100 HXHXHXHX

5544 Ψ+Ψ HXHX
              

(2.9)       

0
ΨH =↓↑= 11,11H



 +↓↑+↓↑−

11

0 11,5111,21Xt
1

11,12 ↓↑ +
1

11,15 ↓↑
 
+          

                          +↓↑+↓↑+↓↑+↓↑


1111

15,1112,1151,1121,11 00 ΨXU
 
              (2.10) 

Where for clarity of purpose the superscripts only indicate the respective separations generated. Also note that in  

the process of applying this technique, for instance, if ( i + l ) = 6 or ( i - l ) = 0, since there is no 6 or 0 in the 

information provided by the lattice geometry  in table 2.1, then 6 ( = 1) and 0 ( = 5 ) because of the requirements 

of the repeated boundary conditions. It is obvious from the parentheses of (2.10) that all the 8 new eigen states 

generated are of the same separation 1=l and therefore having eigen state 1ψ . Hence 

                                                    0
ΨH = { }18 Ψ− t 00 Ψ+ XU                                                    (2.11) 

By comparing this result with the equation (2.8), then 8=n , 1=j and 0=l  as a result 

                                 0
ΨH = 00

11

100

0

8
Ψ








+

ΨΨ

Ψ×ΨΨ×
− XUXt                                      (2.12) 

            0
ΨH = 00

1

0 100

258
Ψ








+

Ψ××
− XUXt ( ) 0010 2 Ψ+Ψ−= XUXt               (2.13) 

Now there is also the need for us to use the unit step Hamiltonian to act on the state in separation 1=l , instead 

of just generalising the effectiveness and accuracy of the unit step Hamiltonian with the result of only 

separation 0=l . The events of separation  1=l  would be little different from the first one. Thus, when the unit 

step Hamiltonian acts on the eigen state in separation 1=l  we get, 

1
ΨH =↓↑= 12,11H



 +↓↑+↓↑−

22
12,5112,21t +↓↑

0
12,12  

                
3

12,15 ↓↑ +
  


↓↑+↓↑+↓↑+↓↑

0322
11,1113,1152,1122,11

                  
(2.14) 

                                  1
ΨH = { }320 242 Ψ+Ψ+Ψ− t                                                                   (2.15) 

We can now revert to (2.8) for the summation technique. Hence
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      1
ΨH = 








ΨΨ

Ψ×ΨΨ×
+

ΨΨ

Ψ×ΨΨ×
+

ΨΨ

Ψ×ΨΨ×
−

33

311

22

211

00

011

1

242
Xt              (2.16) 

              1
ΨH = 







 Ψ××
+

Ψ××
+

Ψ××
−

100

1002

100

1004

25

1002 320

1Xt                              (2.17) 

                                   1
ΨH = { }3201 248 Ψ+Ψ+Ψ− Xt                                                             (2.18) 

Also by a similar algebraic subroutine, when the unit step Hamiltonian acts on the eigen state in separation 

4,3,2=l and 5 , we get respectively after a careful simplification the below equations.  

                                            2
ΨH = { }412 24 Ψ+Ψ− Xt                                                                 (2.19) 

                                            3
ΨH = { }413 22 Ψ+Ψ− Xt                                                                 (2.20) 

                                    4
ΨH = { }5324 444 Ψ+Ψ+Ψ− Xt                                                          (2.21) 

                                                5
ΨH = { }45 2 Ψ− Xt

                     
                                                     (2.22) 

We can see that this technique is very straightforward as it limits the operation to only one eigen state in a given 

lattice separation instead of using the Hubbard Hamiltonian to operate on all the states one after the other. Hence 

in accordance with (2.8) and (2.9) we get 

             
=Ψ

554433221100 Ψ+Ψ+Ψ+Ψ+Ψ+Ψ XXXXXX                    (2.23) 

{ +Ψ+Ψ+Ψ+Ψ+Ψ+Ψ+Ψ−=Ψ 13421231210110 2242482 XXXXXXXtH  

                 } +Ψ+Ψ+Ψ+Ψ+Ψ 4554342443 24442 XXXXX
 00 ΨUX                        (2.24) 

With the use of (2.3) and the information provided in table 3.1, we can eventually establish after multiplying 

through (2.21) and (2.22) by the complex conjugate of (2.5) that 

  
+ΨΨ=ΨΨ 00

2

0X +ΨΨ 11
2

1X +ΨΨ 22
2

2X 33
2

3 ΨΨX + +ΨΨ 44
2

4X 55
2

5 ΨΨX                                 

                                                                                                                                                                          (2.25) 

                                   
( )2

5
2
4

2
3

2
2

2
1

2
0 4844425 XXXXXX +++++=ΨΨ

 
                                             (2.26) 

                  
{ ++++++−=ΨΨ 544342312110 888484)4)(25( XXXXXXXXXXXXtH         

                                                           }2

0

2

5

2

4

2

3
)4/(442 XtUXXX −++                                                        (2.27) 

2.5 The variational method  

The variational method consists in evaluating the integral 

                                                
=ΨΨ=ΨΨ HE g Ψ+Ψ uHtH                                                (2.28) 

Where gE is the correlated ground state energy and Ψ is the guessed trial wave function. We can now 

differentially  minimize (2.26) after the substitution of (2.24) and (2.25) as follows.  

                                             

ΨΨ
∂
∂

=ΨΨ
∂
∂

+
∂

∂
ΨΨ H

XX
E

X

E

ii
g

i

g

 

                                             (2.29) 

Subject to the condition that the correlated ground state energy of the two interacting electrons is a constant of 

the motion, that is 

                                                         

0=
∂

∂

i

g

X

E
           ;    3,2,1,0=∀ i                                                         (2.30) 

We can carefully transform the resulting equation into a homogeneous eigen value problem of the form 

                                                                    
[ ] 0=− ll XIA

r

λ                                                                          (2.31) 

Where A is an NXN matrix which takes the dimension of the number of separations, 
lλ is the eigen value (total 

energy E ) to be determined, I is the identity matrix which is also of the same order as A , 
iX

r

 are the various 

eigen vectors or simply the variational parameters corresponding to each eigen value. After some algebraic 
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subroutine we get the matrix.  

                                          

































































=

+

+

+

−

0

0

0

0

0

0

440000

222200

042020

04040

00242

000084

5

4

3

2

1

0

X

X

X

X

X

X

E

E

E

E

E

uE

                                      (2.32) 

Where tUu 4/= is the interaction strength between the two interacting electrons and tEE g /= is the total 

energy possess by the two interacting electrons. From the matrix given by (2.30) we can now determine the total 

energy and the corresponding variational parameters for various arbitrary values of the interaction strength. 

2.6 Evaluation of the spectral intensity 

Suppose we write (2.5) in terms of only nearest neighbours site to a given separation length.  Accordingly, 

ll ΨΨ = 1, 4, 4, 4, 8 and 4; =l 0, 1, 2, 3, 4 and 5, respectively, then   we get                        

                                 554433221100 Ψ+Ψ+Ψ+Ψ+Ψ+Ψ=Ψ aaaaaa                             (2.33) 
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Where 
2

la )5,,1,0( K=l  still represent the variational parameters. 

Then this will make us redefine (2.26) as 

                                                                    ∑
=

=ΨΨ
5

2

0l
ll aλ                                                                        (2.35)                                            

where )5,,2,0( K=llλ are the respective weights or coefficients of the various basis of the lattice separation 

parameters 
2

la . The spectral density )(ωf
)

 defines the distribution of the probability of values of the 

momentum possess by the two electrons to the total energy. That is 
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                                                           (2.36) 

However, the kernel )(xf  in the integrand is simply
2x , because the basis is a square of the lattice separation 

parameter, ω is the angular vibration of the two electrons. As a result, (2.36) becomes 
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It is sometimes convenient to express the spectral intensity in terms of polar coordinate, so 

that
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Suppose we decide to vary (2.41) logarithmically, then after some arithmetic jamboree the resulting equation 

simplifies to 
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Thus (2.44) gives the spectral intensity of the two interacting electrons. The spectral intensity is made up of 

constant amplitude and an oscillating phase. The intensity is determined by the fifth power of the angular 

vibration ω of the two interacting electrons. 

 

3.0 Presentation of Results  

Table 3.1:  Shows the calculated values of the total energy and the variational parameters 

for various arbitrary values of the interaction strength. 

Interaction 

strength  

tU 4/  

Total 

energy 

tEE g /=  

Variational parameters ( lX )  ( =l 0, 1, 2, 3, 4, 5) 

0X  1X  2X  3X  4X  5X  

50.00 -7.7585 0.0131 0.3390 0.4242 0.4538 0.4837 0.5148 

40.00 -7.7602 0.0162 0.3399 0.4244 0.4537 0.4835 0.5143 

30.00 -7.7630 0.0214 0.3412 0.4247 0.4537 0.4830 0.5134 

20.00 -7.7684 0.0313 0.3438 0.4253 0.4535 0.4821 0.5117 

10.00 -7.7834 0.0587 0.3506 0.4266 0.4528 0.4794 0.5068 

5.00 -7.8084 0.1039 0.3613 0.4279 0.4508 0.4739 0.4978 

1.00 -7.9013 0.2631 0.3914 0.4240 0.4351 0.4462 0.4575 

0.00 -8.0000 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 

-1.00 -8.3668 0.7235 0.3945 0.3176 0.2934 0.2695 0.2468 

-5.00 -20.8086 0.9947 0.1005 0.0200 0.0114 0.0034 0.0008 

-10.00 -40.4010 0.9987 0.0501 0.0050 0.0026 0.0004 0.0000 

-20.00 -80.2001 0.9997 0.0250 0.0012 0.0006 0.0000 0.0000 

 

Table 3.2:  Shows the calculated values of the Spectra intensity for arbitrary value of ω  

For 2D 5 x 5 square lattice 

Interaction 

strength  

tU 4/  

Spectra intensity 
2

)(ωf
)

   (ω =0.5) 

0=l  1=l  2=l  3=l  4=l  5=l  

50.00 0.0000 0.0309 34.0995 1356.815 63786.98 80267.54 

40.00 0.0000 0.0313 34.1635 1355.619 63681.55 79956.16 

30.00 0.0000 0.0318 34.2602 1355.619 63418.54 79397.95 

20.00 0.0000 0.0327 34.4542 1353.23 62947.18 78351.53 

10.00 0.0000 0.0354 34.8774 1344.895 61548.84 75393.21 

5.00 0.0000 0.0399 35.3045 1321.29 58772.55 70178.71 

1.00 0.0000 0.0550 34.0348 1146.618 46189.79 50066.84 

0.00 0.0000 0.0651 29.2383 888.2896 32353.38 31730.57 

-1.00 0.0000 0.0568 10.7147 237.0844 6146.994 4240.01 

-5.00 0.0000 0.0002 0.0002 0.00054 0.000156 4.68E-07 

-10.00 0.0000 1.4E-05 6.58E-07 1.46E-06 2.98E-08 0.0000 

-20.00 0.0000 9.16E-07 2.18E-09 4.15E-09 0.0000 0.0000 
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Table 3.3: Comparison of the large limit of the interaction strength ( 504/ =tU ) of the ground 

state energy obtained in this Present study with GVA and CVA for the 2D N x N square lattice 

2D N x N 

Square Lattice 

GVA 

)/11(8
2

NE N −−=  

CVA 

)/1(8
2

NE N α−−=  

α  = 0.6250 

Present study 

)/1(8
2

NE N α−−=  

α  = 0.7546 

3 x 3 -7.1111 -7.4444  -7.3292 

5 x 5 -7.6800 -7.8000  -7.7585 

7 x 7 -7.8367 -7.8980  -7.8768 

9 x 9 -7.9012 -7.9382  -7.9255 

11 x 11 -7.9339 -7.9587  -7.9501 

 

4.0 Discussion of Results 

The total energies and the variational parameters for the 2D 5 x 5 square lattice obtained from the matrix (2.32) 

of section 2 is shown in table 3.1. The table shows that (i) the total energy possess by the two electrons is non-

degenerate and it decreases as the interaction strength is decreased, (ii) X0 increases as the interaction strength is 

decreased, (iii) X1 increases until the interaction strength tU 4/  = 0 and then it starts to decrease as  tU 4/  is 

decreased, (iv) X2 increases until the interaction strength tU 4/  = 5 and then it starts to decrease as  tU 4/  is 

decreased, (v) X3, X4 and X5 decreases consistently as tU 4/  is decreased.  

The table exhibits clearly that the variational parameters for any given system are of equal weights when tU 4/  

= 0. This implies that the probability of double occupancy is the same as single occupancy. When the interaction 

strength is zero, we observe a free electron system, the two electrons are not under the influence of any given 

potential they are free to hop to any preferable lattice site. It is clear from the table that for positive interaction 

strength, X0 p  X1 p  X2 p  X3 p  X4 p  X5. Also for negative interaction strength we observe that X0 f  X1 f X2 f  

X3 f  X4 f  X5.  

We infer from this result that when the interaction strength is made more negatively large, then the electrons now 

prefer to remain close together (Cooper pairing). This is represented by the greater value of X0 (double 

occupancy). Generally, it is this coming together or correlation of electrons that is responsible for the many 

physical properties of condensed matter physics, e.g. superconductivity, magnetism, super fluidity. However, in 

the positive regime of the interaction strength, the two electrons prefer to stay far apart as possible and the event 

is synonymous with ferromagnetism. 

As indicated in table 3.2, the spectra intensity for on-site electrons is zero for all values of the interaction 

strength. The table exhibits clearly that the variational parameter X1 increases until tU 4/ = 0 and thereafter it 

starts to decrease while X2 increases until when tU 4/ = 10 before it starts to decrease. The parameters X3, X4 

and X5 decreases consistently to zero as the interaction strength is decreased. This implies that high values of 

positive interaction strength increase the momentum of the two electrons. While high negative interaction 

strength decreases the momentum of the two electrons. 

As shown in table 3.1, the difference in values of the total energies as the interaction strength is made positively 

large is very small, as a result we assume tU 4/ = 50 to be large enough to typify the large limit of the 

interaction strength. It is evident from table 3.3 thatα  varies with N, the number of lattice sites. For large N, α   

approaches the value of 0.7546 in this present study, while α  is 0.6350 in the work of Chen and Mei. The result 

of the ground state energies for various 2D N x N square lattices obtained in this present study agrees suitably 

enough those of GVA and CVA. 

 

5.0 Conclusion 

The result of this work demonstrates that positive on-site interaction strength ( tU 4/ ), makes the two 

interacting  electrons to stay away from each other as far apart as possible in order to gain the lowest energy and 

hence the highest potential. The model in this regime best describes ferromagnetism. Also for sufficiently large 

and negative on-site interaction strength ( tU 4/ ) the electrons prefer to stay close together in order to gain the 

lowest energy and hence the minimum potential. The model in this regime favours Cooper pairing. Generally, it 

is this coming together or correlation of electrons that is responsible for the many physical properties of 

materials in condensed matter physics, e.g. superconductivity, magnetism, super fluidity. We have investigated 

in this study, that the repulsive Coulomb interaction which in part leads to the strong electronic correlations, 

would indicate that the two electron system prefer not to condense into s-wave superconducting singlet state (s = 
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0), at high positive values of the interaction strength U/4t.  
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