Strong Convergence of an Algorithm about Strongly Quasi-Nonexpansive Mappings for the Split Common Fixed-Point Problem in Hilbert Space

Lawan Bulama Mohammed¹*, Abba Auwalu² and Salihu Afis³

1. Department of Mathematics, Bauchi State University, Gadau, Nigeria
2. College of Remedial and Advanced Studies, P.M.B. 048, Kafin Hausa, Jigawa State, Nigeria
3. Department of Mathematics, Gombe State University, Gombe, Nigeria

*Corresponding Author Email: lawanbulama@gmail.com

Abstract

Based on the recent work by Censor and Segal (2009 J. Convex Anal. 16), and inspired by Moudafi (2010 Inverse Problem 26), in this paper, we study the modified algorithm of Yu and Sheng [29] for the strongly quasi-nonexpansive operators to solve the split common fixed-point problem (SCFP) in the framework of Hilbert space. Furthermore we proved the strong convergence for the (SCFPP) by imposing some conditions. Our results extend and improved/developed some recent result announced.

Keywords: Convex Feasibility, Split Feasibility, Split Common Fixed Point, Strongly Quasi-Nonexpansive Operator, Iterative Algorithm and Strong Convergence.

1. Introduction

Let $H₁$ and $H₂$ be a Hilbert spaces, $A: H₁ → H₂$ be a bounded linear operator and $A^*$ be an adjoint of $A$. Given integer’s $p, r ≥ 1$ and also given sequence of nonempty, closed, convex subsets $\{C_i\}^p_i$ and $\{Q_j\}^r_j$ of $H₁$ and $H₂$ respectively, the convex feasibility problem (CFP) is formulated as finding a point $x^* ∈ H₁$ satisfying the property:

$$x^* ∈ \bigcap^p_i C_i. \quad (1.1)$$

Note that, CFP (1.1) has received a lot of attention due to its extensive applications in many applied dislines, diverse as approximation theorem, image recovery, signal processing, control theory, biomedical engineering, communication and geophysics (see [1 - 3] and the reference therein).

The multiple set split feasibility problem (MSSFP) was recently introduced and studied by Censor, Elfving, Kopf and Bortfeld, see [4] and is formulated as finding a point $x^* ∈ H₁$ with the property:

$$x^* ∈ \bigcap^p_i C_i \text{ and } Ax^* ∈ \bigcap^r_j Q_j \quad (1.2)$$

If in a MSSFP (1.2) $p = r = 1$, we get what is called the split feasibility problem (SFP) see [5], which is formulated as finding a point $x^* ∈ H₁$ with the property:

$$x^* ∈ C \text{ and } Ax^* ∈ Q \quad (1.3)$$

where $C$ and $Q$ are nonempty, closed and convex subsets of $H₁$ and $H₂$ respectively. Note that, SFP (1.3) and MSSFP (1.2) model image retrieval (see [5]) and intensity modulated radiation therapy (see [15, 16]) and have recently been studied by many Researchers [6, 7 and 17-25] and references therein.

The MSSFP (1.2) can be viewed as a special case of the CFP (1.1) since (1.2) can be rewriting as

$$x^* ∈ \bigcap^p_i C_i, \quad C_{p+j} = \{x^* ∈ H: x^* ∈ A^{-1}(Q_j), \ 1 ≤ j ≤ r\}.$$
MSSFP (1.2) straight forwardly without involving the inverse of A. The CQ algorithm of Byrne [6; 7] is such an example where only the operator of A is used without involving the inverse. Since every closed convex subset of Hilbert space is the fixed point set of its associating projection, the CFP (1.1) becomes a special case of the common fixed-point problem (CFPP) of finding a point \( x^* \in H_1 \) with property:

\[
x^* \in \bigcap_{i=1}^{p} \text{Fix}(T_i).
\]

where each, \( T_i: H_1 \to H_2 \) are some (nonlinear) mapping. Similarly the MSSFP (1.2) becomes a special case of the split common fixed point problem (SCFPP) [8] of finding a point \( x^* \in H_1 \) with the property:

\[
x^* \in \bigcap_{i=1}^{p} \text{Fix}(U_i) \text{ and } A x^* \in \bigcap_{j=1}^{r} \text{Fix}(T_j),
\]

where each, \( U_i: H_1 \to H_1 \ (i = 1, 2, 3 \ldots p) \) and \( T_j: H_2 \to H_2 \ (j = 1, 2, 3 \ldots, r) \) are some nonlinear operators. If \( p = r = 1 \), problem (1.5) is reduces to find a point \( x^* \in H_1 \) with property:

\[
x^* \in \text{Fix}(U) \text{ and } A x^* \in \text{Fix}(T)
\]

This is usually called the two-set SCFPP.

The concept of SCFPP in finite dimensional Hilbert space was first introduce by Censor and Segal (see [8]) who invented an algorithm of the two-set SCFPP which generate a sequence \( \{x_n\} \) according to the following iterative procedure:

\[
x_{n+1} = U(x_n + \gamma A^*(T - I)Ax_n), \ n \geq 0,
\]

where the initial guess \( x_0 \in H \) is choosing arbitrarily and \( 0 < \gamma \leq \frac{1}{\|A^*A\|} \).

Inspired by the work of Censor and Segal [8], Moudafi [27] introduced the following algorithm for \( \mu - \text{demicontractive operator} \) in Hilbert space:

\[
\begin{align*}
\{ & u_n = x_n + \gamma A^*(T - I)Ax_n, \\
x_{n+1} = (1 - t_n)u_n + t_nU(u_n), & n \geq 0
\end{align*}
\]

where \( \gamma \in \left(0, \frac{1}{\|A^*A\|}\right) \) with \( \lambda \) being the spectral radius of the operator \( A^*A \) and \( t_n \in (0,1) \) and \( x_0 \in H \) is choosing arbitrarily. Using fejer-monotone and the demiclosed properties of \( (I - U) \) and \( (I - T) \) at origin, in 2010, Moudafi (see [27]) proved convergence theorem based on the work of Censor and Segal [8]. And also in 2011, Moudafi, Sheng and Chen (see [28]) gave their result of pseudo-demicontractive operators for the split common fixed-point problems. In 2012, Yu and Sheng [29] that modified the algorithm proposed by Moudafi [27] and they extend the operator to the class of firmly pseudo-demicontractive operator. In this paper, we study the modified algorithm of Yu and Sheng [29] and we used the strongly quasi nonexpansive operator to obtain the strong convergence of SCFPP (1.5).

2. Preliminaries

Throughout this paper, we adopt the notation:

- \( I \): the identity operator on Hilbert space \( H \).
- \( \text{Fix}(T) \): the set of fixed point of an operator \( T: H \to H \)
- \( \Omega \): The solution set of SCFPP (1.5).
- \( \omega_n(x_n) \): The set of the cluster point of \( x_n \) in the weak topology i.e. \( \exists x_{n_j} \) of \( x_n \) \( \exists x_{n_j} \to x \)
- \( x_n \to x : \{x_n\} \) Converge in norm to \( x \)
- \( x_n \to x : \{x_n\} \) Converge weakly to \( x \)

**Definition 2.1** Assume that \( C \) is a closed convex nonempty subset of a real Hilbert space. A sequence \( \{x_n\} \) in \( H \) is said to be Fejer monotone with respect to \( C \) if and only if

\[
\|x_{n+1} - z\| \leq \|x_n - z\|, \quad \text{for all } n \geq 1 \text{ and } z \in C.
\]

**Definition 2.2** let \( T: H \to H \) be an operator. We say that \( (I - T) \) is demi closed at zero, if for any sequence \( x_n \) in \( H \), there holds the following implication:

\[
x_n \to x \quad \text{and} \quad (I - T)x_n \to 0 \quad \text{as } n \to \infty, \quad \text{then } (I - T)x = 0.
\]

**Definition 2.3** A Banach space \( E \) has Kadec-Klee property, if for every sequence \( x_n \in E \) such that \( x_n \to x \)
and \( \|x_n\| \to \|x\| \), then \( x_n \to x \) \( n \to \infty \).

**Definition 2.4** An operator \( T: H \to H \) is said to be
(a) nonexpansive if \( \|Tx - Ty\| \leq \|x - y\| \), for all \( x, y \in H \).
(b) quasi-nonexpansive if \( \text{Fix}(T) \neq \emptyset \) and \( \|Tx - z\| \leq \|x - z\| \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).
(c) strictly quasi-nonexpansive if \( \text{Fix}(T) \neq \emptyset \) and \( \|Tx - z\| < \|x - z\| \), \( \forall x \in H / \text{Fix}(T) \) and \( z \in \text{Fix}(T) \).
(d) \( \alpha \)-strictly quasi-nonexpansive if there exist \( \alpha > 0 \) with the property: \( \|Tx - z\|^2 \leq \|x - z\|^2 - \alpha \|x - Tx\|^2 \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).

This is equivalent to
\[
\langle x - z, Tx - x \rangle \leq \frac{-1+\alpha}{2} \|x - Tx\|^2, \text{ for all } x \in H \text{ and } z \in \text{Fix}(T).
\]

**Definition 2.5** an operator \( T: H \to H \) is said to be:
- Demicontractive \([27]\); if there exist a constant \( \beta < 1 \) such that \( \|Tx - z\|^2 \leq \|x - z\|^2 + \beta \|x - Tx\|^2 \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).
- Pseudo-demicontractive \([28]\); if there exist a constant \( \alpha > 1 \) such that \( \|Tx - z\|^2 \leq \alpha \|x - z\|^2 + \|x - Tx\|^2 \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).
- Firmly pseudo-demicontractive; if there exist a constants \( \alpha > 1 \) and \( \beta > 1 \) such that \( \|Tx - z\|^2 \leq \alpha \|x - z\|^2 + \beta \|x - Tx\|^2 \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).

**Lemma 2.6** \([9]\) Let \( T: H \to H \) be an operator. Then the following statements are equivalent
(a) \( T \) is class - T operator ;
(b) \( \|x - Tx\|^2 \leq \langle x - z, x - Tx \rangle \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).
(c) there hold the relation: \( \|Tx - z\|^2 \leq \|x - z\|^2 - \|x - Tx\|^2 \), for all \( x \in H \) and \( z \in \text{Fix}(T) \).

Consequently a class - T operator is \( 1 \) - strongly quasi - nonexpansive.

**Lemma 2.7** \([3]\) If a sequence \( \{x_n\} \) is fejer monotone with respect to a closed convex nonempty subset \( C \), then the following hold.
(i) \( x_n \to x \) if and if \( \omega_{\omega}(x_n) \subset C \);
(ii) The sequence \( \{P_H x_n\} \) converges strongly to some point in \( C \);
(iii) if \( x_n \to x \in C \), then, \( x = \lim_{n \to \infty} P_H x_n \).

**Lemma 2.8** \([30]\) Let \( H \) be a Hilbert space and let \( \{x_n\} \) be a sequence in \( H \) such that there exist a nonempty set \( S \subset H \) satisfying the following:
(a) For every sequence \( x \in H \), \( \lim_{n \to \infty} \|x_n - x\| \) exist;
(b) Any weak-cluster point of the sequence \( \{x_n\} \) belongs in \( S \). Then there exist \( x \) in \( S \) such that \( \{x_n\} \) weakly converges to \( x \).

3. Main Results

In what follows, we will focus our attention on the following general two-operator split common fixed-point problem: find
\[
x^* \in C \text{ and } Ax^* \in Q,
\]
where \( A: H_1 \to H_2 \) is bounded and linear operator, \( U: H_1 \to H_1 \) and \( T: H_2 \to H_2 \) are two strongly quasi-nonexpansive operators with nonempty fixed-point set \( \text{Fix}(U) = C \) \( \text{and} \text{Fix}(T) = Q \),
\[
\|Ux - z\|^2 \leq \|x - z\|^2 - \alpha \|x - Ux\|^2, \text{ for all } x \in H \text{ and } z \in \text{Fix}(U).
\]
\[
\|Tx - z\|^2 \leq \|x - z\|^2 - \beta \|x - Tx\|^2, \text{ for all } x \in H \text{ and } z \in \text{Fix}(T).
\]
And denote the solution set of the two-operator SCFPP by
\[
\Omega = \{x^* \in C \text{ and } Ax^* \in Q \}.
\]

Based on the algorithm of [29], we have the following algorithm to solve (3.1)
\[
\begin{align*}
\{ u_k &= x_k + \gamma A^*(T - I)Ax_k \\
x_{k+1} &= (1 - t_k)u_k + t_k U(u_k), \quad k \geq 0
\end{align*}
\]
where \( 0 < \gamma < \frac{1-\beta}{\lambda} \) with \( \lambda \) being the spectral radius of the operator \( A^*A \) \( \alpha \) \( t_k > 0 \) and \( x_0 \in H \) is choosing arbitrarily.
**Theorem 3.1.** Let $A: H_1 \rightarrow H_2$ be a bounded linear operator, $U: H_1 \rightarrow H_1$ and $T: H_2 \rightarrow H_2$ be two strongly quasi-nonexpansive operator with $Fix(U) = C$ and $Fix(T) = Q$. Assume that $(U - I)$ and $(T - I)$ are both demiclosed at zero and let $P_0$ be a metric projection from $H$ onto $\Omega$ satisfying $\langle x_k - x, x - P_0 x_k \rangle \leq 0$. If $\Omega$ is nonempty, then the sequence $\{x_k\}$ generated by algorithm (3.5) converges strongly to a split common fixed-point $x^* \in \Omega$.

Proof. To show that $x_k \rightarrow x^*$, it suffices to show that $x_k \rightarrow x^*$ and $\|x_k\| \rightarrow \|x^*\|$ as $k \rightarrow \infty$.

As we are in Hilbert space, now, taking $x^* \in \Omega$ that is $x^* \in Fix(U)$ and $Ax^* \in Fix(T)$ and by definition (2.4) (d) we deduce that that

$$
\|x_{k+1} - x^*\|^2 = \|x_k - x^*\|^2 + \|x_{k+1} - x_k\|^2 + \langle x^* - x_k, x_{k+1} - x_k \rangle \\
= \|x_k - x^*\|^2 + \|x_k - x^*\|^2 + \|x^* - x_k\|^2
$$

(3.6)

On the other hand, we have

$$
\|x_k - x^*\|^2 = \|x_{k+1} - x^*\|^2 + \|x_{k+1} - x_k\|^2 + \langle x^* - x_k, x_{k+1} - x_k \rangle
$$

(3.7)

From the definition of $\lambda$, it follows that

$$
y^2((T - I)Ax_k, A^*A(T - I)Ax_k) \leq \lambda y^2 \|\|T - I\|Ax_k\|^2.
$$

(3.8)

Now, by setting $\theta := 2y(Ax_k - Ax^*, (T - I)Ax_k)$, and using the fact that (2.4(d)) and its equivalent form, we infer that

$$
\theta := 2y(Ax_k - Ax^*, (T - I)Ax_k) \leq 2y\left(\frac{1 - \beta}{2}\right) \|\|T - I\|Ax_k\|^2
$$

(3.9)

Substituting (3.9), (3.8), into (3.7) we get the following inequality

$$
\|x_k - x^*\|^2 \leq \|x_{k+1} - x^*\|^2 - \gamma(1 + \beta - \gamma\lambda)\|\|T - I\|Ax_k\|^2.
$$

(3.10)

Also, substituting (3.10) into (3.6), we get the following:

$$
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \gamma(1 + \beta - \gamma\lambda)\|\|T - I\|Ax_k\|^2 - t_k(1 + \alpha + t_k)\|\|U - I\|U_k\|^2
$$

(3.11)

Since $\gamma > 0; \beta > 0; \alpha > t_k > 0; \lambda > 0$ and $t_k > 0$, we obtain that $-\gamma(1 + \beta - \gamma\lambda) < 0$ and $-t_k(1 + \alpha + t_k) < 0$

then from equation (3.11), we deduce that $\{x_k\}$ is a fejer monotone and moreover $\{\|x_{k+1} - x^*\|\}_{k \in \mathbb{N}}$ is monotonically decreasing sequence, hence converges. Therefore we have

$$
\lim_{k \rightarrow \infty} \|\|T - I\|Ax_k\|^2 = 0.
$$

(3.12)

From the fejer monotonicity of $\{x_k\}$, it follows that the sequence is bounded. Denoting by $x^*$ a weak cluster point of $\{x_k\}$, let $j = 0, 1, 2, \ldots$ be the sequence of indices, such that

$$
w_{\text{weak}} - \lim x_k = x^*.
$$

(3.13)

Then, from (3.12) and the demiclosedness of $(T - I)$ at zero, we obtain

$$
T(Ax^*) = Ax^*.
$$

(3.14)

From which it follows $Ax^* \in Q$. From (3.5), by considering $u_k = x_k + \gamma(A(T - I)Ax_k)$, it follows that

$$
w_{\text{weak}} - \lim u_k = x^*.
$$

(3.15)

Again from (3.11) and the convergence of the sequence $\{\|x_{k+1} - x^*\|\}_{k \in \mathbb{N}}$, we also have

$$
\lim_{k \rightarrow \infty} \|\|U - I\|u_k\|^2 = 0.
$$

(3.16)

Which, combined with the demiclosedness of $(U - I)$ at zero and weak convergence of $\{u_k\}$ to $x^*$, yields

$$
Ux^* = x^*.
$$

(3.17)

Hence $x^* \in C$, and therefore $x^* \in \Omega$. Since there is no more than one weak-cluster point, the weak convergence of the whole sequence $x_k$ follows by applying Lemma (2.8) with $S = \Omega$. i.e.

$$
x_k \rightarrow x^*.
$$

(3.18)
Next, we show that
\[ \|x_k\| \to \|x^*\| \quad \text{as} \ k \to \infty \]
To show this, it suffices to show that
\[ \|x_{k+1}\| \to \|x^*\| \quad \text{as} \ k \to \infty. \]
Now, from (3.11) we deduce that
\[ \|x_{k+1}\| - \|x^*\|^2 \leq \|x_k - x^*\|^2 \leq \|x_k - x^*\|^2. \]
Therefore, we have
\[ \|x_{k+1}\| - \|x^*\|^2 \leq \|x_k - x^*\|^2 \]
\[ \Rightarrow \|x_{k+1}\| - \|x^*\|^2 \leq \|x_k - x^*\|^2 = \|x_k - P_{\Omega}x_k + P_{\Omega}x_k - x^*\|^2 \]
\[ \leq \|x_k - P_{\Omega}x_k\| + \|P_{\Omega}x_k - x^*\|^2 \]
\[ \text{Claim} \quad \|x_k - P_{\Omega}x_k\| \leq \|P_{\Omega}x_k - x^*\| \quad \text{Proof of claim} \]
\[ \|x_k - P_{\Omega}x_k\|^2 = \|x_k - x^* + x^* - P_{\Omega}x_k\|^2 \]
\[ = \|x_k - x^*\|^2 + 2(x_k - x^*, x^* - P_{\Omega}x_k) + \|x^* - P_{\Omega}x_k\|^2 \]
\[ = \|x_k - x^*\|^2 + 2(x_k - x^*, x^* - x_k + x_k - P_{\Omega}x_k) + \|x^* - P_{\Omega}x_k\|^2 \]
\[ = \|x_k - x^*\|^2 + 2(x_k - x^*, x^* - x_k) + 2(x_k - x^*, x_k - P_{\Omega}x_k) + \|x^* - P_{\Omega}x_k\|^2 \]
\[ = \|x_k - x^*\|^2 + 2(x_k - x^*, x_k - P_{\Omega}x_k) + \|x^* - P_{\Omega}x_k\|^2 \]
\[ \leq \|x^* - P_{\Omega}x_k\|^2 \]
\[ \Rightarrow \|x_k - P_{\Omega}x_k\|^2 \leq \|x^* - P_{\Omega}x_k\|^2 \]
\[ \Rightarrow \|x_k - P_{\Omega}x_k\| \leq \|x^* - P_{\Omega}x_k\| \quad \text{(3.20)} \]
Now, put (3.20) in (3.19), it follows that
\[ \|x_{k+1}\| - \|x^*\|^2 \leq 2\|x_k - P_{\Omega}x_k\|^2 \]
\[ \Rightarrow 0 \leq \limsup_{k \to \infty} \|x_{k+1}\| - \|x^*\|^2 \leq \limsup_{k \to \infty} 2\|x_k - P_{\Omega}x_k\| = 0 \]
\[ \Rightarrow \limsup_{k \to \infty} \|x_{k+1}\| - \|x^*\|^2 = 0. \]
Hence
\[ \|x_{k+1}\| \to \|x^*\| \quad \text{(3.21)} \]
By (3.15) and (3.18), we have that
\[ x_k \to x^* \quad \text{as} \ n \to \infty. \]
\[ \text{ Conclusion} \]
In this paper, we study the modified algorithm of Yu and Sheng [29] for the strongly quasi nonexpansive operators to solve the split common fixed-point (1.5) and use some beautiful lemmas to prove the strong convergence of the modified algorithm. Our result extends and improved some recent result announced.

\[ \text{ Acknowledgment} \]
I would like to thanks Bauchi state University, Gadau, Nigeria for the financial support given to me.

\[ \text{Reference} \]
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar