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Abstract 

For optimal efficacy, an antibiotic must achieve and sustain at the site of infection, a concentration that can 

inhibit growth of the bacteria. However, a bacterial infection may contain subpopulations of mutant variants with 

reduced susceptibility to the antimicrobial agent. There is a great need to periodically evaluate the mutant 

prevention concentration (MPC) of antibiotic to provide a basis for altering dosing regimens such that the growth 

of resistant organisms could be curtailed. To evaluate the mutant prevention concentrations (MPCs) of 

streptomycin, gentamicin and amikacin for fecal Escherichia coli isolates under different growth temperatures 

and determine the extent of recovery of resistant mutants at such temperatures. Fifty (50) isolates of E. coli were 

isolated from stools of patients attending Nasarawa State University Keffi Health Centre in Keffi, Nigeria and 

identified using standard protocol. Antibiotic minimum inhibitory concentrations (MICs) were determined using 

macro-broth dilution method of the Clinical and Laboratory Standards Institute (CLSI) with incubation for 24 h 

at 37°C and 41°C. MIC for 50% (MIC50) and 90% (MIC90) of isolates were then generated from the plot of 

cumulative frequency curve. MPCs were measured by spreading a series of agar plates containing known 

aminoglycoside concentrations with approximately 10
10

 CFU of E. coli culture and incubated for 48 h at 37°C 

and 41°C. The lowest aminoglycoside concentration that prevented the growth of resistant colonies was taken as 

the MPC. MPCs for 50% (MPC50) and 90% (MPC90) of isolates were then generated from the plot of cumulative 

frequency of the MPCs obtained. MPC/MIC ratios for 50% (MPC50/MIC50) and 90% (MPC90/MIC90) of isolates 

were also determined. Bacteria surviving (persisting) at MPC were isolated and quantified after 48 h. Statistical 

analyses of data were done by one-way Analysis of Variance (ANOVA). For each of the drugs, MPC50 and 

MPC50/MIC50 were the same at both 37°C and 41°C. MPC50 values were: streptomycin (44.2 µg/ml [≥32.0 

µg/ml]); gentamicin (44.2 µg/ml [≥32.0 µg/ml]); and amikacin (37.4 µg/ml [≥32.0 µg/ml]); and MPC50/MIC50 

ratios for each drug at both temperatures were ≤ 3. MPC90 and MPC90/MIC90 were the same for each drug at both 

37°C and 41°C. MPC90 values were: streptomycin (253.2 µg/ml [≤256.0 µg/ml]), gentamicin (209.0 µg/ml 

[≤256.0 µg/ml]), and amikacin (128.0 µg/ml); and MPC90/MIC90 ratios for each drug at both temperatures were ≤ 

4. Mutant recoveries at the MPCs of the drugs for 50% of the isolates were significantly (P < 0.05) different both 

at 37°C (P = 0.0089) and 41°C (P = 0.0011). However, mutant recoveries at the MPCs of the drugs for 90% the 

isolates were insignificantly (P >0.05) different at 37°C (P = 0.0055) but significantly (P > 0.005) different at 

41°C (P = 0.0080). Whether at normal body temperature or at a higher body temperature usually obtained during 

fever, E. coli selects and enrich for resistant mutants less easily against streptomycin than gentamicin or 

amikacin. The extent of recovery of mutants however, is higher at the higher temperature, justifying the common 

practice of administering high dosage of antimicrobial agent at high body temperature during therapy of bacterial 

disease.      
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1.0 Introduction 

Escherichia coli is a common commensal gastro-intestinal tract bacterium found in the large intestine of humans 

and other warm-blooded animals (Campbell & Reece, 2002); and is responsible for many intestinal and extra-

intestinal infections (Bailey et al., 2006). Antimicrobial agents remain the mainstay treatment for infections by E. 

coli; but their continued usefulness in treating infections is being limited by the acquisition of resistance 

mechanisms (Todar, 2007). 

For optimal efficacy, an antibiotic must achieve and sustain at the site of infection, a concentration that can 

inhibit growth of the bacteria (so-called minimum inhibitory concentration: MIC). However, a bacterial infection 

may contain subpopulations of mutant variants with reduced susceptibility to the antimicrobial agent. Thus, a 

therapy effective against the major (susceptible) subpopulation might select for growth of less susceptible 

mutants. A concentration of antibiotic, termed mutant prevention concentration (MPC) (Dong et al., 1999), 

which prevents the growth of the least susceptible single-step mutant present in a large bacterial population, was 

defined. The antibiotic concentration range between MIC and MPC, the mutant selection window (MSW) (Zhao 
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& Drlica, 2001; Drlica, 2003), is where single-step mutants will be enriched (Baquero & Negri, 1997). By 

definition, cell growth in the presence of antibiotic concentrations greater than the MPC requires an organism to 

have developed two or more resistance-causing spontaneous chromosomal point mutations (Dong et al., 2000; 

Blondeau et al., 2001). The rationale of the MPC concept is to use antimicrobial concentrations above the MSW 

to restrict selective enrichment of resistant mutants which will improve therapeutic outcome (Drlica & Zhao, 

2007). 

MPC is a novel concept that has been employed in the evaluation of an antibiotic’s ability to minimize or limit 

the development of resistant organisms (Blondeau et al., 2001). The concept has been developed to provide a 

basis for altering dosing regimens such that the growth of resistant organisms could be curtailed. The application 

of this novel concept during antibiotic therapy may have the potential to limit resistance development for 

organism-antibiotic pairings in which the in vivo mechanisms of resistance correspond with those evaluated in in 

vitro MPC studies, i.e. spontaneous point mutations (Smith et al., 2003). However, caution must prevail in the 

utility of MPC studies conducted on organism-antibiotic pairings in which other mechanisms, such as the 

presence of inactivating enzymes and efflux, are the primary cause of resistance. The ideal situation for 

evaluating an MPC requires an organism-antibiotic pairing to have the development of spontaneous 

chromosomal point mutations as its primary resistance mechanism. 

This study evaluates the mutant prevention concentrations (MPCs) of streptomycin, gentamicin and amikacin for 

fecal Escherichia coli isolates under different growth temperatures. The study, in addition, determines the extent 

of recovery of resistant mutants at such temperatures. To the best our knowledge, no similar study had been 

undertaken using isolates from this location.  

 

2.0 Materials and Methods 

2.1 Bacterial Isolates 

A total of 50 fecal E. coli isolates were used in this study. They were isolated and identified from stool of 

patients attending Nasarawa State University Keffi Health Center using standard cultural, microscopical and 

biochemical procedures. Pink colonies on MacConkey agar (BIOTEC Laboratories Ltd., Ipswich, United 

Kingdom) that grew with greenish metallic sheen characteristics on eosin methylene blue agar (BIOTEC 

Laboratories Ltd., Ipswich, United Kingdom) and which were indole positive, methyl red positive, Voges-

Proskauer negative and citrate negative were confirmed as E. coli. Bacteria were stored in the refrigerator at 4°C 

on nutrient agar (NA: Merck KGaA, Darmstadt, Germany) slants and reactivated by sub-culturing on 

MacConkey agar and used in experiments.  

2.2 Antibiotics 

The antibiotics used were streptomycin (Green Field Pharmaceutical Co. Ltd., China), gentamicin (Yikang 

Pharmaceutical Co. Ltd., China) and amikacin (Kilitch Drugs Ltd., India). All antibiotics were purchased from 

the Pharmacy Department, Federal Medical Center, Keffi, Nigeria. The stock solutions were prepared in 

appropriate solvents in accordance with the CLSI (2011). 

2.3 Determination of Minimum Inhibitory Concentration (MIC)  

The MICs of streptomycin, gentamicin and amikacin against the E. coli isolated from stool and quality control 

strain (E. coli ATCC 25922) were determined in triplicate using the Clinical and Laboratory Standards Institute 

(CLSI) macro-broth dilution method (CLSI, 2011). An adjusted inoculum of the test organism was inoculated 

into Mueller-Hinton broth (MHB: BIOTEC Laboratories Ltd., Ipswich, United Kingdom) containing two-fold 

dilutions of an initial antibiotic solution so that each tube contained approximately 1 x 10
5
 colony-forming units 

(CFU). Results were observed and registered after 24-h incubation at 37°C. MIC was defined as the lowest 

concentration that inhibited visible growth. Cumulative frequency curves of the antibiotic MICs were plotted; 

and MICs for 50% (MIC50) and 90% (MIC90) of isolates were then generated from the plots. 

2.4 Determination of Mutant Prevention Concentration (MPC) 

The MPCs were determined as described elsewhere (Randall et al., 2004) with modifications. Briefly, the tested 

micro-organisms were cultured in 50 ml of MHB and incubated for 24 h. Then, the suspension was centrifuged 

(at 4000 g for 10 min) and re-suspended in 10 ml of MHB to yield a concentration of 5 x 10
10

 cfu/10 ml. The 

inocula were further confirmed through the serial dilution and plating of 100 µl samples on drug-free medium. A 

series of Mueller-Hinton agar (Fluka Biochemical, Spain) plates containing known concentrations of the 

aminoglycoside antibiotics were then inoculated with 200 µl each of re-suspended E. coli culture (containing 

approx. 10
10

 cfu). The inoculated plates were incubated for 48 h at 37°C and 41°C, and then screened visually 

for growth, and colonies counted after the incubation. The MPC was taken as the lowest aminoglycoside 

concentration that prevents the growth of any mutant after 48 h incubation. All experiments were performed in 

triplicate. Cumulative frequency curves of the antibiotic MPCs for the isolates were plotted and the MPCs for 50% 

(MPC50) and 90% (MPC90) of isolates were then generated from the curves. The frequency at which resistant 

mutant were recovered was calculated as the number of mutants growing in the presence of antibiotic per ml 
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divided by the inoculum density (1.0 x 10
10

cfu). 

2.5 Statistical Analyses 

Mutant recovery for 50% of isolates (MR50) and mutant recovery for 90% of isolates (MR90) were compared at 

37°C or 41°C and between temperatures by one way analysis of variance (ANOVA) using Smith Statistical 

Package (SSP), version 2.80 (by Gary Smith, Pomona College, Claremont, California). Significance of 

differences was determined at the 5% probability level (that is at P = 0.05).    

 

3.0 Results 

3.1 MICs of antibiotics 

The minimum and maximum antibiotic MICs (in µg/ml) were (min: max): streptomycin (1.0:128.0), gentamicin 

(0.25:128.0) and amikacin (1.0:64.0) as shown in Table 1. The MIC50 and MIC90 of isolates at 37°C and 41°C 

generated from the cumulative frequency curves in Figure 1 are as shown in Table 1.  

3.2 MPCs of antibiotics  

The minimum and maximum antibiotic MPCs (in µg/ml) were (min: max): streptomycin (4.0:512.0), gentamicin 

(2.0:512.0) and amikacin (4.0:512.0) as shown in Table 2. The MPC50 and MPC90 of isolates at 37°C and 41°C 

generated from the cumulative frequency curves in Figure 2 are as shown in Table 2. The MPC50 of E. coli at 

37
°
C and 41

°
C was the same for streptomycin, gentamicin but slightly lower for amikacin; the MPC90 of E. coli 

at 37
°
C and 41

°
C was also the same for streptomycin, gentamicin, but lower for amikacin. 

3.3 MPC/MIC ratio  

The minimum and maximum antibiotic MPC/MIC ratios were (min: max): streptomycin (0.0:8.0), gentamicin 

(0.0:8.0) and amikacin (0.0:8.0) as shown in Table 3. The antibiotic MPC50/MIC50 and MPC90/MIC90 ratios for 

the isolates at 37
°
C and 41

°
C generated from the cumulative frequency curves in Figure 3 are as shown in Table 

3. The MPC50/MIC50 and MPC90/MIC90 ratio of streptomycin, gentamicin and amikacin for Escherichia coli 

isolates were the same at 37°C and 41°C. The MPC50/MIC50 of streptomycin, gentamicin and amikacin were ≤ 

4.0 and MPC90/MIC90 of streptomycin, gentamicin and amikacin were ≤ 4.0 as shown in Table 3. A lower value 

of the MPC/MIC ratio indicates a better ability to prevent the emergence of mutants. 

3.5 Mutant Recovery 

The mutant recovery (in percentage) at MPC50 and at MPC90 of streptomycin, gentamicin and amikacin for E. 

coli at 37°C and 41°C is as shown in Table 4. Generally more mutants were recovered at higher temperature for 

all the aminoglycosides tested, although the difference was only significant in the case of amikacin as shown in 

Table 5. Differences in mutant recovery between the aminoglycosides at both 37°C and 41°C were significant. 

3.6 Statistical Analyses 

The mutant recovery at MPC50 (MR50) of E. coli isolates for streptomycin, gentamicn, and amikacin at 37°C 

were compared with those at 41°C as shown in Table 5. Similarly, mutant recovery at MPC90 (MR90) for E. coli 

isolates for streptomycin, gentamicin and amikacin at 37°C were also compared with those at 41°C.   

 

4.0. Discussion 

Traditional dosing of antimicrobial agent is based on the MIC. Within this MIC, the susceptible subpopulation 

are suppressed and the less susceptible subpopulation persist (Craig, 2002; Roberts et al., 2008). The 

concentration of antimicrobial agent that can prevent the growth of both the susceptible subpopulation and the 

less susceptible subpopulation known as Mutant Prevention Concentration (MPC) can prevent selection and 

enrichment of resistant mutant. If an antibiotic concentration is maintained above the MPC, resistant bacteria 

should not be selected (Drlica, 2003). MPC concept can help in making decision on dosing regimen of 

antimicrobials with respect to the potential for the selection and enrichment of resistant mutant (Ambrose et al., 

2002; Tam et al., 2005).  

This study reports the MPCs, MPC/MIC ratios and mutant recovery at MPC of streptomycin, gentamicin and 

amikacin for fecal isolates of E. coli under normal body (37°C) and elevated (41°C) temperatures. The similarity 

observed in the MPC50 of each aminoglycoside antibiotic at both 37°C and 41°C suggest that a rise in body 

temperature experienced during fever might not affect the concentration of antimicrobial agent that can prevent 

selection and enrichment of resistant mutant. Since aminoglycoside resistance is primarily attributed to the 

presence of inactivating enzymes that are acquired (French & Phillips, 1997; Fluit et al., 2001), MPCs that are 

obtained during studies with aminoglycosides do not accurately reflect in vivo resistance mechanisms which 

occur in the clinical setting. However, since MPC measures the in vitro susceptibility of an antibiotic exposed to 

higher numbers of bacteria (~10
9
-10

10
 cfu), closer to what is found in real infections, it presents a more realistic 

susceptibility assessment tool than MIC, where the standardized inoculum tested is ~10
5 

cfu. MPC studies of 

aminoglycosides have been conducted with organisms including Acinetobacter baumannii, Citrobacter freundii, 

Enterobacter cloacae, E. coli, Klebsiella pneumoniae, Pseuodonas aeruginosa, Staphylococcus aureus and 

Stenotrophomonas maltophilia (Akins et al., 2002a; Akins et al., 2002b; Zhao & Drlica, 2002). 
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The lower MPC/MIC ratio for streptomycin observed in this study, compared with gentamicin and amikacin, 

suggests streptomycin as less prone to the emergence of mutants. 

The relatively higher mutant recovery at 41°C suggests that the selection and enrichment of resistance mutants 

can be encouraged by a rise in temperature as usually observed during fever. This observation agrees with a 

study with E. coli on the recovery of resistance mutants against fluoroquinolones under different condition like 

aerobiosis, anaerobiosis and temperature at 27°C and 37°C (Linde & Lehn, 2004). 

 

5.0. Conclusion 

In conclusion, amikacin has the least MPC. In addition, whether at normal body temperature or at a higher body 

temperature usually obtained during fever, E. coli selects and enrich for resistant mutants less easily against 

streptomycin than gentamicin or amikacin. Furthermore, the extent of recovery of mutants however, is higher at 

the higher temperature, providing a basis for administering high dosage of these agents at high body temperature 

during therapy of bacterial disease. MPC measurement of aminoglycoside susceptibility can thus be used to 

predict and prevent the evolution of resistance, which should be a parallel goal with curing the infection itself. 
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Table 1: Minimum Inhibitory Concentration of some aminoglycosides for 50% and 90% of fecal Escherichia 

coli isolates at 37°C and 41°C 

Antibiotics 
MIC Ranges 

(µg/ml) 

Minimum Inhibitory Concentration (µg/ml) 

MIC50 MIC90 

Streptomycin 1.0-128.0 25.4 (≤ 32.0) 65.4 (≤ 128.0) 

Gentamicin 0.25-128.0 15.9 (≤ 16.0) 62.7 (≤ 64.0) 

Amikacin 1.0-64.0 13.5 (≤ 16.0) 34.5 (≤ 64.0) 

MIC50 = Minimum Inhibitory Concentration for 50% of isolates; MIC90 = Minimum Inhibitory Concentration for 

90% of isolates. 

 

 

Figure 1: Cumulative Frequency Curves of aminoglycoside MICs for isolates of Escherichia coli 

 (   Streptomycin,   Gentamicin,    Amikacin). 

 

Table 2: Mutant Prevention Concentration of some aminoglycosides for 50% and 90% of fecal Escherichia coli 

isolates at 37°C and 41°C 

Antibiotics 
MPC Ranges 

(µg/ml) 

Mutant Prevention Concentration (µg/ml) 

MPC50 MPC90 

Streptomycin 4.0-512.0 44.2 (≤ 64.0) 253.2 (≤ 256.0) 

Gentamicin 2.0-512.0 44.2 (≤ 64.0) 209 (≤ 256.0) 

Amikacin 4.0-512.0 37.4 (≤ 64.0) 128.0 

MPC50 = Mutant Prevention Concentration for 50% of isolates; MPC90 = Mutant Prevention Concentration for 

90% of isolates. 
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Figure 2: Cumulative Frequency Curves of aminoglycoside MPCs for isolates of Escherichia coli (   

Streptomycin,      Gentamicin,      Amikacin). 

 

Table 3: Mutant Prevention Concentration/Minimum Inhibitory Concentration ratio of some aminoglycosides 

for 50% and 90% of fecal Escherichia coli isolates at 37°C and 41°C 

Antibiotics 
MPC/MIC Ranges 

 

Mutant Prevention Concentration/ Minimum 

Inhibitory Concentration 

MPC50/MIC50 MPC90/MIC90 

Streptomycin 0.0-8.0 1.7 (≤ 4.0) 3.9 (≤ 4.0) 

Gentamicin 0.0-8.0 2.8 (≤ 4.0) 3.3 (≤ 4.0) 

Amikacin 0.0-8.0 
2.8 (≤ 4.0) 3.7 (≤ 4.0) 

MPC50/MIC50 = Mutant Prevention Concentration/Minimum Inhibitory Concentration ratio for 50% of isolates; 

MPC90/MIC90 = Mutant Prevention Concentration/Minimum Inhibitory Concentration ratio for 90% of isolates. 
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Figure 3: Cumulative Frequency Curves of aminoglycoside MPC/MIC ratios for isolates of Escherichia coli 

(     Streptomycin,      Gentamicin,      Amikacin). 

 

Table 4: Mutant recovery (%) at MPC50 and MPC90 of some aminoglycosides for fecal Escherichia coli isolates 

at 37°C and 41°C 

Antibiotics 

Mutant recovery (%) at MPC50 (MR50) Mutant recovery (%) at MPC90 (MR90) 

 

37°C 41°C 37°C 41°C 

Streptomycin 6.0 x 10
7
 ± 1.30 7.6 x 10

7
± 2.00 6.0 x 10

7
 ±2.00 6.0 x10

7
 ± 2.00 

Gentamicin 6.6 x 10
7
 ± 8.00 8.2 x 10

7
 ± 6.00 7.4 x 10

7
 ± 1.20 8.7 x 10

7 
± 3.00 

Amikacin 0 ± 0.00 0 ± 0.00 4.6 x 10
7
 ±1.00 5.8 x 10

7 
± 2.00 

MR50 = Mutant recovery at MPC50; MR90 = Mutant recovery at MPC90. 

 

Table 5: Statistical analyses of mutant recovery at MPC50 and MPC90 of some aminoglycosides for fecal 

Escherichia coli isolates at 37°C and 41°C 

Statistics P value Remarks (at P = 0.05) 

MR50 Streptomycin (37
°
C vs. 41

°
C) 0.1573 Insignificant 

MR50 Gentamicin (37
°
C vs. 41

°
C) 0.2566 Insignificant 

MR50 Amikacin (37
°
C vs. 41

°
C) 0.0000 Significant 

MR90  Streptomycin (37
°
C vs. 41

°
C) 0.1982 Insignificant 

MR90 Gentamicin (37
°
C vs. 41

°
C) 0.1215 Insignificant 

MR90 Amikacin (37
°
C vs. 41

°
C) 0.1153 Insignificant 

MR50 for all the drugs (at 37
°
C) 0.0089 Significant 

MR50 for all the drugs (at 41
°
C) 0.0011 Significant 

MR90 for all the drugs (at 37
°
C) 0.0055 Significant 

MR90 for all the drugs (at 41
°
C) 0.0080 Significant 

MR50 = Mutant Recovery for 50% of isolates; MR90 = Mutant Recovery for 90% of isolates. 
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