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Abstract 

This study examines the differential impact of adoption of fertilizer (organic, inorganic or both) with row planting 

on maize yield growth using 673 sample farm households in four major maize growing administrative regions of 

Ethiopia. Propensity score matching (PSM) technique was employed since it is an increasingly utilized standard 

approach for evaluating impacts using observational data. It is found that adoption of fertilizer with row planting 

doesn't have the desired positive and significant impact on yield growth in all of the administrative regions 

considered except one region called Amhara. Thus, the study recommends that the agricultural research and 

extension system of the country should further consider the various differences that exist among different regions 

and areas of the country so as to generate and disseminate appropriate and suitable improved agricultural 

technologies and information.  
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1. Introduction 

Although the share of the Ethiopian agricultural sector in gross domestic product (GDP) tended to decline over 

time, the sector still remains the largest employer, the main source of foreign exchange, and supplier of raw 

materials and market to domestic industries (Bekabil, 2018). Crop production, on the other hand, is the dominant 

sub-sector within agriculture, accounting for more than 60% of the agricultural GDP and five cereals are cultivated 

on a wide scale: teff (an indigenous crop widely grown only in Ethiopia and Eritrea), wheat, maize, sorghum, and 

barley (Bekabil, 2018 citing Mulat et al., 2004; Dorosh and Rashid, 2012). 

Maize, according to Dorosh and Rashid 2012, is the second most widely cultivated cereal in Ethiopia in terms 

of area but is produced by more farms than any other crop. It accounts for the largest share of production by volume 

at 18.8 percent and appears to be increasing throughout Ethiopia largely because of the increasing demand driven 

by population growth and competitiveness of the crop (Abate et al., 2015 citing Rosegrant et al., 2001; Dorosh and 

Rashid, 2012).  

Smallholder cereal production in the meher season dominates cereal production in Ethiopia and accounted 

for 93 percent of national cereal production in 2007/08. Although 8.9 percent of the total cereal area was cultivated 

during the belg season, only 4.5 percent of national cereal production was produced in the belg season, a reflection 

of the significantly lower yields in this season (Dorosh and Rashid, 2012). Accordingly, the most important 

contribution of the belg season to total production is maize where 22.0 percent of the total maize area was cultivated 

in the belg season, producing 9.5 percent of total maize output.  

In respect to these facts, it is not questionable that accelerated and sustained growth in the country’s 

agriculture in general and in the crop sub-sector in particular with special emphasis to the small-scale farmers will 

greatly help to achieve the various goals of the country (Gebru, 2006; MoFED, 2003; Gebre-Selassie & Bekele). 

Much of the increase in crop production in the past decade has been due to increases in area cultivated. 

However, to what extent the area cultivated can continue to expand remains an important question (Dorosh and 

Rashid, 2012). As to them, it is probable that in the highland areas, expansion of cultivated area will have to come 

almost exclusively from reduction in pastureland and this land is likely to be less fertile than existing cropland in 

most instances. Though increased use of intercropping or double cropping may allow some expansion of the area 

cultivated, such a result outside of the highland regions will require major investments in infrastructure and might 

involve reductions in forest areas, with important negative environmental implications (Dorosh and Rashid, 2012). 

As a consequence, it seems that obtaining higher yield rates is the challenge of Ethiopia’s agricultural system.  

As stated by MoARD (2010) increasing productivity in smallholder agriculture is the Government’s top 

priority (Bekabil, 2018). Over the past two decades, decision-makers in Ethiopia have pursued a range of policies 

and investments to boost agricultural production and productivity, particularly with respect to the food staple crops 

that are critical to reducing poverty in the country (Dorosh and Rashid, 2012). Accordingly, a central aim of this 

process has been to increase the availability of improved seed, chemical fertilizers, and extension services for 

small-scale, resource-poor farmers, particularly those cultivating food staple crops. Although there is some 

evidence to suggest that the process has led to improvements in both output and yields during this period, decision-
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makers still recognize that there is extensive room for improvement (Dorosh and Rashid, 2012). 

In this regard, key constraints to agricultural productivity in Ethiopia include low availability of improved or 

hybrid seed, lack of seed multiplication capacity, low and declining soil fertility as a result of soil erosion and 

desertification in certain agro ecological zones due to over-cultivation and limited investment in land improvement, 

low profitability and efficiency of fertilizer use due to rising cost of chemical fertilizer as well as the lack and 

limited use of complimentary improved farming practices and seed, and lack of irrigation and water constraints. 

In addition, lack of transport infrastructure and market access decreases the profitability of adopting improved 

practices (Bekabil, 2018 citing AfDB, 2012, Kate & Leigh, 2010 and Reimund et al., 2007). 

Moreover, Ethiopia is endowed with diverse terrain and agro-ecological climate ranging from temperate in 

the highlands to tropical in the lowlands (Bekabil, 2018). The rugged terrain in much of the highlands makes 

transport and communication difficult. Rainfall also varies significantly between mountains and valleys, even 

across short distances (Dorosh and Rashid, 2012). Accordingly, the opportunities and constraints facing Ethiopian 

agriculture are strongly influenced by geographical location. Hence, identifying the right technological package 

for the various ecologies and crops has been of considerable challenge to researchers and extension systems 

(Bekabil, 2018 citing Mulat et al., 2004). These all obviously calls for a further and a better growth in agricultural 

productivity as well as quality with minimum adverse impact on the environment mainly through the supply, 

duplication and diffusion of continuously improving as well as location specific technology and information. 

Appropriate evaluation of the impact of those efforts of the past few decades in general and of the past recent 

years in particular is believed to be useful in order to create a more fertile ground for the fast and better achievement 

of the aforementioned goal. However, studies assessing the contribution of improved inputs and crop management 

practices for the productivity growth and other outcomes of interest of such important and widely cultivated cereals 

like maize carried out in Ethiopia in the past were not only few but also restricted to piece meal or location specific 

approach. As a result, the conclusions drawn from such studies that didn’t use a nationally or regionally 

representative data would have low probability of influencing national and regional policies. Thus, the objective 

of this study is to identify the impact of use of fertilizer of any kind (organic, inorganic or both) with row planting 

on maize yield growth in each of the four administrative regions of Ethiopia (namely Oromia, Amhara, South 

Nations, Nationalities & People and Benishangul-Gumuz) which are also known to be the major maize producing 

regions in the country. 

 

2. Materials and Methods 

2.1 Analytical Framework for Evaluation 

An impact evaluation must establish what has been the cause of observed changes (in this case ‘impacts’) referred 

to as causal attribution (also referred to as causal inference). Among broad strategies for causal attribution in 

impact evaluations, estimating the counterfactual (i.e., what would have happened in the absence of the 

intervention, compared to the observed situation) is one. On the other hand, among design options that address 

causal attribution, Quasi-experimental designs – which construct a comparison group through matching, 

regression discontinuity, propensity scores or another means is one unlike experimental designs – which construct 

a control group through random assignment. Random assignment is used to assure that participation in the 

intervention is the only differentiating factor between units subject to the intervention and those excluded from it, 

so that the control group can be used to assess what would have happened to participants in the absence of the 

intervention (Heinrich et al., 2010). However, treatment assignment is not often random because of the following 

factors: (a) purposive program placement and (b) self-selection into the program. That is, programs are placed 

according to the need of the communities and individuals, who in turn self-select given program design and 

placement (Khandker et al. 2010). Accordingly, self-selection could be based on observed characteristics, 

unobserved factors, or both. 

In absence of an experimental design, assignment to treatment is frequently nonrandom, and thus, units 

receiving treatment and those excluded from treatment may differ not only in their treatment status but also in 

other characteristics that affect both participation and the outcome of interest. To avoid the biases that this may 

generate, matching methods find a non-treated unit that is “similar” to a participating unit, allowing an estimate of 

the intervention’s impact as the difference between a participant and the matched comparison case. Averaging 

across all participants, the method provides an estimate of the mean program impact for the participants (Heinrich 

et al., 2010). 

In the potential outcomes framework, there are two possible treatments (e.g., active treatment vs. control 

treatment) and an outcome and given a sample of subjects and a treatment, each subject has a pair of potential 

outcomes: Yi(0) and Yi(1), the outcomes under the control treatment and the active treatment, respectively (Austin, 

2011). However, according to him, each subject receives only one of the control treatment or the active treatment. 

Let D be an indicator variable denoting the treatment received (D = 0 for control treatment vs. D = 1 for active 

treatment). Thus, only one outcome, Yi(Yi = DiYi(1) + (1 – Di)Yi(0)), is observed for each subject: the outcome 

under the actual treatment received. For each subject, the effect of treatment is defined to be Yi(1) – Yi(0) (Austin, 
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2011). In general, an evaluation seeks to estimate the mean impact of an intervention which might be a small 

project, a large program, a collection of activities, or a policy, obtained by averaging the impact across all the 

individuals in the population (Heinrich et al., 2010). This parameter is known as Average Treatment Effect or ATE: 

ATE = E(Y(1) – Y(0)) where E(.) represents the average (or expected value). Another quantity of interest is the 

Average Treatment Effect on the Treated, or ATT, which measures the impact of an intervention on those 

individuals who participated: ATT = E (Y(1) –Y(0) | D =1). Finally, the Average Treatment Effect on the Untreated 

(ATU) measures the impact that the intervention would have had on those who did not participate: ATU = E (Y(1) 

–Y(0) | D =0). The problem is that all of these parameters are not observable, since they depend on counterfactual 

outcomes. For instance, using the fact that the average of a difference is the difference of the averages, the ATT 

can be rewritten as: 

ATT = E (Y(1) | D =1) − E (Y(0) | D =1).  

The second term, E (Y(0) | D =1), is the average outcome that the treated individuals would have obtained in 

absence of treatment, which is not observed. However, it is possible to observe the term E (Y(0) | D =0), that is, 

the value of Y(0) for the untreated individuals.  

Thus, it is possible to calculate: ∆ = E (Y(1) | D =1) − E (Y(0) | D = 0).  

Adding and subtracting the term E (Y(0) | D =1):  

∆ = E (Y(1) | D =1) − E (Y(0) | D =1) + E (Y(0) | D =1) − E (Y(0) | D = 0).  

∆ = ATT + E (Y(0) | D =1) − E (Y(0) | D = 0). 

∆ = ATT + SB.  

The second term, SB, is the selection bias: the difference between the counterfactual for treated individuals 

and the observed outcome for the untreated individuals. If this term is equal to 0, then the ATT can be estimated 

by the difference between the mean observed outcomes for treated and untreated: E (Y | D =1) − E (Y | D = 0). 

However, in many cases the selection bias term is not equal to 0. In these cases, the difference in means will be a 

biased estimator of the ATT. The main goal of an evaluation is thus to ensure that the selection bias is equal to 0 

in order to correctly estimate the parameter of interest (Heinrich et al., 2010). 

The matching approach is one possible solution to the selection problem (Caliendo and Kopeinig, 2008). 

Matching methods are designed to ensure that impact estimates are based on outcome differences between 

comparable individuals (Heinrich et al., 2010). Accordingly, the simplest form of matching pairs each participant 

to a comparison group member with the same values on observed characteristics (collected in a vector X). If the 

number of variables in X is large, such an approach may not be feasible. Propensity-score matching (PSM), one 

of the most important innovations in developing workable matching methods, allows this matching problem to be 

reduced to a single dimension (Heinrich et al., 2010). The propensity score was defined by Rosenbaum and Rubin 

(1983a) to be the probability of treatment assignment conditional on observed baseline covariates: Pr(Di = 1|Xi) 

(Austin, 2011). As to him, the propensity score is a balancing score: conditional on the propensity score, the 

distribution of measured baseline covariates is similar between treated and untreated subjects. Thus, in a set of 

subjects all of whom have the same propensity score, the distribution of observed baseline covariates will be the 

same between the treated and untreated subjects (Austin, 2011). 

However, the matching estimator will not necessarily work in all circumstances; specific conditions (the 

theoretical assumptions underlying the matching estimator and the data requirements for implementing it, i.e.) 

have to be met to produce valid impact estimates (Heinrich et al., 2010). First, PSM requires selection on 

observables; the inability of the researcher to measure one or more relevant characteristics that determine the 

selection process results in biased estimations of the impact of the intervention. Second, in order to assign a 

comparison unit to each treated unit, the probability of finding an untreated unit for each value of X must be 

positive (Heinrich et al., 2010). 

On the other hand, the data (variables) available for matching are critical to justifying the assumption that, 

once all relevant observed characteristics are controlled, comparison units have, on average, the same outcomes 

that treated units would have had in the absence of the intervention. Since in many cases the researcher does not 

know precisely the criteria that determine participation, it is common to control for all the variables that are 

suspected to influence selection into treatment (although controlling for too many variables could generate 

problems with the common support). As a result, the researcher should have access to a large number of variables 

to be able to correctly characterize the propensity score. It is important for data for both the treatment and 

comparison units to be drawn from the same sources, so that the measures used (for control and outcome variables) 

are identical or similarly constructed. Any missing data should also be handled similarly for treated and untreated 

units. Although data errors are always a potential issue, the bias in impact estimates may be relatively small if data 

errors have the same structure for treated and comparison units. Finally, to obtain impact estimates that are 

generalizable to the population of interest, it is necessary for the pool of comparison units to have a sufficient 

number of observations with characteristics corresponding to those of the treated units. (Heinrich et al., 2010) 
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2.2 Data and Variables    

The data utilized for this study is acquired from the third wave of the Ethiopia Socioeconomic Survey (ESS) 2015-

2016. The Ethiopian Socioeconomic Survey (ESS) is a collaborative long-term project between the Central 

Statistics Agency of Ethiopia (CSA) and the World Bank Living Standards Measurement Study-Integrated Surveys 

on Agriculture (LSMS-ISA) team to collect panel data. The ESS collects information on household agricultural 

activities along with other information on the households like human capital, other economic activities, access to 

services and resources. ESS uses a nationally representative sample of over 5,000 households living in rural and 

urban areas. The urban areas include both small and large towns. The sample is a two-stage probability sample. 

The first stage of sampling entailed selecting primary sampling units, which are a sample of the CSA enumeration 

areas (EAs). The second stage of sampling was the selection of households to be interviewed in each EA. A total 

of 433 EAs were selected based on probability proportional to size of the total EAs in each region out of which 

290 were rural, 43 were small town EAs from ESS1, and 100 were EAs from major urban areas. In order to ensure 

sufficient sample size in the most populous regions (Amhara, Oromiya, SNNP, and Tigray) and Addis Ababa, 

quotas were set for the number of EAs in each region. The sample is not representative for each of the small regions 

including Afar, Benishangul-Gumuz, Dire Dawa, Gambella, Harari, and Somali regions. However, estimates can 

be produced for a combination of all smaller regions as one “other region” category. During wave 3, 1255 

households were re-interviewed yielding a response rate of 85 percent. Attrition in urban areas is 15% due to 

consent refusal and inability to trace the whereabouts of sample households. 

Yield stands for the yield of maize per unit of land cropped measured in quintals per hectare. 

LnYield stands for the natural logarithmic transformation of Yield.  

HHAGE stands for the age of a household head in years. 

HHSEX is a dummy variable indicating the sex of a household head where HHSEX = 1 if the head is male and 0 

if otherwise. 

HHEDU is a dummy variable indicating whether a household head is literate where HHEDU = 1 if the head is 

literate/able to read and write in any language / and 0 if otherwise. 

HHRELIGION is a dummy variable indicating the main religion of a household head. 

FAMILY_SIZE stands for size of a household. 

CREDIT is a dummy variable indicating household's access to credit where CREDIT = 1 if anyone in the 

household  has borrowed greater than 150 birr from someone outside the household or from an institution for 

business or farming purposes over the past 12 months and 0 if otherwise. 

LANDHOLDING_SIZE stands for size of the land holding of a household measured in meter squared. 

OVERALLPLOTOWN is a dummy variable indicating household's plot ownership where OVERALLPLOTOWN 

= 1 if the household has some plot under its ownership (acquired through inheritance or local leaders' grant) and 0 

if otherwise. 

AVERPLOTSLOPE stands for the average plot slope of a household' overall plot measured in percent. 

OVERALLFERTILEPLOT is a dummy variable indicating household's overall plot soil quality where 

OVERALLFERTILEPLOT = 1 if the household has some plot with fair or good soil quality and 0 if otherwise.  

DSTNEARMKT stands for distance to the nearest market from residence measured in kilometer. 

DSTMAJROAD stands for distance to the nearest major road from residence measured in kilometer. 

DSTNEARPOPCENTER stands for distance to the nearest population center with more than 20,000 people from 

residence measured in kilometer. 

OXEN stands for the total number of oxen owned by a household. 

HHTLU stands for the total livestock units currently owned and kept by a household. 

EXCONTACT is a dummy variable indicating whether a household had participated in the extension program 

where EXCONTACT = 1 if the household had participated in the extension program and 0 if otherwise. 

NONAGRIBUSIN is a dummy variable indicating whether a household owned a non-agriculture business or 

provided a non-agricultural service from home over the past 12 months where NONAGRIBUSIN = 1 if the 

household has owned a non-agriculture business or provided a non-agricultural service from home over the past 

12 months and 0 if otherwise. 

COMIRRIGSCH is a dummy variable indicating presence of an irrigation scheme in the community in which a 

household reside where COMIRRIGSCH = 1 if the community in which a household reside has an irrigation 

scheme and 0 if otherwise. 

AMTOFRAIN is a dummy variable indicating the amount of rain received in the last season. 

 

3. Results and Discussions  

3.1 Descriptive Statistics 

Various variables that were included in the propensity score matching model that describe the major observed 

characteristics of the sample respondents are presented in table 1. In all regions, the yield growth of fertilizer and 

row planting adopters is significantly greater than that of non-adopters. Thus, it tentatively shows that there is 
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significant difference in yield growth level in all the regions between those households that adopt fertilizer of any 

kind with row planting and those that do not adopt both. All the important variables used in the probit model except 

age and sex of a household head, household size as well household’s participation in the extension program have 

different effect in the different administrative regions considered. 

 

3.2 Propensity Scores Estimation using Probit Model  

The descriptive statistics has shown a tentative impact of fertilizer and row planting adoption on increasing yield 

growth in all of the regions. Nevertheless, a mere comparison of yield growth has no causal meaning since fertilizer 

and row planting adoption is endogenous. And it is difficult to attribute the change to adoption of fertilizer and 

row planting since the difference in yield growth might be owing to other determinants. To this end, a rigorous 

impact evaluation method; namely, Propensity Score Matching has to be employed to control for observed 

characteristics and determine the actual attributable impact of fertilizer and row planting adoption on yield growth 

in different maize producing regions of Ethiopia. Propensity scores for adopters and non-adopters were estimated 

using a probit model to compare the treatment group with the control group. In this regard, only those significant 

variables were used in estimating the propensity scores for each region. The check for ‘overlap condition’ across 

the treatment and control groups was done through visual inspection of the propensity score distributions for both 

the treatment and comparison groups and the result showed that the overlap condition is satisfied for all the four 

regions considered as there is substantial overlap in the distribution of the propensity scores of both adopters and 

non-adopters. 

For Oromia region, the propensity score for adopters ranges between 0.0734954 and 0.9633425 while it 

ranges between 0.0183441 and 0.9171392 for non-adopters and the region of common support for the distribution 

of estimated propensity scores of adopters and non-adopters ranges between 0.07349536 and 0.96334252. For 

Amhara region, the propensity score for adopters ranges between 0.182649 and 0.9984117 while it ranges between 

0.005937 and 0.9937181 for non-adopters and the region of common support for the distribution of estimated 

propensity scores of adopters and non-adopters ranges between 0.18264896 and 0.99841165. For SNNP region, 

the propensity score for adopters ranges between 0.0679312 and 0.9906759 while it ranges between 1.67e-13 and 

0.8710673 for non-adopters and the region of common support for the distribution of estimated propensity scores 

of adopters and non-adopters ranges between 0.0679312 and 0.99067586. For Benishangul-Gumuz region, the 

propensity score for adopters ranges between 0.2303756 and 1 while it ranges between 8.81e-67 and 0.8148187 

for non-adopters and the region of common support for the distribution of estimated propensity scores of adopters 

and non-adopters ranges between 0.23037558 and 1. When matching techniques are employed, observations 

whose propensity score lies outside this range were discarded. 

 

3.3 Assessing Matching Quality 

In order to check whether the matching procedure is able to balance the distribution of the relevant variables in 

both the control and treatment group, the before and after matching covariate balancing tests presented on table 2 

suggested that the proposed specification of the propensity score is fairly successful in balancing the distribution 

of covariates between the two groups as indicated by decreasing pseudo R2 and mean standardized bias for all 

regions.  

 

4. Results 

Among the different matching algorithms being available for Propensity Score Matching, nearest neighbor 

matching and kernel matching are the most commonly applied ones (Kikulwe et al., 2012 citing Caliendo and 

Kopeinig, 2008). Accordingly, nearest neighbor matching matches adopters with non-adopters with the nearest 

propensity score, while controlling for differences between adopters and non-adopters whereas kernel matching 

computes treatment effects by deducting from each outcome observation in the treatment group a weighted average 

of outcomes in the control group. Table 3 depicts the average impact of fertilizer adoption on maize yield growth 

using nearest neighbor matching one and five (NN=1 and NN=5) as well as Epanechnikov kernel matching with 

two band widths (BW=0.03 and BW=0.06). Accordingly, all or most of the matching algorithms employed support 

the hypothesis that fertilizer and row planting adoption has a positive and significant impact on yield growth in 

only one of the four regions considered-Amhara. Moreover, its adoption has an impact ranging from 55-75% in 

the region.  

 

5. Conclusion and Recommendation 

This study is undertaken to shed-light on the differential impact of adoption of fertilizer and row planting on maize 

yield growth among various major maize producing administrative regions of Ethiopia using the propensity score 

matching technique which is a robust impact evaluation technique that identifies the impact which can be attributed 

to the adoption of fertilizer and row planting. The study also employed and compared different matching 

algorithms to ensure robustness of the impact estimates. Finally, the study concludes that fertilizer of any kind 
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(organic, inorganic or both) with row planting adoption doesn't have the desired positive and significant impact on 

yield growth in most of the different major maize producing administrative regions of the country. Therefore, this 

study recommends that the agricultural research and extension system of the country should be strengthened to 

further take into account the differences among different regions and areas (like zones, woredas and 

“kebeles”/villages) having high variability in landscape positions, agro-ecologies, soil characteristics and farming 

systems in order to generate and scale-up appropriate improved agricultural technologies and information that suits 

to the specific conditions of each maize producing land pockets of the country.  

Table 1: Descriptive statistics of important variables used in the probit model-Propensity Score Matching 

 
***, **, * indicate significance at at 1%, 5% & 10% level respectively. 

Source: Own computation, 2020 

 

 Table 2:  Propensity Score Matching Quality Test 

Region Sample Ps R2 LR chi2 p>chi2 MeanBias MedBias R %Var 

Oromia 
Unmatched 0.277 88.51 0.000 43.8 36.2 0.72 25 

Matched    0.067 19.06 0.040 13.0 11.0 2.07* 25 

Amhara 
Unmatched 0.544 100.34 0.000 77.5 84.0 0.51 50 

Matched    0.452 100.15 0.000 35.0 17.2 2.04* 75 

SNNP 
Unmatched 0.474 77.77 0.000 49.9 39.3 0.53 43 

Matched    0.363 34.21 0.001 26.3 18.8 1.71 29 

Benishangul-

Gumuz 

Unmatched 0.659 35.22 0.000 68.3 63.5 0.42* 67 

Matched    0.377 11.59 0.115 32.6 23.6 29.98* 33 

* if B>25%, R outside [0.5; 2] 
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Table 3: Average Treatment Effects estimation using different propensity score matching estimators 

 

Region 

 

Outcome 

Variable 

 

Matching 

Algorithm 

 

 

ATT (Std. Err.) 

 

 

Oromia 
LnYield 

Nearest Neighbor (NN=1) -0.122(0.256) 

Nearest Neighbor (NN=5) 0.301*(0.200) 

Kernel (BW=0.03) 0.029(0.240) 

Kernel (BW=0.06) 0.203(0.217) 

 

 

Amhara 
LnYield 

Nearest Neighbor (NN=1) 0.554*(0.414) 

Nearest Neighbor (NN=5) 0.751***(0.304) 

Kernel (BW=0.03) 0.563**(0.289) 

Kernel (BW=0.06) 0.586***(0.240) 

 

 

SNNP 
LnYield 

Nearest Neighbor (NN=1) -0. 019(0.666) 

Nearest Neighbor (NN=5) -0.295(0.451) 

Kernel (BW=0.03) -0.419(0.335) 

Kernel (BW=0.06) -0.277(0.243) 

 

 

Benishangul-Gumuz 
LnYield 

Nearest Neighbor (NN=1) 0.082(0.513) 

Nearest Neighbor (NN=5) 0.015(0.301) 

Kernel (BW=0.03) -0.375**(0.186) 

Kernel (BW=0.06) -0.101(0.306) 

***, **, * indicate significance at 1%, 5% & 10% level respectively and bootstrapped standard errors are based 

on 100 replications. 

Source: Own computation, 2020 
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