Cytogenetic Effects of Benzene on Human Blood Cells

Yasamin Al-Ganimi¹, Ali Al-Saadi², Haider Zaidan³, Mufeed Ewadh⁴*, Qasim M. Al-Ameri⁵
¹Dept. of Biology - Karbala university, ²,³ Faculty of Science – Babylon University, ⁴College of Medicine
Babylon University Faculty of Pharmacy – Babylon University
*E-mail:mewadh@yahoo.com

Abstract
The study aims to investigate the cytogenetic effect of benzene on human blood cells in vitro using chromosomes abnormalities and mitotic index test. Different concentrations of benzene were added to human blood culture at 24 hour, then cells were arrested at metaphase to detect chromosomes malformations and its proliferation, the result show that benzene causes increased in mitotic index level and different aberrations in chromosomes which increased with benzene concentrations.

Keywords: Benzene, Chromosomes abnormalities, Mitotic index.

1. Introduction
Benzene is an important pollutant compound, present in both occupational and general environment. Chronic exposure to high concentrations of benzene in human is associated with an increased incidence of myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) (Baudouin et al., 2002). It is well known that individuals occupationally exposed to benzene are at a much higher risk of developing leukemia than the normal population (Carere et al., 1998). The absorption, distribution, metabolism and excretion of benzene have been intensively investigated in several experimental animal species and in humans. Benzene is readily absorbed from oral and inhalation exposures. Dermal absorption is also rapid; however, quantitatively, dermal absorption is very low due to rapid evaporation from skin. Benzene is rapidly distributed throughout the body after exposure by all routes, and accumulation in fatty tissues is observed (ATSDR. 2007).

In studies of occupational exposure, benzene was found to cause chromosome changes at concentrations that induced blood dyscrasias (Weisel, 2010). At concentrations below (31 ppm), workers exposed for 10 to 26 years had significantly more chromosome breaks and gaps in peripheral lymphocytes than found in controls, and 31 of the 33 workers had no other evidence of clinical or hematological effects (Rappaport, et al., 2009).

At exposure levels of less than (10 ppm) over one month to 26 years, workers also had a significantly higher number of chromosomal aberrations in peripheral lymphocytes than controls (Khalade, et al., 2010). Benzene has been also implicated as an environmental risk factor in leukemia and other hematological diseases. The main sources of environmental exposure to benzene are road traffic exhaust (Zhang, et al., 2006) and volatile organic compounds; this means urban air pollution in general (Bi, Y. et al., 2009). Lifestyle factors, such as cigarette smoking, can contribute to exposure (Eastmond et al., 1994). The soil obtained from oil production facilities and coastal refineries is also highly contaminated by benzene (Eastmond et al., 2001).

2. Materials and methods

2.1. Blood samples: Blood samples were collected from 25 healthy (male and female) in Age (20±5 years), that was not directly exposed to benzene and they are smoker.

2.2. Blood culture: Blood planting according to (Chen et al., 1994), then plant of blood divided in to five gropes every gropes had 5 replicates.

2.3. Treatment: after 24 hours from incubating, 300 µl of different benzene Concentrations was added to blood culture.

1- First group (2.5 × 10⁻⁵) molar
2-Second group (5× 10⁻⁵) molar
3-Third group (10× 10⁻⁵) molar
4-Fourth group (20× 10⁻⁵) molar
5-Fifth group without any addition of benzene and this group is the negative control. Then cytogenetic tests were performed according to (Clare et al., 1984).
3. Results
Treatment human blood cells with different concentrations of benzene causes increased in mitotic index as shown in table (1), also causes different chromosomal abnormalities as shown in table (2) and figure (1, 2).

4. Discussion
The association between benzene exposure and the appearance of structural and numerical chromosomal aberrations in human lymphocytes suggests that benzene may be considered as a human clastogen. In animal studies, benzene induced cytogenetic effects, including chromosome and chromatid aberrations, sister chromatid exchanges, and micronuclei (Clare et al., 1984, Liu et al., 2000, Liu et al., 2003). There is some evidence that benzene can induce chromosomal abnormalities in mammalian cell cultures (Marcon et al., 1999). Metabolites of benzene (hydroquinone, catechol, diol epoxides and trihydroxybenzene) induced sister chromatid exchanges in V79 cells (Zhang, L. et al., 2010) several metabolites, including muconaldehyde, have induced micronuclei in cell cultures (Ji, Z. et al., 2010).

Benzene can induce structural and numerical chromosome aberrations, sister chromatid exchanges and micronuclei by various routes of exposure (North, M. et al., 2009). Most studies were performed with fairly high concentrations, but (Badham et al., 2010) detected sister chromatid exchanges in peripheral lymphocytes and micronuclei in the bone marrow of rats at 9.6 and 3.2 mg/m3, respectively (Badham, H.J. et al., 2010). were able to detect chromosome aberrations in lung macrophages after prolonged exposure (6 weeks) at concentrations as low as 0.32 mg/m3, and in lymphocytes from the spleen of mice at 0.13 mg/m3 (Shuga et al., 2010). However, there was no dose–response relationship in the latter study, as the highest exposure (3.2 mg/m3) produced fewer aberrations than the middle exposure (32 mg/m3).

The chromosomal effects in these studies are evident at concentrations of around 320 mg/m3 (100 ppm) or higher, but in some studies effects were reported in workers chronically exposed to levels of around 32 mg/m3 (10 ppm) (Gillis et al., 2007). Sarma et al. (2011) reported that the frequency of chromosome aberrations decreased when exposure levels decreased from 3–69 mg/m3 to 1–18 mg/m3 (Sarma et al., 2011). In the study by Martínez-Velazquez, M. et al. (2006) a decrease in sister chromatid exchanges but not in chromosomal aberrations was noted in a group of female workers when examined with a 5-year interval during which the mean benzene concentration had decreased from 26 to 16 mg/m3 (Martínez-Velazquez, M. et al., 2006). Smoking did not influence the results (Sasiadek et al., 1998).

Acknowledgment: We would like to express our great thank to Miss Aalaa A.W.al-bayati and Miss Zeynab Ewadh for Their sincere help in organizing format of this article.

References

Ji, Z. et al. (2010) A comparison of the cytogenetic alterations and global DNA hypomethylation induced by the benzene metabolite, hydroquinone, with those induced by melphalan and etoposide. Leukemia, 24, 986–991

Zhang, Y. et al. (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst.), 5, 1282–1297

Figure (1): Percentage of chromosomes abnormalities in human blood cells that treated by different concentration of benzene. (1) NC, (2) 2.5×10^{-5}, (3) 5×10^{-5}, (4) 10×10^{-5}, (5) 20×10^{-5}
Figure (2) chromosomes abnormalities in human blood cells treated by (10× 10⁻⁵ and 20× 10⁻⁵ molar) of benzene.

Table (1) effect of different concentrations of benzene on cell mitotic index

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>8.64</td>
</tr>
<tr>
<td>2.5 × 10⁻⁵</td>
<td>10.6</td>
</tr>
<tr>
<td>5 × 10⁻⁵</td>
<td>10.6</td>
</tr>
<tr>
<td>10 × 10⁻⁵</td>
<td>10.6</td>
</tr>
<tr>
<td>20 × 10⁻⁵</td>
<td>13.45</td>
</tr>
</tbody>
</table>

Table (2) Differential chromosomal abnormalities in human blood cell that treated by different concentration of benzene.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Polycentric chrom.</th>
<th>Minute Chrom.</th>
<th>Chromosome stickiness</th>
<th>Ring Chrom.</th>
<th>End to end association</th>
<th>Deletion of chromatid</th>
<th>Bizarre configuration</th>
<th>Deletion</th>
<th>Centromere association</th>
<th>Aneuploidy</th>
<th>Hyperdiploidy</th>
<th>Chromatid break</th>
<th>Chrom. break</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. control</td>
<td>0.0</td>
</tr>
<tr>
<td>2.5 × 10⁻⁵</td>
<td>0</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>5 × 10⁻⁵</td>
<td>0</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>10 × 10⁻⁵</td>
<td>0.1</td>
<td>0.1</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>3.7</td>
<td>5.3</td>
<td>4</td>
<td>2.5</td>
<td>1</td>
<td>0.6</td>
<td>3.2</td>
<td>2</td>
</tr>
<tr>
<td>20 × 10⁻⁵</td>
<td>0.1</td>
<td>0.2</td>
<td>2.3</td>
<td>3</td>
<td>0.6</td>
<td>5</td>
<td>4.3</td>
<td>2.3</td>
<td>3</td>
<td>1.3</td>
<td>1.6</td>
<td>7.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar