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Abstract 

We successfully used optical remote sensing approach to test the skills of post-classification change detection 

technique as well as techniques of circumventing the challenges of cloud/cloud-shadow contamination and of 

working in a data-scarce environment in tropical humid highlands. The aim was to generate an accurate estimate 

of current land cover distribution map and analyze land-cover change around Ndakaini area in Kenya.   Landsat 

imageries (TM and ETM+) acquired between 1985 and 2011 and corresponding to the study area was selected. 

Employing bands 3 and 4 of respective Landsat images, thresholding techniques, Boolean and masking operations 

were implemented in detecting cloud/cloud-shadows and subsequent removal and filling of gaps. In absence of 

other historical ancillary data about land cover types, a total of 278 points across the study area were captured from 

Google Earth and used to evaluate the accuracy of each of the generated land cover maps. From the results, 

cloud/cloud-shadow gaps were reduced immensely (e.g. 90% for the 1985 image and 82% for the 2011 image). 

With regard to quality of classification outputs, the respective land cover/land-use maps of 2000, 2005 and 2010 

anniversaries had fairly high level of overall accuracy (64%, 79% and 68% respectively) and Kappa statistic (0.47, 

0.69 and 0.53 respectively) while classification outputs of 1985 and 1995 yielded slightly lower overall accuracy 

(60%) and Kappa statistic (0.42). Post-classification change involving three land cover classes, tea plantation, 

forest/woodlot and annual crop fields denoted as others were successfully determined and conclusions based on 

trend analysis drawn. The satisfactory results of this study imply the usefulness of post-classification change 

detection method in generating information about land cover dynamics in tropical humid highlands especially 

when coupled with robust techniques that adequately circumvent the cloud and cloud-shadow problem and scarcity 

of ancillary data often common in these areas. 
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1.0 Introduction 

Land cover change information at different spatial and time-scales is critical in evaluating ecosystem conditions 

and environmental trends (Alphan et al., 2009). Knowledge about the kind and the rate of change in the use of land 

resource is essential for proper planning, management and to regulate the use of such resources (Sreenivasulu et 

al., 2010). The information is also critical in resource economics as land cover change is attributed to dynamics of 

proximal livelihood options as well as externalities related to economic activities and resources. In Ndakaini for 

instance, an area adjacent to Aberdare forest in Kenya, the land cover change have been recognized to bear heavy 

impact on the water resources especially the quantity and quality of water in Ndakaini dam, being associated with 

observed dam-siltation coupled with growing uncertainty in water supply in the future as well as ever rising 

treatment cost borne by Nairobi Water and Sanitation Company. The reservoir, with filled capacity volume of 

about 70 million cubic meters, supplies 80% of domestic water to residence of Nairobi city. The reservoir was 

constructed between 1989 and 1994, replacing previous agricultural related land uses and has since then affected 

the land use and land cover in the area, which in return affects the water flow and quality.  

Indeed, as noted by Sreenivasulu et al. (2010) and Mas (1999), land use change has direct bearing on various 

hydrological phenomena such as interception, infiltration, surface flow, evaporation with related problems 

including rainfall-runoff modeling and sedimentation, being well understood if information on land use/land-cover 

change is available for respective catchment. Thus, as underscored by Alphan et al. (2009), better understanding 

of these impacts would allow accurate estimation, modeling and forecasting of such dynamics from local to 

regional levels.  

Remote sensing offers a cost-effective alternative of mapping landscape resources and analyzing changes 

over the traditional ground-based surveying methods. While the latter methods will continue to be important in 

ground-truthing exercises for validation and calibration of remotely sensed data, it is generally agreed that 

application of remote sensing technologies for mapping of resources over large areas and with need for temporal 
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replication is far much economical in comparison to traditional methods. They provide effective tool for analyzing 

the land use dynamics of a region, as well as for monitoring, mapping and management of natural resources, 

(Sreenivasulu et al., 2010 and Mas, 1999). Indeed, remote sensing approach employing the moderate resolution 

satellite imageries like Landsat Thematic Mapper, Landsat Enhanced Thematic Mapper Plus, SPOT Vegetation 

among others has widely been accepted (Alphan et al., 2009). It has gained prominence in wide range of application 

such as landscape resource assessment, resource monitoring, land cover change analysis, drought monitoring, and 

biomass estimation among others.  In environmental monitoring for instance, information from satellite remote 

sensing can play a useful role in understanding the nature of changes in land cover/use, where they are occurring, 

and projecting possible or likely future change (Nori et al., 2008).  

Successful application of remote sensing technology hinges on the understanding of the interaction between 

electromagnetic spectrum and the target land surface materials and subsequent matching of this knowledge with 

the application at hand. Generally, the spectral properties of the surface material as sensed by the detector is one 

of the most important piece of information gathered through remote sensing, besides others like viewing and 

illumination geometry. Depending on the nature of the target surface material as well as the path of illumination 

to and from the sensor, it becomes possible or not, to gather information that may infer about the properties of the 

target surface (Xie et al., 2008).  

According to Singh (1989), digital change detection is the process of identifying differences, specifically 

radiances differences, by remote sensor at different times. While a variety of change detection techniques have 

been developed, they can generally be grouped into the following categories: algebra (differencing, rationing, and 

regression), change vector analysis, transformation (e.g. principal component analysis, multivariate alteration 

detection, Chi-square transformation), classification (post-classification comparison, unsupervised change 

detection, expectation-maximization algorithm) and hybrid methods, (Nori et al., 2008). General background of 

some of these methods has been reviewed by Singh (1989), Coppin et al. (2004) and Lu et al. (2004). Mas (1999) 

quantitatively compared the performance of change detection techniques and concluded that the highest accuracy 

was obtained using post-classification techniques. 

This study aimed to generate current land cover/land use distribution map and also analyze historical Land 

Use Land Cover (LULC) around Ndakaini area using optical remote sensing approach. In this study, we used 

optical remote sensing approach to test skills of post-classification change detection technique in tropical humid 

highlands as well as effort of circumventing the challenges of working in a data-scarce environmental where 

ancillary data about historical land cover types are unavailable. We aimed to generate accurate map of land 

cover/land use distribution and analyze historical LULC around Ndakaini area where cloud/cloud-shadow 

contamination poses a serious challenge In a wider context, the results would be a key input in assessing the 

viability of payment for ecosystem services in Ndakaini area meant to ensure continued supply of regular and 

clean water to Nairobi residents.  

 

1.2 Study area 

Figure 1 below shows the location of the study area falling between longitude 36o 44’ 39.46” E and 37o 00’ 58.03” 

E and latitude 0o 42’ 13.28” S and 1o 01” 12.72” S, an area at the south-eastern edges of Aberdare ranges/forest in 

Kenya. It’s about 80 km north of Nairobi and 40 km west of Thika town and encompassing the Ndakaini Dam and 

its environs, administratively straddling both Gatanga and Maragua districts, Murang’a County, Kenya. Main 

settlement areas including Ndakaini, Makomboki, Kangari and Kariara sub-locations in Gatanga district and 

Kigumo division in Maragua district and together with tracts of forest areas such as Kimakia and Gatare forest 

stations, form the catchments of the dam.  The physiographic characteristic of the region greatly influences the 

drainage pattern of the area and can be described in terms of three zones. The first is a zone characterized by deeply 

incised V- shaped valleys having slopes greater than 30% and is highly susceptible to soil erosion. This zone 

covers the reservoir’s main catchment area, the forest reserve, the official tea belt buffering the forest -The Nyayo 

Tea Zone- and the influent river zones. The second zone encompasses the settlement areas, a predominantly tea 

growing area and where water has been dammed to contain the main water-mass. It is characterized by steep 

topography and soil erosion is of major concern on arable land. The area beyond the dam all the way to the 

confluence of Chania River forms the third zone and is predominantly a coffee plantation zone. Ng’ethu Water 

Treatment Works is located in this zone. Besides the Ndakaini dam, the other main hydrological features in the 

study area are six major rivers namely Githika, Thika, Kayuyu, Kiama, Kimakia and Chania, all influencing the 

drainage pattern of the area. Ndakaini dam is fed by rivers Kayuyu, Githika and Thika River and also from 

underground seepage.  

The geology of the study area is a series of pyroclastic flows associated with the volcanic activity of the 

eastern Rift Valley. The terrain is made up of a series of tuffs and ashflows of varying thickness, depending on the 

duration of the volcanic event. The weathering grade depends on the time between the volcanic events. Thus, there 

is deposition of rocks consisting of materials laid down as fall or flow deposits which grade upwards from 

agglomeratic base through lapilli tuffs to fine grained tuffs. The major soils are histols around the mountainous 
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ranges and nitosols on the foot ridges extending to the dam site. The climate/weather of the study area can be 

described as tropical montane, being cold and humid due to the influence of the Aberdare mountain ranges. The 

air temperature ranges between 9.5 to 24 0C while the water temperatures ranges between 14 and 18 0C. Moreover, 

rainfall pattern is bi-modal, with short rains occurring from October to December and long rains from March to 

May. Rainfall amounts vary from 1800 to 2100 mm increasing as one climb-up the catchment (MoA, GATANGA 

DISTRICT, 2010).  

The study area has rich biodiversity, both flora and fauna in the aquatic and terrestrial ecosystems. Aquatic 

life includes phytoplankton species as well as phragmites, aquatic macrophytes especially Typha domingensis and 

Cyprus papyrus on the influent fringes, zooplankton species (such as Thermocyclops Tropodiaptomus, Chaoborus, 

Diaphanosoma and Diaptomus) and fish species are found in the water column. Variety of birds are distributed 

throughout the reservoir but the highest densities are found in the influent river zones, including pelicans, Egyptian 

geese, storks, crested cranes, weaver birds, swallows and a variety of grebes and coons (MoA, GATANGA 

DISTRICT, 2010). There are indigenous and exotic tree species in the fringes and the catchment of the dam, 

including Prunus species, Croton megalocarpus, pines, blue gums wattles, and a myriad of forest shrubs. A 

common feature in the settlement areas is the occurrence of individual small-scale tea plantations, in some 

instances interspaced with blue gums and wattles and rows of napier-grass making some of the bounders in addition 

to variety of domestic animals including cows, goats, sheep and chicken. 

 

2.0 Methodology 

2.1 Dataset 

According to Sobrino et al. (2004), Landsat imageries are one of the most used data for environmental studies. 

With an archive of data dating back to 1970s coupled with a spatial resolution of 30m, a temporal resolution of 16 

days (for Landsats 4 through 7) and swathe of about 183-185km, Landsat data proves valuable in monitoring 

environmental change especially more lengthy land-cover changes. Landsat satellites are equipped with sensors 

capable of imaging in optical and thermal portions of electromagnetic energy. Thematic Mapper (TM) is a sensor 

on board the Landsat 4/5 satellite while Enhanced Thematic Mapper plus (ETM+) is a sensor on board Landsat 7 

satellite. Both are composed of seven bands, six of them in the visible and near infra-red, and only one band located 

in the thermal infra-red region. Moreover, ETM+ also generates an additional panchromatic band having a spatial 

resolution of 15m, (see table 1). A review by Xie et al. (2008) provides detailed information of these two sensors. 

 
Fig. 1: Location of the study area 
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Table 1: Wavelengths and band resolution of Landsat TM/ ETM+   

Band Wavelength Resolution 

1 490 +/- 60 ηm 30m 

2 575+/- 75 ηm 30m 

3 670+/-70 ηm 30m 

4 837+/- 107 ηm 30m 

5 1692+/-178 ηm 30m 

6 11457 ηm 120m 

7 2190+/- 215 ηm 30m 

8 (ETM+) 520-900 ηm 15m 

In this paper, Landsat imageries (TM and ETM+) acquired between 1985 and 2011 over WRS-2 path/row 

path 168 and 061 and corresponding to the study area were downloaded from Global Land Cover Facility (GLCF) 

and USGS website. Cloud and cloud-shadows posed a major problem as most of the available images were 

contaminated over most of the study area, thus limiting their use. Being a tropical humid-highland, it would 

normally be clouded over most part of the year, a problem also noted by Mas (1999) in his study over the Gulf of 

Mexico. He also cited the problem of high vegetation diversity, phenology differences and interspersion of land 

cover in the humid tropics where associated spectral reflectance characteristics are often not distinct, posing a 

challenge to digital classification. In this paper, image selection relative to temporal distribution, cloud cover and 

data quality meant selecting images belonging to the same period of the year and that only the clear images plus 

few others with minimum cloud cover were chosen but having to undergo cloud/cloud-shadow removal and 

refilling using mosaicing techniques before being used. While the initial plan was to get images after every five-

year interval, it was only possible to get images dated outside the previously defined interval, a similar experience 

as encountered by Mas (1999). In the end, images corresponding to eight year-specific periods (referred to as 

anniversaries)- 1985, 1987, 1993, 1995, 2000, 2005, 2010 and 2011- were selected, with only five anniversaries 

finally being used for land cover mapping and change analysis (1985, 1995, 2000, 2005 and 2011). The others 

were merely used in filling the cloud/cloud-shadow gaps, (Table 2). The images were imported into ERDAS 

Imagine 2011 software where they were converted into user-friendly format that allowed assessing quality of the 

images, pre-processing and implementing digital land-cover classification. ArcGIS 2010 software was used for 

analysis of processed images. Besides the satellite, other data such as administrative maps, project boundary maps, 

road network, and urban centers were also used. The flowchart in Figure 2 illustrates the approach/framework 

followed in this paper to implement land-cover change analysis in tropical humid area. 
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Fig. 2: Flowchart illustrating land-cover change analysis approach/design 

 

2.2 Pre-processing of satellite images 

Prior to processing of image-based products and information analysis, the satellite images were first pre-processed 

to lender them usable for processing and analysis operations. The images acquired from GLCF and USGS websites 

were already geometrically rectified and projected to UTM projection by the vendor and thus no further geometric 

rectification was needed. However, radiometric and atmospheric corrections were necessary as most of the images 

were contaminated.  

Table 2: Description of selected images 

Date of acquisition Julian day 

(JD) 

Landsat sensor/ 

satellite 

Final use of the image 

1985-Jan-18 18 TM5 Final analysis 

1987-Feb-25 56 TM5 Correcting cloud & shadow of 1985 

1993-Feb-17 48 TM4 Correcting cloud & shadow of 1995 

1995-Jan-30 30 TM5 Final analysis 

2000-Feb-21 52 ETM+7 Final analysis 

2005-Feb-18 49 ETM+7 Final analysis 

2010-Feb-08 39 TM5 Correcting cloud & shadow of 2011 

2011-Jan-10 10 TM5 Final analysis 

Multi-temporal Landsat images: 

1985, 1986, 1993, 1995, 2000, 

2005, 2010, 20111 

Geometrical correction:  geo-registration, 

sub-setting 

Atmospheric correction:  cloud/shadow correction, radiance 

calibration, conversion to at-satellite reflectance 

Unsupervised classification:                         

1985, 1995, 2000; 2005; 2010 images 

Ground-truthing: Field work & 

Data capture based on Google 

Earth 

Refinement of land-cover 

classification output:      1985; 

1995; 2000; 2005 & 210 final 

land-cover maps 

 

Accuracy 

assessment 

Post-classification land-cover change detection: 

1985-1995; 1995-2000; 2000-2005; 2005-2010 change periods 

Trend analysis of land-cover change 
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2.3 Cloud/cloud-shadow removal and gap filling 

Cloud/cloud-shadow detection followed the approach employed by Meng et al. (2009). It involves using Landsat 

image bands 3 and 4 to detect pixels that are contaminated by cloud/cloud-shadows through thresholding technique 

and Boolean operations. The lowest value of cloud-covered pixels was identified by examining the image 

histogram of band 4, the value then used as a threshold to generate cloud covered/cloud-free binary masks. 

Identification of cloud-shadow pixels followed the same procedure. However, since deep and clear water bodies 

have relatively similar spectral characteristic as the cloud-shadows, then use of band 3 was necessary. While water 

bodies reflect equal amount of radiation in bands 3 and 4, cloud-shadows on the other hand tends to reflect more 

energy in band 4 than in band 3. Thus, based on ratioing of band 4 to band 3, water pixels having a ratio close to 

unity were masked off and a mask of cloud-shadow pixels with a ratio about 1.3 generated. Both masks of cloud-

covered pixels and pixels contaminated by cloud-shadows were mosaiced, the product then used to mask off co-

located pixels in each band resulting in cloud-free and cloud-shadow-free image bands. These procedures were 

implemented for each of the contaminated images, using image-based threshold summarized in Table 3. 

Subsequent filling of cloud/cloud-shadow gaps involved matching images of the same period for anniversaries 

that were not far apart. This way, images that would be used for processing products and information analysis were 

improved albeit some few patches that could not get co-located pixels from their respective matching anniversaries. 

Table 3: Image-based Threshold values used in cloud/cloud-shadow removal 

Date of 

acquisition 

Cloud/cloud-

shadow cover 

Cloud cover 

correction 

threshold (based 

on band 4) 

Cloud-shadow 

correction threshold 

(based on band 4 and 

ration of band 4 to 

band 3) 

Final use of the image 

1985-Jan-18 Contaminated > 95 < 55;                  > 1.3 Final analysis 

1987-Feb-25 Contaminated >95 < 55;                   > 1.3 Correcting cloud & 

shadow of 1985 

1993-Feb-17 Contaminated > 95 < 62; > 1.3 Correcting cloud & 

shadow of 1995 

1995-Jan-30 Contaminated > 95 < 55;                 > 1.02 Final analysis 

2000-Feb-21 Very clear Very clear Very clear Final analysis 

2005-Feb-18 Clear with 

stripes 

Clear ( with stripes) Clear (with stripes) Final analysis 

2010-Feb-08 Contaminated > 95 < 58;                   >1.02 Correcting cloud & 

shadow of 2011 

2011-Jan-10 Contaminated > 95 < 58;                   > 1.02 Final analysis 

 

2.4 Radiometric correction: radiance calibration and conversion to top-of-atmosphere reflectance 

In most raw remote sensing imageries, measured radiance of the earth surface is represented in the form of digital 

numbers (DN) which are calibrated to fit a certain range of values. In the case of Landsat Thematic Mapper and 

Enhance Thematic Mapper plus, these radiance values are scaled to numbers between 0 to 255. Conversion of DN 

back into absolute radiance is a necessary step when the objective is to perform comparative analysis of several 

images acquired at different times. Subsequent conversion to radiance to top-of-atmosphere reflectance is needed 

for a more accurate comparison of images across different dates.  

In this paper, the conversion from DN to spectral radiance (Lλ) followed the procedure applied by Sobrino et 

al. (2004), using calibration coefficients included in each scene’s metafile also provided in the look-up table (table 

4) below), as: 

Lλ =Grescale * DN + Brescale         Equn 1 

Conversion of radiance to top of atmosphere or exo-atmospheric reflectance was implemented to adjust the 

sensor reflectance from unwanted influences of factors brought about by the differential solar elevation and 

positional relationship between the Earth and the Sun at different times of the year and place.  Here, the procedure 

applied by Qinqin et al. (2010) was followed, as: 

Ρ = π Lλ ds*ds/(ESUN*Cosθ)        Eqn 2 

where  Lλ is spectral radiance from equation 1, ds is Earth-Sun distance in astronomical units and varies with 

time of the year (usually given in nautical Handbook for each Julian Day or interpolation, Table 5), ESUN is mean 

exo-atmospheric solar irradiance for each waveband, given in Table 6, and θ is solar zenith angle for each scene, 

provided in scene’s metafile. It is notable that the thermal channel (band 6) isn’t included. 

 

2.5 Implementing Land cover mapping and post-classification change analysis 

Once the images were corrected, they were ready for land cover classification. Digital image classification can be 
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broadly categorized into two types viz. supervised and unsupervised. Supervised classification involves creation 

of training sets followed by classification step. Conversely, in the unsupervised classification approach, the image 

data are classified by aggregating them into the natural spectral groupings or clusters, present in the image on the 

basis of clustering algorithms. In this method, image interpreting software separates the pixels in an image based 

upon their reflectance values into classes with no direction from the analyst. According to Xie et al. (2008), 

unsupervised classification is often used in thematic mapping from imagery as it is easy to apply and widely 

available in image processing and statistical software packages. They have noted that K-MEAN and ISODATA 

clustering algorithms are the two most frequently used methods. S. Jr. et al. (2003) tested several methods of 

mapping forested pixels and concluded that ISODATA unsupervised classification algorithm produced the best 

results. This algorithm assigns pixels to the most probable cluster based on spectral similarity to the presumed 

mean. Belongingness is established iteratively based on the most common cluster to which the pixel may associate. 

Table 4: Calibration coefficients for Landsat sensors 

 
 

Table 5: Earth-Sun distance interpolated from the look-up table 

Path_row Julian Day ds Solar elevation angle, θ 

168_061 18 0.98385 49.0493977 

168_061 56 0.98330 48.6690678 

168_061 48 0.98989 50.2 

168_061 30 0.98814 46.7308389 

168_061 52 0.98509 45.2738594 

168_061 49 0.98899 56.5049322 

168_061 39 0.98835 55.4609572 

 

Table 6: Mean exo-atmospheric solar irradiance for each waveband, ESUN 

 
In this paper, ISODATA unsupervised classification was first implemented using ERDAS IMAGINE prior 

to field campaign. For each of the five anniversary-images being analyzed, the result of the iterations were six (6) 

classified land cover types, the number having been determined a priori during an earlier reconnaissance field visit 

on January 2012. These classes are forest/woodlots; tea farms; water bodies; moisture deficit vegetation; 

dry/senesced vegetation; and bareland. The result of unsupervised classification of 2010 anniversary was used to 

guide a field campaign which was conducted during the dry season of February 2012. Although the study area 

does not experience severe dry spell, it was possible to discriminate annuals from perennials. Land use/cover 

description data was collected over 74 sample points representatives of all typical land-cover types. Google Earth 

(having IKONOS image acquired in 2000 as the background) was also used to capture additional data from 204 

sample points (mainly tea plantation and forest/woodlot) meant to compliment the ground-truth data. 

Given the scarcity of information regarding the distribution of land cover with respect to the selected 

anniversaries matching image acquisition dates (i.e. 1985, 1995, 2000, 2005 and 2010), it was only logical to refine 

the previous results of unsupervised classification to generate final land use/cover maps.  The main assumption 

was that apart from areas under annual crop fields, the current distribution of the remaining land cover types such 

as woodlots/forest, water bodies, perennial crops like tea were very likely to have existed even in the historical 
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anniversaries, allowing therefore the use of ground-truth data to a fair degree of accuracy. A sample of this ground-

truth data was superimposed onto the results of unsupervised classification for each of the anniversaries being 

analyzed for purpose of refining the output land cover. Given the ambiguity presented by the annual crop fields 

(ca maize, vegetables, nappier grass), such cover types were designated as ‘others’ during the refinement of 

unsupervised classification. The use of producers’ and users’ error, overall accuracy as well as Khapa statistics 

have often been used as robust measure of accuracy and assessment of error patterns of the classification maps 

generated from digital image classification, (Mas, 1999; Xie et al., 2008; Nori et al., 2008). In this study, respective 

confusion matrices and Kappa statistics were generated as a way of measuring the accuracy of the maps.  

Due to the problem of cloud and shadow contaminated pixels (remaining even after applying the filling 

masks) , post-classification land-cover change analysis was undertaken between target anniversaries based on co-

located pixels that were cloud/shadow free. Four periods were targeted for analysis beginning with the anniversary 

prior to dam construction to as late as 2010/2011 anniversary, thus 1985 to 1995; 1995 to 2000; 2000 to 2005; and 

2005 to 2010/2011 anniversary periods. The analysis focused on establishing the change in extent of surface areas 

of key land cover types and determining where there was occurrence of land cover change and between which land 

cover categories.  

 

3.0 Results & Discussion 

3.1 Effect of cloud and cloud-shadow correction 

Being a tropical humid highland, Ndakaini Dam and it’s surrounding is usually engulfed in cloud and cloud-

shadows for most part of the year even during the supposed dry season. This present a challenge to the application 

of optical remote sensing as both clouds and shadows contaminate the signal from the land surface. In this study, 

images that had minimal contamination were selected and correction implemented using co-located images closely 

matching the temporal range of the respective target anniversaries as presented in table 3.  The selected images 

representing 1985, 1995 and 2011 anniversaries had some parts of the study area contaminated, (about 28%, 5% 

and 43% respectively). By implementing cloud and cloud-shadow correction, the gaps were reduced immensely 

(e.g. 90% for the 1985 image and 82% for the 2011 image). Figures 2 shows the improvement achieved after 

implementing cloud and shadow correction in the selected image of 1985 anniversary. 

  
Fig. 2: Effect of cloud correction of Landsat TM image (subset) of Jan. 1985, (from left to right: before and after 

correction 

 

3.2 Accuracy assessment 

Fig. 3 below shows the distribution of ground-truth points collected from field campaign as well as Google Earth 

environment. A total of 278 points were used to assess the accuracy of each of the generated land cover map and 

the result is summarized in Table 7. 

Land cover classification outputs of 2000, 2005 and 2010 had fairly high level of overall accuracy (64%, 79% 

and 68% respectively) and Kappa statistic (0.47, 0.69 and 0.53 respectively) compared to similar measures in 1985 

and 1995 classification outputs. Having used ground-truth data collected from field campaign of 2011 and those 

captured from Google Environment whose background image was a very high resolution image of acquired over 

the study area in 2000, the extent to which these  data matched the imaged realities in respective anniversaries can 

be associated to the reflected accuracy measure of respective anniversaries. Land use, unlike geology, is seasonally 

dynamic and indeed is more changing, (Sreenivasulu et al., 2010). Thus, likely mis-matches are expected to be 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online)  

Vol.10, No.8, 2020 

 

21 

more predominant and sharp in 1985 and 1995 but less sharper in 2000, 2005 and 2010 anniversaries.  Mis-match 

is expected to be relatively higher in land use/land cover category experiencing intense land use/cover dynamics 

such as seasonal/annuals (or others), suggesting why the producers accuracy of this category was indeed low in 

1985, 1995 and even 2000 anniversaries (42%, 30% and 38% respectively). 

 
Fig. 3: Distribution of ground-truth points (based on field campaign and Google Earth) 

 

Table 7: Accuracy measures of generated land cover maps 

  Producers Accuracy (%) Users Accuracy (%) KAPPA (K^) STATISTICS  

 January 18, 1985 (cloud/shadows corrected) 

Tea Plantation 79% 45% 0.25 

Forest/woodlots 69% 76% 0.64 

Others 42% 71% 0.51 

 Overall Accuracy = 60% Overall Kappa Statistics = 0.42 

January 30, 1995 (cloud/shadows corrected) 

Tea Plantation 86% 44% 0.23 

Forest/woodlots 77% 79% 0.69 

Others 30% 74% 0.56 

 Overall Accuracy = 60% Overall Kappa Statistics = 0.42 

February 21, 2000 

Tea Plantation 86% 45% 0.25 

Forest/woodlots 79% 83% 0.75 

Others 38% 83% 0.71 

 Overall Accuracy = 64% Overall Kappa Statistics = 0.47 

February 18, 2005 

Tea Plantation 97% 67% 0.55 

Forest/woodlots 70% 80% 0.71 

Others 74% 92% 0.87 

 Overall Accuracy = 79% Overall Kappa Statistics = 0.69 

February 08, 2010 (cloud/shadows corrected) 

Tea Plantation 95% 57% 0.40 

Forest/woodlots 58% 76% 0.65 

Others 58% 81% 0.69 

 Overall Accuracy = 68% Overall Kappa Statistics = 0.53 

  

3.3 Land use / land cover change 

Historical analysis of time series of Landsat images proved valuable in providing insights about the evolving land 
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use dynamics in Ndakaini area. In order to quantify land cover change results, a similar approach used by Nori et 

al. (2008) was also applied where total surface area for each land use/cover types was tabulated and the respective 

trends across the years examined, demonstrating the kind of land cover changes that occurred during the period of 

analysis, namely “from-to” information. Analysis of multi-temporal images of 1985, 1995, 2000, 2005 and 

2010/11 points to a glaring evidence of spatial and temporal land use dynamics especially among three major land 

cover classes namely tea plantation, forest or woodlots and annual crop fields, all differing in their respective 

general trend of change and with regard to the intensity of inter-class conversion. A summary of these trends is 

captured in table 8 and figure 4 below. 

Table 8: Extent of key land covers types in selected anniversaries 
Land cover type 1985 1995 2000 2005 2010/11 

Tea plantation (Ha) 20,368 20,738 19,256 21,420 23,872 

Forest/woodlot (Ha) 13,332 12,096 14,609 15,985 9,643 

Annual crop fields (Ha) 19,550 20,228 19,178 15,571 15,800 

 

 

Fig. 4: General land cover change trend among the three major land cover categories 

The overall extent of tea plantation seemed to have increased between 1985 and 2010/11, with minimum and 

maximum range being 20,368 ha in 1985 and 23,872 ha in 2010/11 respectively. Apart from the 1995-2000 period 

where the extent of tea plantation apparently decreased by 7% (1,482 ha), the other change analysis periods showed 

an increase; 2% (370 ha) in 1985-1995 period, 11% (2,164 ha) in 2000-2005 period and 11% (2,452 ha) in 2005-

2010/11 periods. Figures 5 illustrate these dynamics evidenced in tea plantation, showing the spatial distribution 

of the gain or loss in tea areas while Table 9 summarizes the land use/cover dynamics/conversion. Tea has 

remained the main cash crop in the area, and therefore farmers have continued to increase the area under the crop 

to secure their income, apparently explaining the increase in the overall area under tea between 1985 and 2010/11. 

However, the apparent loss of tea cover witnessed during 1995 – 2000 period, may be attributed to the gradual 

filling-up of Ndakaini dam, with water replacing areas initially occupied by tea. The dam was completed in 1994 

but took 2 years to fill up. In the same period, woodlot development and promotion effort were intensified, perhaps 

the outcome of these campaigns taking toll of tea cover in areas beyond the dam. 

The dynamics of forest/woodlot cover showed an intermittent increase and decrease but accumulating to an 

overall decline from 13,332 ha to 9,543 ha between 1985 and 2010/11 respectively.  While the period between 

1985 and 1995 was apparently occasioned by 9% (1,236 ha) loss of forest cover, the dynamics were of different 

trends in 1995-2000 and 2000-2005 change analysis period, typified by increase of the extent of forest/woodlot 

cover by about 21% (2,513 ha) and 9% (1,376 ha) respectively.  In the subsequent period between 2005 and 

2010/11, however, the trend took a negative direction, reflected by an accelerated loss of forest/woodlot cover by 

about 40% (6,342 ha). Figure 6 illustrates these dynamics evidenced in forest/woodlot cover, showing the spatial 

distribution of the respective gain or loss while Table 9 summarizes the land use/cover dynamics/conversion. The 

period between 1985 and 1995 was evidenced with huge landscape transformation, particularly the clearance of 

vegetation and earth excavation to pave way for dam construction. The associated dynamics within and beyond 

the dam area may perhaps have occasioned the decline in forest/woodlot cover in the same period. On a different 

note, the increase in woodlot between 1995-2005 may perhaps be attributed to intensified efforts in woodlot 
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development and promotion as alternative livelihood option. On the other hand, the period 2005-2010 associated 

with accelerated reduction of woodlot cover, was occasioned by a number of factors key among them being; the 

ban of timber harvesting from government forests thus leading to high demand from the farms, increasing prices 

of tree products and demand from tea factories occasioned by change of energy source from furnace oil to firewood 

in their kilns. Tea factories remain a major consumer of woodlots in the area and while that level may currently be 

unsustainable, it is commendable that a number of factories have acquired land to plant woodlots for their future 

use in other parts of Central Kenya. 

Similar to forest/woodlot cover, the dynamics of annual crop fields and other cover types was also occasioned 

by intermittent increase and decrease accumulating to an overall decline from 19,550 ha to 15,800 ha between 

1985 and 2010/11 respectively.  Between 1985 and 1995, the land use dynamics apparently reflected a 3% (678 

ha) slight increase in the extent of annual crop fields (others), but later evolving a negative trend in the subsequent 

change analysis periods, i.e. a decline by 5% (1,050 ha) between 1995 and 2000 and 19% (3,607 ha) between 2000 

and 2005. In the 2005-2010/11 period, however, the trend reflected a slight increase (1%, 229 ha) in the extent of 

areas under annual crops (others).  Apparently, these trends oppositely matches the trends evidenced in 

forest/woodlot cover, albeit inconsistencies in measured values of either covers. Seemingly, in the periods when 

establishment of woodlots was intensifying, areas under annuals crop fields (others) were being decimated perhaps 

to pave way for woodlot establishment.  Accelerated harvesting of these woodlots witnessed in 2005-2010/11 

period would potentially revert some of these areas back to annual crop fields (or others), perhaps explaining the 

slight increase of the latter in this period. Figures 7 illustrates these dynamics evidenced in annual crop cover 

(others), showing the spatial distribution of the respective gain or loss while Table 9 summarizes the land use/cover 

dynamics/conversion. 

    
Fig. 5: Land use/land cover dynamics in tea plantation areas (from left to right: 1985-1995, 1995-2000, 2000-2005, 

2005-2010/11) 

 

    
 

Fig.6: Land use/land cover dynamics in forest/woodlot areas (from left to right: 1985-1995, 1995-2000, 2000-

2005, 2005-2010/11) 

    
Fig.7: Land use/land cover dynamics in annual crop fields (others) areas (from left to right: 1985-1995, 1995-2000, 

2000-2005, 2005-2010/11) 
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Table 9: Trend of land use/land cover dynamics and evolving inter-class conversion 

 
From the fore-going, it is clear that the three land uses/covers followed different and inconsistent temporal 

land use dynamics across the change-analysis periods, while experiencing different intensity of dynamics. A 

comparison of the intensity of the temporal land use dynamics among the three main land use /land cover types is 

summarized by Figure 8 below. In 1985-1995 change-analysis period, land use dynamics were substantially 

intensive in sites previously under annual crops fields (others) and forest /woodlots (47% and 45% respectively) 

but moderate in sites under tea plantation (35%).  In 1995-2000 change-analysis periods, land use dynamic was 

more intensive in sites previously under annual crops fields compared to those under forest /woodlots and tea 

plantation (55%, 44%, and 46% respectively). A similar scenario was evidenced in 2000-2005 change-analysis 

period, where the intensity of dynamics ranged at 58%, 39%, and 38% respectively.  In 2005-2010/11 change-

analysis period, land use dynamic was substantially low in sites previous under tea plantation but moderate in 

those under annual crop fields and forest/woodlots (19%, 42% and 49% respectively).  
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Fig. 8: A comparison of the intensity of the temporal land use dynamics among the three main land use /land cover 

types 

The ongoing temporal land use dynamics generate land cover matrices with evolving loss or gain in the extent 

of key land cover classes with losers and gainers varying and again inconsistent across change-analysis periods, 

(see Figure 9 below).  The translating rate of gain/loss is equally inconsistent as shown in Table 10 below. During 

the change-analysis period of 1985-1995, forest/woodlot cover experienced an overall spatial loss (about 9%) 

while the other two covers (tea plantation and annual crop fields) experienced an overall spatial increment (2% 

and 3% respectively). In 1995-2000 change analysis period, forest/woodlot cover experienced an overall spatial 

increment (21%) while tea plantation and annual crop fields experienced an overall spatial decrement (7% and 5% 

respectively). In 2000-2005 change-analysis period, both tea plantation and forest/woodlot cover experienced a 

spatial increment (11% and 9% respectively) while annual crop fields experienced a spatial decrement (19%). In 

2005-20010/11 change-analysis period, forest/woodlot cover experience a huge spatial decrement (40%) while tea 

plantation and annual crop fields experienced a spatial increment (11% and 1% respectively).  

 
Fig. 9: Evolving loss or gain in the extent of key land cover classes across change-analysis period 

 

Table 10: Estimated rate of gain/loss of extent of target cover across change-analysis periods 

Change analysis period

1985-1995 

(Ha)

1995-2000 

(Ha)

2000-2005 

(Ha)

2005-2010/11 

(Ha)

Average 

(Ha)

Annual rate of gain/loss of tea plantation areas 37 -296 433 490 166

Annual rate of gain/loss of forest/woodlot areas -124 503 275 -1268 -154

Annual rate of gain/loss of areas under annual crops (Others) 68 -210 -721 46 -204  

 

4.0 Conclusion 

As noted by Tottrup (2007), classification in highland regions is complicated by the complex spatial and structural 

pattern of tropical landscapes as well as by topography. Cloud and cloud-shadows proves to be a major impediment 

of land cover change analysis, especially where images acquired at the same period of the year are needed to 
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reduce vegetation phenology differences. As the problem of availability of cloud-free images in tropical regions 

is very common, gap-filling followed by mosaicing techniques are valuable in rendering images ready for use in 

land cover change analysis as evidenced in this paper. Here, the selected images representing 1985, 1995 and 2011 

anniversaries had some parts of the study area contaminated, (about 28%, 5% and 43% respectively). By 

implementing cloud and cloud-shadow correction, the gaps were reduced immensely (e.g. 90% for the 1985 image 

and 82% for the 2011 image). 

In anniversaries where availability of ancillary data about distribution of land-cover types is scarce, Google 

Earth can be used as a substitute as in this paper. Here, more than 200 sample points across the different land cover 

types were captured and used to refine and assess the accuracy of the outputs previously generated from 

unsupervised classification. As inferred from the discussion, the performance of the data captured from Google 

Earth greatly depends on the age of the background image. Indeed, the extent to which these captured data matched 

the imaged realities in respective anniversaries is seen to be highly associated to the reflected accuracy measure of 

respective anniversaries. Given that the background image in Google Earth over the study area was acquired in 

2000, it is expected that land cover classification outputs of 2000, 2005 and 2010 had fairly higher level of overall 

accuracy (64%, 79% and 68% respectively) and Kappa statistic (0.47, 0.69 and 0.53 respectively) compared to 

similar measures in 1985 and 1995 classification outputs.  

Post-classification change detection and trend analysis involved three land cover classes namely tea plantation, 

forest/woodlot and annual crop fields (sometimes denoted as others). The three land uses/covers followed different 

and inconsistent temporal land use dynamics across the change-analysis periods, while experiencing different 

intensity of dynamics. Apart from the 1995-2000 period where the extent of tea plantation apparently decreased 

by 7% (1,482 ha), the other change analysis periods showed an increase; 2% (370 ha) in 1985-1995 period, 11% 

(2,164 ha) in 2000-2005 period and 11% (2,452 ha) in 2005-2010/11 periods.  With regard to forest/woodlot cover, 

the period between 1985 and 1995 was apparently occasioned by 9% (1,236 ha) loss of forest cover, 1995-2000 

and 2000-2005 change analysis periods were typified by increase of the extent of forest/woodlot cover by about 

21% (2,513 ha) and 9% (1,376 ha) respectively while the period between 2005 and 2010/11 reflected an accelerated 

loss of forest/woodlot cover by about 40% (6,342 ha). As for the annual crop fields (or others), the period between 

1985 and 1995, experienced a 3% (678 ha) slight increase in the extent of annual crop fields (others), later evolving 

a negative trend in the subsequent change analysis periods, i.e. a decline by 5% (1,050 ha) between 1995 and 2000 

and 19% (3,607 ha) between 2000 and 2005 before showing a slight increase (1%, 229 ha) in the 2005-2010/11 

period. These dynamics are associated with the large-scale landscape transformation that occurred following 

construction of Ndakaini dam, transitional policies of the Kenyan government regarding utilizations of forest 

products especially from gazetted forest and the land cover change associated with dynamics of establishing and 

harvesting of woodlots to feed the tea factories. These findings are highly relevant for land use planning and natural 

resources management in Ndakaini area where the main concern is about sustainable future supply of quality water 

from Ndakaini dam against the background of continuing land-cover dynamics associated with the said driving 

factors that bears heavily on the management of the catchment.  

The study has demonstrated the utility of skilled implementation of gap filling and mosaicing techniques and 

post-classification change detection method to circumvent the cloud and cloud-shadow problem often common in 

tropical humid highlands thereby enhancing the application of remote sensing to address deficit of quantitative 

information about land-cover dynamics. 
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