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Abstract 

Groundwater which constitutes high percent of the global fresh water is the most important source of drinking 

water, which when polluted, have acute effects on its users. Consequently, the quality and pollution of groundwater 

is a health concern in the world. The target of this research is to evaluate the quality of groundwater around the 

Niger Delta Basin Development Authority in order to identify and analyze the distribution of the critical 

contaminants that affect the overall quality of groundwater water around the study area. About hundred (100) 

boreholes spread to cover the study area were sampled. The water samples were analyzed using standard 

procedures for assessing drinking water qualities in order to understand the existing condition of groundwater 

within the study area. Statistical analysis of the groundwater quality data was done using average weighted index 

method to compute the water quality index, factor analysis using principal component method to identify the 

groundwater contaminants affecting the overall groundwater quality and geospatial analysis using kriging 

interpolation method to evaluate the spatial distribution of the selected groundwater contaminants. From the 

principal component analysis, result revealed that; nitrate, total dissolved solids, concentration of iron, total 

suspended solids and turbidity were the most important contaminants affecting the quality of the groundwater. 

Result of geospatial analysis using kriging interpolation revealed that; the water quality parameters showed 

relatively strong degree of spatial dependency which made it possible to generate the spatial distribution map for 

the selected water quality parameters. 
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1. Introduction 

The availability of water in adequate quality and quantity is essential for the existence of human life. Water is one 

of the basic elements that sustain life on earth. Man can survive for a considerable amount of time without food, 

but he will succumb within days without water. It is reported in (Nichole, 2004; Akporido, 2000) and Water for 

Life, (2007) that where there is water, there is life; and that life exists around numerous uses of water which make 

it important for survival and luxury. The average daily intake of water per person, directly or as contained in other 

foods, is about four litres (Water for life (2007). For those who live in hot dry climate, this daily requirement is at 

least double (Akporido, 2000; Water for Life, 2007). Whenever a number of people live together, a supply of water 

is always paramount. On this note, for all purposes for which water is required, the quality of water is of great 

importance (Ocheri et al., 2014). As world population is constantly growing, the demand for water increases every 

day.  

Groundwater is one of the major sources of water. Groundwater is water stored under the earth surface in 

rocks and soil segments called aquifers and is less susceptible to contamination by the action of microorganism 

(Debels, et al., 2005). As groundwater use has increased, issue associated with the quality of groundwater resources 

have likewise grown in importance. Groundwater, depending on the depth and the prevailing soil condition is 

vulnerable to pollution by anthropogenic activities, such as agricultural sources, urbanization, un-engineered 

disposal of wastes including de-icing salt, oil and chemical spillage (Baalousha, 2010). These sundry activities are 

carried out by man without due regard to its consequences on the long run. Groundwater, once polluted can be 

very difficult to remediate back to its natural pristine state. For many years, attention has been directed at 

contamination from point sources. More recently, concerns have increased about nonpoint sources of contaminant 

and about the overall quality of groundwater resources (Faisal et al., 2003; Efe, 2003). Groundwater contamination 

can be detected by analyzing borehole water for a series of dissolved ion species. Hence water quality data sets 

typically contain many variables measured at several spatially scattered locations.  

A review conducted in Ocheri, (2014), on groundwater quality in Nigeria urban areas revealed that Nigerian 

urban groundwater quality is influenced by the geological condition of the soil through which it flows, geochemical 

and physical process of the environment, rate of urbanization, industrialization and seasonal variability. Abams et 

al, (2007) and Agbalagba et al, (2011) conducted a review on the quality of groundwater in parts of Yenagoa and 

Port Harcourt and reported that the groundwater in these areas have been negatively impacted by anthropogenic 

activities in the areas.  

 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online)  

Vol.9, No.24, 2019 

 

27 

2. Materials and Methods 

2.1 Description of study area 

The study area for this research is the Niger Delta Basin Development Authority. This study covers the original 

area of operation of the River Basin Authority, which is Rivers and Bayelsa State alone. The geographical 

coordinates of Rivers and Bayelsa states are 4.8581˚N and 6.9209˚E and 4.25˚S and 5.37˚W and 6.75˚E 

respectively (Nwankwoala et al., 2011). The Niger Delta Basin is situated in the south-south geo-political zone of 

Nigeria. It is located in the rain forest region with relative humidity above 80% having an annual temperature 

range of 25⁰C to 31⁰C and annual rainfall of 4700mm on the coast to about 2400mm. The basin is characterized 

by two alternating climatic conditions of a long period of rainy season spanning from March to November, 

followed by a dry season spreading from November to March (Nwankwoala, et al., 2011). Figures 1 and 2 shows 

the Google earth and the study area maps respectively. 

 
Figure 1: Google earth map of study area (Google .com) 

 

Figure 2: Map of study area ((Bolaji and Tse, 2009) 

2.1.1 Geology and Hydrogeology of study area 

The Niger Delta Basin is located on the continental margin of the Gulf of Guinea in equatorial West Africa. The 

Niger Delta lithofacies is made up of the three distinct vertical subdivisions viz. the Benin formation, the Agbada 

formation and the Akata formation. The Benin formation being the upper delta-top Lithofacies comprises of 

massive continental sands and gravels. The Agbada formation or facie consists of the pro-delta marine shales, with 

low stand turbidite fans which are deposited in a deep marine setting. In the Northern Delta Sector during the 

Oligocene times the Benin formation first occurs (Bolaji and Tse, 2009). Similarly, Paleocene age was established 

as the occurrence of the Akata formation in the proximal parts of the Delta. The Niger Delta complex 

geomorphologic features comprise of fresh water swamps, mangrove swamps, beaches, bars, and estuaries (Bolaji 

and Tse, 2009). 
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2.2 Sampling location and sample collection 

The boundary of built up area (land use) within the study area was digitized and gridded at 2km interval to 

determine the sampling points and ensure uniform coverage. Water samples was collected systematically so as to 

have a general overview of the water quality condition within the study area. For accurate geo-referencing of the 

selected boreholes, Garmin hand held GPS receiver was employed to determine the geographical coordinates of 

each borehole. A section of the boreholes sampled including their location and geographical coordinates is 

presented in Table 1. One hundred (100) boreholes were systematically sampled with reference to location points 

at each season: Wet season (July to October 2018) and dry season (November to December 2018) in order to 

determine the physico-chemical and biological parameters of the groundwater samples. At every point of 

collection, the air tight, clean and dried plastic containers were rinsed two to three times with the borehole water 

to be sampled before collection. The samples were labelled properly and stored in air tight, clean and dried plastic 

containers before been transported to Water Resources and Environmental laboratory in the Department of Civil 

Engineering, University of Benin were the analysis were conducted in line with standard procedures and guideline 

recommended by World Health Organization (WHO). The water samples were analyzed in triplicates to obtain 

the mean value and standard deviation of each water quality test parameters. For the analysis of biochemical 

oxygen demand (BOD), the black bottles containing the water samples remained tightly closed prior to analysis in 

order to prevent photosynthetic and oxygen generation. In-situ parameters, namely; dissolved oxygen (DO), 

temperature, pH electrical conductivity (EC) and total dissolved solids (TDS) were determined in the field 

immediately after sample collection to avoid false measurement values (APHA, 2005). 

Table 1: Coordinate Data of Sampled Boreholes (RIVERS) 

Borehole Codes Locations Northings Easting 

1. Sample R1 

2. Sample R2 

3. Sample R3 

4. Sample R4 

5. Sample R5 

6. Sample R6 

7. Sample R7 

8. Sample R8 

9. Sample R9 

10. Sample R10 

11. Sample R11 

12. Sample R12 

13. Sample R13 

14. Sample R14 

15. Sample R15 

16. Sample R16 

17. Sample R17 

18. Sample R18 

19. Sample R19 

20. Sample R20 

21. Sample R21 

22. Sample R22 

23. Sample R23 

24. Sample R24 

25. Sample R25 

26. Sample R26 

27. Sample R27 

28. Sample R28 

29. Sample R29 

30. Sample R30 

31. Sample R31 

32. Sample R32 

33. Sample R33 

Igbu Ahaoda 

Mini Ama 

Arukwo-Abua 

Bakana 

Edeoha-Ahoada 

Edeoha-Ahoada 

Okoboh-Abua 

Buguma 

Air force Base 

Trans Amadi  

Ipo-Ikwerre 

Woji 

Rumuokwurushi (1) 

Amakiri Polo 

Rukpokwu 

Aggrey 

NDBDA 

Rumuokwurushi (2) 

Amadi-Ama 

Owodu 

Okochiri 

Trans Amadi (3) 

Railway 

Bundu 

Oyorokoto 

Kono Town 

Oyigbo (1) 

Ngo Town Andoni 

Yegha Gokona 

Oyigbo (2) 

Nyokuru 

Tegu-Gokana 

Woji (2) 

239820 

269110 

235669 

286341 

237214 

236203 

235766 

262207 

280557 

279389 

274121 

286716 

283293 

286238 

289003 

280451 

278741 

283012 

279849 

287302 

307314 

278023 

279801 

279684 

325714 

334047 

289245 

323819 

319044 

289599 

339050 

316831 

286421 

561471 

525361 

537656 

528043 

556600 

556600 

540433 

524264 

534103 

530030 

532098 

533642 

536010 

527163 

534162 

526634 

529397 

536068 

530118 

531219 

519241 

530112 

527029 

525973 

496236 

508598 

538032 

495804 

517018 

538240 

510170 

519746 

533116 

 

2.3 Water Quality Analysis 

A total of thirty-three (33) physico-chemical parameters and two (2) microbiological parameters were analyzed 

for each sampled domestic borehole to provide an insight into the overall quality of water within the study area. 

The physico-chemical parameters include: temperature, odour, colour/clarity, total hydrocarbon content (THC), 
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pH, Electrical conductivity (EC), Turbidity, Total suspended solid (TSS), Salinity, Alkalinity, Total Dissolve 

Solids (TDS), and Dissolved Oxygen (DO). Others are; Biochemical Oxygen Demand (BOD), Chemical Oxygen 

Demand (COD), Bicarbonate (HCO3), Sodium (Na), Potassium(K), Calcium(Ca), Magnesium (Mg), Chloride(Cl-), 

Phosphorus (P), Ammonium(NH4), Nitrite (NO2), Nitrate (NO3), Sulphate (SO4) and heavy metals, namely; Iron 

(Fe), Manganese (Mn), Zinc (Zn), Copper (Cu), Chromium (Cr), Cadmium (Cd), Nickel (Ni) and Lead (Pb). The 

microbiological parameters include: Total Coliform Counts (TCC) and E. Coli 

2.3.1 Determination of in-situ parameters; (pH, EC, TDS, DO and Temperature) 

For electrical conductivity (EC), total dissolved solids (TDS), pH, temperature and dissolved oxygen (DO), in-situ 

measurements were carried out since the measurement values of the parameter’s changes with storage time (WHO, 

2003). pH, electrical conductivity, temperature and total dissolved solids were measured using portable meter’s 

(multi-parameters) while dissolved oxygen was examined using DO meter (Lutron DO-5509, Range 0 – 20mg/l) 

shown in Figure 3 

 
Figure 3: DO meter and multi portable meter 

The multi portable meter probe was submerged in the water at 4cm and pH mode selected. Water sample was 

stirred gently and pH value displayed on the meter was allowed to adjust and stabilize before recording. Other 

measurements buttons were pressed successively and values recorded. The procedure was repeated three (3) times 

and the mean value calculated for each parameter. DO meter was also inserted into the water sample at about 10cm 

depth using the oxygen probe handle.  

UNICAM 969 Atomic Absorption Spectrometer (AAS) shown in Figure 4 was used to determine the 

concentration of heavy metals such as; Iron (Fe), Manganese (Mn), Zinc (Zn), Copper (Cu), Chromium (Cr), 

Cadmium (Cd), Nickel (Ni), Lead (Pb), and Vanadium (V) while UV visible spectrophotometer (Thermo Scientific 

Spectronic 20D+ ) presented in Figure 5 was used to analyzed the level of phosphorous (P), Nitrate (NO3), Nitrite 

(NO2) and Sulphate (SO4). Other apparatus utilized included 250ml separating glass funnels, Cuvette, 10ml and 

50ml pipette, 250ml conical flask, 50ml burette, 25ml and 50ml volumetric flask, glass beads, refrigerator, oven 

and whatman filter paper. 

 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online)  

Vol.9, No.24, 2019 

 

30 

       
Figure 4: UNICAM 969 AA Spectrometer                Figure 5: UV Visible Spectrophotometer 

Preparation of reagents and procedures employed in the laboratory for the analysis and determination of all 

water quality parameters followed the standard methods recommended by relevant authorities such as World 

Health Organization (WHO). 

 

2.4 Groundwater contaminant identification 

Statistical computations involving the application of principal component analysis for groundwater analysis was 

done using statistical package for the social sciences (SPSS 22 software). Principal component analysis (PCA) is 

a powerful tool that attempts to explain the variance of a large dataset of intercorrelated variables with a smaller 

set of independent variables. The Principal Components (PC) is the uncorrelated (orthogonal) variables obtained 

by multiplying the original correlated variables with the eigenvector, which is a list of coefficients (loadings or 

weightings). Thus, the PCs are weighted linear combinations of the original variables. PC provides information on 

the most meaningful parameters, which describe the whole data set while affording data reduction with a minimum 

loss of original information (Gajbhiye et al., 2014). Application of PCA to ground water analysis was conducted 

by using the following step by step methodology 

i. Computation of Anti-image correlation matrix 

ii. Computation of eigen values 

iii. Extraction of the component matrix 

iv. Extraction of the rotated component matrix 

v. Horizontal decentralization of the component matrix 

2.4.1 Anti- Image Correlation Matrix 

The anti-image correlation matrix was employed to test the suitability of principal component analysis (PCA) in 

explaining the underlying correlation between selected water quality parameters. The suitability of PCA is based 

on the values of the off diagonal matrix. If the off-diagonal matrix are very close to zero, then PCA is suitable 

otherwise we must think of another statistical method (Gajbhiye et al., 2014). 

2.4.2 Computation of Eigen values 

The eigen value is normally used as cutoff in factor analysis since it is the sum of the squared factor loadings of 

all variables. Factors with eigen values greater than 1 represent the number of component factors needed to 

describe the underlying variation of the groundwater quality. This are the component factors that contributes an 

adequate amount to the variation in the ground water quality. Factors with eigen value less than 1 means that such 

factor do not have any influence on the overall groundwater quality. 

2.4.3 Computation of communualities 

It is also important in the extraction phase to examine the communualities. The communalities is represented by 

the sum of the square loading for a variable across factor. Communality can range from 0 to 1. Communality of 1 

means that all of the variation in the groundwater quality is explained by the component factors. 

2.4.4 Extraction of component matrix 

In other to identify the groundwater quality parameters that make up the members of each component factors, the 

component matrix was generated. The extracted component matrix was employed to understand the correlation 

between the groundwater quality parameters in each component group. In regression terms, the component matrix 

is the standardized regression coefficient between the observed values and the component factors. Higher factor 

loading indicates that a parameter is closely associated with the component factor. To determine the water quality 

parameters that make up each of the component factors, horizontal decentralization of the component matrix was 

done and the best favoured parameters was selected as member of that particular component factor. 
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2.4.5 Extraction of the rotated component matrix 

The rotated component matrix gives you the factor (s) you need to pay more attention to in other to improve the 

overall quality of the groundwater in any location. To understand the factors that is most critical towards improving 

the overall groundwater quality of the study area, vertical decentralization of the rotated matrix was done (Gajbhiye 

et al., 2014). For principal component analysis (PCA) to work, the mean was subtracted from each of the data 

dimensions. The mean subtracted represent the average across each dimension. The mean was computed from 
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From equation (2), the covariance matrix was computed using 
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Covariance is normally measured in 2-dimensions such as (X, Y); (X, Z) or (Y, X). Provided the X and Y 

covariance matrix are of the same size, addition and multiplication of the covariance matrix was employed to 

calculate the eigenvector and eigenvalues of the covariance matrix. The notion of data compression and reduced 

dimensionality comes into PCA in computing the feature vector. To compute the feature vector, equation (4) was 

employed as follows 

Feature Vector = (eig1, eig2, eig3 ------------------ eign)      (4) 

 

Once the component eigenvector is chosen, the feature vector was formed and then transposed to get the final 

solution as follows; Final Data = (Row Feature Vector) * (Row Data Adjust)    (5) 

 

2.5 Groundwater analysis using geostatistical techniques 

The geostatistical analyst is an Arcmap extension that provides a wide variety of tools for spatial data exploration, 

identification of data anomalies and evaluation of error in prediction surface models, statistical estimation, and 

optimal surface creation. The geostatistical analyst can determine the approximate concentration of selected water 

quality parameters in an unsampled location and can determine the spatial distribution of the parameter i.e. where 

they may be moving by creating an optimal interpolated surface.  

The step by step methodology involved in the creation of interpolation surface for selected groundwater quality 

parameters are: 

i. Collection of water sample from selected boreholes within the study area 

ii. Collection of spatial data (Northings, Easting and Elevation) of the selected boreholes within the study 

area using Garmin Hand-held GPS 

iii. Analysis of the physico-chemical and microbiological properties of the collected groundwater samples 

iv. Modelling the spatial distribution of selected groundwater parameters using kriging interpolation in 

ArcGIS 

Kriging is a geostatistical interpolation technique that considers both the distance and the degree of variation 

between known data points when estimating values in unknown areas. It attempts to minimize the error variance 

and set the mean of the prediction errors to zero so that there are no over- or under-estimates. It is a robust 

interpolation tool which derives weights from surrounding measured values to predict values at unmeasured 

locations. The kriging weights are obtained from fitting of semi- variogram models, developed by viewing the 

spatial structure of the data. To create a continuous surface or map of any phenomenon, predictions are made from 

the models and the spatial arrangement of measured values. In this study, ordinary kriging method was employed 

for the spatial analysis of some selected groundwater quality parameters owing to its simplicity and prediction 

accuracy in comparison to other kriging methods. In addition, it is an error minimization technique where the 

values of a property (water quality) at unsampled location are predicted such that the variance of the estimated 

value is reduced to the barest minimum. The following steps are involved in the use of kriging interpolation method 

for the geospatial analysis of selected groundwater quality parameters 

i. Evaluation of normality test  

ii. Selection of attribute data and model interpolation method 
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iii. Semivariogram fitting and testing 

iv. Cross validation  

v. Spatial Dependency determination 

vi. Creation of groundwater quality prediction maps 

2.5.1 Test of Normality 

To test the normality of the water quality datasets, histogram plots of the different water quality parameters were 

generated using statistical package for the social sciences (SPSS version 22) software 

2.5.2 Selection of attribute data and model interpolation method 

Geostatistics can reveal stochastic structure of groundwater quality variations in space and can showed a significant 

variation in the pH of groundwater within and around the study area. Table 2 presents the modelling step for the 

spatial variation of pH and other selected water quality parameters. It is observed that the attribute data selected is 

pH while the interpolation method is Kriging/Cokriging method. 

Table 2: Kriging modeling for the spatial variation of pH 

 
The kriging interpolation method was selected based on its capability to determine the corresponding value 

of the attribute data in an unsampled location. The kriging method is also very flexible and allows you to 

investigate the graph of auto-and cross-correlation. In addition, the kriging method uses statistical models that 

allow a variety of output surface including predictions, standard error, probability and quantile. More also, unlike 

other methods of interpolation that assumes that the input data are normally distributed, kriging interpolation 

method recognizes the stochastic nature of the input data. 

2.5.3 Fitting and testing of semivariogram 

The semivariogram/covariance model allows you to select the model that best described the groundwater quality 

data. In addition, the nugget, range and partial sill can also be determined. The interphase of Arcmap showing the 

semivariogram/covariance modelling of pH is presented in Figure 6 

 
Figure 6: Semivariogram/covarince modelling of pH 
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2.5.4 Estimation of cross validation statistics 

The Cross Validation statistics gives you an idea of how well the model predicts the values at the unknown 

locations. The essence of cross validation was to examine closely the fitted models and select the model that gives 

the best result (prediction). To select the model that gives the best result, goodness of fit statistics, namely; Root 

mean square error (RMSE), Mean square error (MSE), Root mean square standard error (RMSSE) and Average 

standard error (ASE) were employed 

 

3. Results and Discussion  

Principal component analysis (PCA) was performed to identify the most critical water quality parameter (s) that 

significantly influenced the overall quality of groundwater within the study area. To perform the analysis, water 

samples were collected from hundred (100) boreholes and twenty one (21) water quality parameters were 

monitored during dry and wet season. These water quality parameters include; pH, Electrical conductivity (EC), 

Salinity, Total Dissolve Solids (TDS), Dissolved Oxygen (DO), Bicarbonate (HCO3), Sodium (Na), Potassium(K), 

Calcium (Ca), Magnesium (Mg), Chloride (Cl-), Phosphate (PO4), Nitrate (NO3), Sulphate (SO4), Iron (Fe), Zinc 

(Zn), Copper (Cu), Turbidity, Total suspended solid (TSS), Temperature and Alkalinity. 

  

3.1 Testing the suitability of PCA 

To ascertain the potential of principal component method in handling the specific objectives of this study, Kaiser-

Meyer-Olkin measure of sampling adequacy and anti-image correlation matrix were employed. The estimated 

statistics based on Kaiser-Meyer-Olkin measure of sampling adequacy is presented in Tables 3 

Table 3: Testing the suitability of principal component analysis 

 
From the result of Table 3, it was observed  that the significant value based on Bartletts test of sphericity was 

0.000. Since the calculated (p-value) was less than 0.05, it was concluded that the model is significant and that 

principal component analysis (PCA) was suitable for the analysis. A further test of suitability of principal 

component analysis is the use of anti-image correlation matrix presented in Table 4 

Table 4: Anti-image correlation matrix 

 
Result of Table 4 shows that principal component analysis is suitable for this analysis. The suitability of PCA 

is based on the fact that; the off diagonal matrix are less than one with a host of them very close to zero. Since the 

off diagonal matrix are less than one, it was concluded that PCA is good for the study. 

 

3.2 Extraction of communualities 

It is also important in the extraction phase to examine the communualities. Communalities representes the sum of 
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the square loading for a variable across factor. Communality can range from 0 to 1. A communality of 1 means 

that all of the variation in the groundwater quality is explained by the component factor. The computed 

communualities is presented in Table 5 

Table 5; Computed communalities of groundwater quality parameters 

 
It was observed from the result of Table 5 that the initial communualities was 1.000 for all the ground water 

quality parameters employed for this analysis. Communualities of 1.000 is good since it indicates that the variation 

in groundwater quality around the study area can be explained with the aid of principal component analysis. 

Extraction communualities are estimates of the variance in each variables accounted for by the factors. High 

extraction indicates that the extracted components represents the variables well. If any extraction is very low (< 

0.3), then one may need to extract another component factor. Since non of the extraction is less than 0.3, it was 

concluded that the extracted components are good enough to explain the underlying variation associated with the 

quality of groundwater. 

 

3.3 Extraction of Component Factors 

Using the method of principal component analysis, result of the component factor extracted is presented in Table 

6 

Table 6: Extraction of compoent factors using principal componet analysis method (PCA)  
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The extraction analysis determines how well the component factors explains the variation in the overall 

quality of groundwater from the hundred boreholes using the total varianced explained as presented in Table 6. 

Factors with eigen values greater than one represent the number of component factors needed to describe the 

underlying variation of the ground water quality. This are the component factors that contributes an adequate 

amount to the variation in the ground water quality. The eigen value is normally used as cutoff in factor analysis 

since it is the sum of the squared factor loadings of all variables. Factors with eigen value less than one means that 

such factor do not have any positive influence on the overall groundwater quality. From the results of Table 6, it 

was observed that five component factors had eigen value greater than one. These component factors contributed 

to change in the quality of the groundwater aroung the study area. This claim was further supported using the scree 

plot presented in Figure 7 

 
Figure 7: Scree plot of component factors with most significant contributions 

From the scree plot of Figure 7, it was again observed that five component factors possess very strong 

influence on the overall quality of the groundwater around the study location.  

 

3.4 Extraction of Component Matrix 

In other to identify the groundwater quality parameters that make up the members of each component factors, the 

component matrix was generated as presented in Table 7 

Table 7: Component matrix showing the five component factors 
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The extracted component matrix was employed to understand the correlation between groundwater quality 

parameters in each component group. In regression terms, the component matrix is the standardized regression 

coefficient between the observed values and the component factors. Higher factor loading indicates that a 

parameter is closely associated with the component factor. To determine the water quality parameters that is most 

highly correlated with the component factors, horizontal decentralization of the component matrix was done and 

the best favoured parameters was selected as member of that particular component factor. Result of the horizontal 

decentralization of the component matrix is presented in Table 8 

Table 8; Result of horizontal decentralization of the component matrix 

Variables Componet Factors 

S/No Variable Code Variable Name 1 2 3 4 5  

1 X1 pH  0.368     

2 X2 Nitrate 0.878      

3 X3 EC  0.753     

4 X4 Turbidity    0.589   

5 X5 DO   0.104    

6 X6 TDS  0.840     

7 X7 Sodium 0.817      

8 X8 Sulphate 0.886      

9 X9 Zinc  0.794      

10 X10 Copper 0.806      

11 X11 Chloride 0.715      

12 X12 Iron   0.534    

13 X13 Carbonate 0.758      

14 X14 TSS  0.396     

15 X15 Phosphate 0.727      

16 X16 Temperature    0.454   

17 X17 Alkalinity 0.770      

18 X18 Salinity     0.451  

19 X19 Magnesium 0.913      

20 X20 Potassium 0.842      

21 X21 Calcium 0.656      

Results of Table 8 revealed that:  

i. The first component factor is most highly correlated with nitrate, sodium, sulphate, zinc, copper, chloride, 

carbonate, phosphate alkalinity, magnesium, potassium and calcium 

ii. The second component factor is most highly correlated with pH, electrical conductivity and total 

suspended soilds.  

iii. The third component factor is most highly correlated with dissolved oxygen and concentration of iron 

iv. The fourth component factor is most highly correlated with turbidity and tenmperature while 

v. The fifth component factor is most highly correlated with salinity  

 

3.5 Extraction of Rotated Component Matrix 

The rotated component matrix is presented in Table 9   

  



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online)  

Vol.9, No.24, 2019 

 

37 

Table 9: Rotated component matrix 

 
The rotated component matrix gives you the factor (s) you need to pay more attention to in other to improve 

the overall quality of the groundwater in any location. To understand the factors that are most critical towards 

improving the overall groundwater quality of the study area, vertical decentralization of the rotated matrix was 

done and result obtained is presented in Table 10 

Table 10: Result of vertical decentralization of the rotated component matrix 

Variables Componet Factors 

S/No Variable Code Variable Name 1 2 3 4 5  

1 X1 pH       

2 X2 Nitrate 0.859      

3 X3 EC       

4 X4 Turbidity     0.792  

5 X5 DO       

6 X6 TDS  0.971     

7 X7 Sodium       

8 X8 Sulphate       

9 X9 Zinc        

10 X10 Copper       

11 X11 Chloride       

12 X12 Iron   0.795    

13 X13 Carbonate       

14 X14 TSS    0.830   

15 X15 Phosphate       

16 X16 Temperature       

17 X17 Alkalinity       

18 X18 Salinity       

19 X19 Magnesium       

20 X20 Potassium       

21 X21 Calcium       

From the result of Table 10, it was observed that; nitrate, total dissolved solids, concentration of iron, total 

suspended solids and turbidity were the most important variables affecting the quality of the groundwater within 

the study area. The component plot in rotated space is presented in Figure 8 
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Figure 8: Component plot in rotated space 

From the component plot of Figure 8, it was observed that the combined isolated variables is X3 and X6 

which represent electrical conductivity and total dissolved solids an indication that both variables are not only 

highly correlated, they also jointly contributes to variation in the quality of groundwater within the study area. 

The final result of principal component analysis revealed that; nitrate, total dissolved solids, concentration of 

iron, total suspended solids and turbidity were the most important variables affecting the quality of the groundwater. 

To study the spatial distribution of these water quality parameters around the study location, geospatial analysis 

was done using kriging method of interpolation. The input variables for spatial analysis include; coordinates of the 

sampled boreholes (Northing and Easting), and the attribute variables (concentration of iron, nitrate, total dissolved 

solid, total suspended solids and turbidity).  

 

3.6 Exploring Data Distribution  

Exploring the data helped examine how the data is distributed and also to examine the global trends associated 

with the data. Geostatistical analysis provides many data exploration tools that helped examine the distribution of 

observed water quality parameters. For this study, frequency histogram plots were done to verify the distribution 

of the critical water quality parameters identified by principal component analysis and results are presented in 

Figures 8a, 8b, 8c, 8d and 8e respectively  

 
Figure 8a: Histogram plot of Nitrate 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online)  

Vol.9, No.24, 2019 

 

39 

 
Figure 8b: Histogram plot of Iron 

 

 
Figure 8c: Histogram plot of total suspended solids 

 

 
Figure 8d: Histogram plot of total dissolved solids 
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Figure 8e: Histogram plot of turbidity 

From the result of Table 8a, it was observed that; though the concentration of nitrate was below the maximum 

allowable limit, the highest concentration of nitrate was recorded in water samples collected from Mini-Ama, 

Bakana and Woji. From the result of Table 8b, it was observed that; the concentration of iron in some of the 

borehole sampled was higher than the maximum allowable limit. The highest concentration of iron was recorded 

in water samples collected from Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo, Air force base, 

Buguma and Amakiri-polo. From the result of Table 8c, it was observed that; though the concentration of total 

suspended solids was below the maximum allowable limit, the highest concentration of TSS was recorded in water 

samples collected from Mini-Ama, Bakana, Woji, Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo, 

Air force base, Buguma and Amakiri-polo. Others are; Edeoha-Ahoada, Okoboh-Abua, Trans-Amadi, Aggrey, 

Amadi-Ama and Owodu. From the result of Table 8d, it was observed that; though the concentration of total 

dissolved solids was below the maximum allowable limit, the highest concentration of TDS was recorded in water 

samples collected from Rumuokwurushi, Amadi-Ama, Owodu, Trans-Amadi, Oyigbo and Yegha-Gokona. From 

the result of Table 8e, it was observed that; though the turbidity of the water samples was below the maximum 

allowable limit, the highest turbidity was recorded in water samples collected from Mini-Ama, Bakana, and Woji. 

Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo, Air force base, Buguma and Amakiri-polo others 

are; Edeoha-Ahoada, Okoboh-Abua, Trans-Amadi, Aggrey, Amadi-Ama and Owodu. 

The histogram of Figures 8a, 8b, 8c, 8d and 8e revealed that the parameters are not normally distributed. This 

further support the claim that seasonal variation exist among the water quality parameters. The results are in line 

with that of previous study conducted by (Hooshmand et al., 2011) in which two geostatistical methods, kriging 

and co-kriging, were applied to estimate chloride content and sodium adsorption ratio (SAR) of ground water in 

the Boukan area of Iran. The histogram plot generated for the chloride concentration around the study area did not 

also obey normality an indication that ground water quality parameters varies with depth, time and season. In 

addition, in the study by (Ahmadi et al., 2008) in which geostatistical methods, namely; kriging and co-kriging 

were applied to study the maximum, minimum and mean ground water depths of 39 wells, the ground water depths 

were all observed to be spatially correlated an indication that they are not normally distributed. The basic steps 

invloved in the development of the spatial distribution map of the critical water quality parameters around the 

study location using kriging interpolation method is presented as foloows.  

3.6.1: Fitting and testing of semivariogram 

Eight semivariogram models, namely; Circular, Spherical, Exponential, Gaussian, Hole effect, K-Bessel, J-Bessel 

and Stable) were fitted for each of the five critical water quality parameters used for geostatistical analysis during 

wet season in order to select the best fitted model for the parameter. Table 11 shows the result of the semivariogram 

models for nitrate and the corresponding values of nugget (the variability in the field data that cannot be explained 

by distance between the observations), major range (represents the distance at which two observations are 

unrelated/independent) and sill (the semi-variance at which the leveling takes place. The end point of range is the 

beginning point of sill. The different between the sill and the nugget is called partial sill).  
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Table 11: Semivariogram models for Nitrate 

S/N Model Type Nugget Major Range Partial Sill 

1. Circular 25.88929 122473.6 58.77035 

2. Spherical 24.03614 122473.6 44.43717 

3. Exponential 23.88726 122473.6 29.36212 

4. Gaussian 25.88929 122473.6 58.77035 

5. Hole effect 25.73296 122473.6 30.75632 

6. K-Bessel 25.81664 122473.6 54.20273 

7. J-Bessel 25.74801 122473.6 33.8048 

8. Stable 24.02447 122473.6 38.82232 

Fitted Semivariogram models presented in Table 11 provided information about the range, nugget and partial 

sill (Model Parameters) which were used to measure the degree of spatial dependency of sampled borehole points 

as a result of distance between them. It also provides the input parameters that were utilized for the kriging 

interpolation. To select the model that best described each water quality parameters and which was employed to 

generate the final prediction map, selected goodness of fit statistics generated from the cross-validation step were 

employed.  

3.6.2: Estimation of cross validation statistics 

To select the most suitable model needed to generate the final prediction map, selected goodness of fit statistics, 

namely; Root mean square error (RMSE), Mean square error (MSE), Root mean square standardized error 

(RMSSE) and Average standard error (ASE) were employed and the calculated values corresponding to the 

different models is presented in Table 12 

Table 12: Result of cross validation statistics 

S/N Model Type RMSE MSE RMSSE ASE 

1. Circular 6.828 -0.00610 1.245 5.369 

2. Spherical 6.944 -0.00292 1.255 5.408 

3. Stable 4.949 -0.00252 1.255 5.415 

4. Exponential 6.972 -0.00067 1.241 5.496 

5. Gaussian 6.828 -0.00610 1.245 5.369 

6. Hole effect 6.858 -0.00343 1.250 5.367 

7. K-Bessel 6.842 -0.00439 1.247 5.369 

8. J-Bessel 6.860 -0.00286 1.250 5.370 

Following the application of different models on each water quality parameter, the errors were calculated 

using cross validation and the model that gives the best result was chosen. The criterion for selecting the best 

model is as follows: 

i. The mean standardized error should be close to 0, 

ii. The root mean square error and average standard error should be as small as possible and close to each 

other 

iii. The root mean square standardized error should be close to 1. 

Based on the above criterion, and examining the results of Table 12, the stable model was selected as the best 

fit model for each selected water quality test parameters. 

3.6.3: Examination of spatial dependency 

Fitted semi variogram chart can be used to examine the spatial dependence between the measured sample points. 

Based on the results of Tables 11 and 12, the stable model was selected as the best fit model and a summary Table 

was generated and presented in Table 13 

Table 13: Summary table for estimating spatial dependence 

S/N Parameter Best Model Nugget Major Range Partial Sill 

1. Nitrate Stable 24.02447 122473.6 38.82232 

2. Iron Stable 26.0645 10564.9 19.0956 

3. TSS Stable 3.44782 33089.6 55.0934 

4. TDS Stable 13.4667 9.04586 6.78023 

5. Turbidity Stable 1.0456 107783.3 32.9067 

The sill (c) is the summation of nugget and partial sill while the ratio of Nugget to Sill (
��

�
) was employed to 

measure the degree of spatial structure (dependence) of a water quality parameter. If the ratio is less than 25%, the 

variable has strong partial dependence; between 25% and 75%, the variable has moderate spatial dependence, and 

greater than 75%, the variable shows only weak spatial dependence. The computed spatial dependence for the 

selected water quality parameters using the selected best fit model is presented in Table 14 
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Table 14: Estimated spatial dependence of water quality parameters 

Parameter Best 

Model 

Nugget 

(Cn) 

Partial 

Sill 

Sill (C) [Cn/C] Degree of Spatial 

Dependency 

Nitrate Stable 24.02447 38.82232 62.84679 0.38227 Strong 

Iron Stable 26.0645 19.0956 45.1601 0.577158 Strong 

TSS Stable 3.44782 55.0934 58.54122 0.058896 Strong 

TDS Stable 13.4667 6.78023 20.24693 0.665123 Strong 

Turbidity Stable 1.0456 32.9067 33.9523 0.030796 Strong 

Results of Table 14 revealed that the water quality parameters showed relatively strong degree of spatial 

dependency which made it possible to generate the spatial distribution map for the selected water quality 

parameters.  

3.6.4: Generation of water quality parameters distribution map 

Finally the prediction map which can be employed to predict nitrate, concentration of iron, total suspeneded soilds 

(TSS), total dissolved solids (TDS) and turbidity of unsampled boreholes within the study area was generated and 

presented in Figures 9a to 9e respectively 

 
Figure 9a: Final prediction map for Nitrate distribution 

 

 
Figure 9b: Final prediction map for Iron distribution 
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Figure 9c: Final prediction map for TSS distribution 

 

 
Figure 9d: Final prediction map for TDS distribution 

 

 
Figure 9e: Final prediction map for Turbidity distribution 

It was observed from the prediction map of Figures 9a to 9e that areas with red colour codes represent higher 
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values of Nitrate, Iron, TSS, TDS and Turbidity while areas with blue colour codes represent lower values of 

Nitrate, Iron, TSS, TDS and Turbidity. To validate the result of this study, a comparison was made with the results 

of previous studies as follows; in a study by Ramesh and Elango (2013). The study was carried out to analyze the 

spatial variability of groundwater quality for the region using samples collected from twenty-three (23) boreholes. 

The parameters analyzed included pH, EC, TDS, TH, Calcium, Magnesium, Bicarbonate, Chloride and Sulphate 

which were compared with permissible limits. Spatial interpolation technique using IDW approach was used to 

delineate the distribution of water pollutants. Results of the study revealed that the stable and K-Bessel model was 

the best fit model which is similar to the results of this study. 

Research work done by Balakrishnan et al. (2011) on the use of GIS to map groundwater quality variation in 

Gulbarga City Karnataka India shows that GIS is a very powerful tool for investigating groundwater quality 

information. The study sampled 76(seventy-six) bore wells and open wells representing the entire corporation area. 

The analysis was based on the physico-chemical parameters which were restricted to measurement of hardness, 

salinity and determination of potential contamination by sewage. Spatial interpolation (IDW) techniques was used 

to delineate the locational distribution of groundwater pollutants and through GIS, overlay map of the critical 

parameters were also produced. Results obtained revealed a very strong spatial dependency of the measured 

parameters with a calculated (nugget to sill ratio) of less than 25% which is similar with the results of this study 

 

4. Conclusion 

The study was conducted to determine the critical contaminants affecting the overall quality of groundwater around 

the study area and develop a spatial map using kriging interpolation to visualize the distribution of these 

contaminants. Results of the study attest to the potential of factor analysis using principal component techniques 

in the assessment of water quality parameters with a view of selecting the parameters with critical influence on the 

water quality. More also, geospatial analysis using kriging interpolation revealed that; the water quality parameters 

showed relatively strong degree of spatial dependency which made it possible to generate the spatial distribution 

map for the selected water quality parameters. 
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