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Abstract

Groundwater which constitutes high percent of the global fresh water is the most important source of drinking
water, which when polluted, have acute effects on its users. Consequently, the quality and pollution of groundwater
is a health concern in the world. The target of this research is to evaluate the quality of groundwater around the
Niger Delta Basin Development Authority in order to identify and analyze the distribution of the critical
contaminants that affect the overall quality of groundwater water around the study area. About hundred (100)
boreholes spread to cover the study area were sampled. The water samples were analyzed using standard
procedures for assessing drinking water qualities in order to understand the existing condition of groundwater
within the study area. Statistical analysis of the groundwater quality data was done using average weighted index
method to compute the water quality index, factor analysis using principal component method to identify the
groundwater contaminants affecting the overall groundwater quality and geospatial analysis using kriging
interpolation method to evaluate the spatial distribution of the selected groundwater contaminants. From the
principal component analysis, result revealed that; nitrate, total dissolved solids, concentration of iron, total
suspended solids and turbidity were the most important contaminants affecting the quality of the groundwater.
Result of geospatial analysis using kriging interpolation revealed that; the water quality parameters showed
relatively strong degree of spatial dependency which made it possible to generate the spatial distribution map for
the selected water quality parameters.
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1. Introduction

The availability of water in adequate quality and quantity is essential for the existence of human life. Water is one
of the basic elements that sustain life on earth. Man can survive for a considerable amount of time without food,
but he will succumb within days without water. It is reported in (Nichole, 2004; Akporido, 2000) and Water for
Life, (2007) that where there is water, there is life; and that life exists around numerous uses of water which make
it important for survival and luxury. The average daily intake of water per person, directly or as contained in other
foods, is about four litres (Water for life (2007). For those who live in hot dry climate, this daily requirement is at
least double (Akporido, 2000; Water for Life, 2007). Whenever a number of people live together, a supply of water
is always paramount. On this note, for all purposes for which water is required, the quality of water is of great
importance (Ocheri et al., 2014). As world population is constantly growing, the demand for water increases every
day.

Groundwater is one of the major sources of water. Groundwater is water stored under the earth surface in
rocks and soil segments called aquifers and is less susceptible to contamination by the action of microorganism
(Debels, et al., 2005). As groundwater use has increased, issue associated with the quality of groundwater resources
have likewise grown in importance. Groundwater, depending on the depth and the prevailing soil condition is
vulnerable to pollution by anthropogenic activities, such as agricultural sources, urbanization, un-engineered
disposal of wastes including de-icing salt, oil and chemical spillage (Baalousha, 2010). These sundry activities are
carried out by man without due regard to its consequences on the long run. Groundwater, once polluted can be
very difficult to remediate back to its natural pristine state. For many years, attention has been directed at
contamination from point sources. More recently, concerns have increased about nonpoint sources of contaminant
and about the overall quality of groundwater resources (Faisal et al., 2003; Efe, 2003). Groundwater contamination
can be detected by analyzing borehole water for a series of dissolved ion species. Hence water quality data sets
typically contain many variables measured at several spatially scattered locations.

A review conducted in Ocheri, (2014), on groundwater quality in Nigeria urban areas revealed that Nigerian
urban groundwater quality is influenced by the geological condition of the soil through which it flows, geochemical
and physical process of the environment, rate of urbanization, industrialization and seasonal variability. Abams et
al, (2007) and Agbalagba et al, (2011) conducted a review on the quality of groundwater in parts of Yenagoa and
Port Harcourt and reported that the groundwater in these areas have been negatively impacted by anthropogenic
activities in the areas.
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2. Materials and Methods

2.1 Description of study area
The study area for this research is the Niger Delta Basin Development Authority. This study covers the original
area of operation of the River Basin Authority, which is Rivers and Bayelsa State alone. The geographical
coordinates of Rivers and Bayelsa states are 4.8581°N and 6.9209°E and 4.25°S and 5.37°W and 6.75°E
respectively (Nwankwoala et al., 2011). The Niger Delta Basin is situated in the south-south geo-political zone of
Nigeria. It is located in the rain forest region with relative humidity above 80% having an annual temperature
range of 25°C to 31°C and annual rainfall of 4700mm on the coast to about 2400mm. The basin is characterized
by two alternating climatic conditions of a long period of rainy season spanning from March to November,
followed by a dry season spreading from November to March (Nwankwoala, et al., 2011). Figures 1 and 2 shows
the Google earth and the study area maps respectively.

Figure 1: Google earth map of study area (Google .com)

RIVERS STATE L A———
POLITICAL

e
Figure 2: Map of study area ((Bolaji and Tse, 2009

2.1.1 Geology and Hydrogeology of study area

The Niger Delta Basin is located on the continental margin of the Gulf of Guinea in equatorial West Africa. The
Niger Delta lithofacies is made up of the three distinct vertical subdivisions viz. the Benin formation, the Agbada
formation and the Akata formation. The Benin formation being the upper delta-top Lithofacies comprises of
massive continental sands and gravels. The Agbada formation or facie consists of the pro-delta marine shales, with
low stand turbidite fans which are deposited in a deep marine setting. In the Northern Delta Sector during the
Oligocene times the Benin formation first occurs (Bolaji and Tse, 2009). Similarly, Paleocene age was established
as the occurrence of the Akata formation in the proximal parts of the Delta. The Niger Delta complex
geomorphologic features comprise of fresh water swamps, mangrove swamps, beaches, bars, and estuaries (Bolaji
and Tse, 2009).
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2.2 Sampling location and sample collection

The boundary of built up area (land use) within the study area was digitized and gridded at 2km interval to
determine the sampling points and ensure uniform coverage. Water samples was collected systematically so as to
have a general overview of the water quality condition within the study area. For accurate geo-referencing of the
selected boreholes, Garmin hand held GPS receiver was employed to determine the geographical coordinates of
each borehole. A section of the boreholes sampled including their location and geographical coordinates is
presented in Table 1. One hundred (100) boreholes were systematically sampled with reference to location points
at each season: Wet season (July to October 2018) and dry season (November to December 2018) in order to
determine the physico-chemical and biological parameters of the groundwater samples. At every point of
collection, the air tight, clean and dried plastic containers were rinsed two to three times with the borehole water
to be sampled before collection. The samples were labelled properly and stored in air tight, clean and dried plastic
containers before been transported to Water Resources and Environmental laboratory in the Department of Civil
Engineering, University of Benin were the analysis were conducted in line with standard procedures and guideline
recommended by World Health Organization (WHO). The water samples were analyzed in triplicates to obtain
the mean value and standard deviation of each water quality test parameters. For the analysis of biochemical
oxygen demand (BOD), the black bottles containing the water samples remained tightly closed prior to analysis in
order to prevent photosynthetic and oxygen generation. In-situ parameters, namely; dissolved oxygen (DO),
temperature, pH electrical conductivity (EC) and total dissolved solids (TDS) were determined in the field
immediately after sample collection to avoid false measurement values (APHA, 2005).

Table 1: Coordinate Data of Sampled Boreholes (RIVERS)

Borehole Codes Locations Northings Easting
1. Sample R1 Igbu Ahaoda 239820 561471
2. Sample R2 Mini Ama 269110 525361
3. Sample R3 Arukwo-Abua 235669 537656
4. Sample R4 Bakana 286341 528043
5. Sample RS Edeoha-Ahoada 237214 556600
6. Sample R6 Edeoha-Ahoada 236203 556600
7. Sample R7 Okoboh-Abua 235766 540433
8. Sample R8 Buguma 262207 524264
9. Sample R9 Air force Base 280557 534103
10. Sample R10 Trans Amadi 279389 530030
11. Sample R11 Ipo-lIkwerre 274121 532098
12. Sample R12 Woji 286716 533642
13. Sample R13 Rumuokwurushi (1) 283293 536010
14. Sample R14 Amakiri Polo 286238 527163
15. Sample R15 Rukpokwu 289003 534162
16. Sample R16 Aggrey 280451 526634
17. Sample R17 NDBDA 278741 529397
18. Sample R18 Rumuokwurushi (2) 283012 536068
19. Sample R19 Amadi-Ama 279849 530118
20. Sample R20 Owodu 287302 531219
21. Sample R21 Okochiri 307314 519241
22. Sample R22 Trans Amadi (3) 278023 530112
23. Sample R23 Railway 279801 527029
24. Sample R24 Bundu 279684 525973
25. Sample R25 Oyorokoto 325714 496236
26. Sample R26 Kono Town 334047 508598
27. Sample R27 Oyigbo (1) 289245 538032
28. Sample R28 Ngo Town Andoni 323819 495804
29. Sample R29 Yegha Gokona 319044 517018
30. Sample R30 Oyigbo (2) 289599 538240
31. Sample R31 Nyokuru 339050 510170
32. Sample R32 Tegu-Gokana 316831 519746
33. Sample R33 Woji (2) 286421 533116

2.3 Water Quality Analysis

A total of thirty-three (33) physico-chemical parameters and two (2) microbiological parameters were analyzed
for each sampled domestic borehole to provide an insight into the overall quality of water within the study area.
The physico-chemical parameters include: temperature, odour, colour/clarity, total hydrocarbon content (THC),
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pH, Electrical conductivity (EC), Turbidity, Total suspended solid (TSS), Salinity, Alkalinity, Total Dissolve
Solids (TDS), and Dissolved Oxygen (DO). Others are; Biochemical Oxygen Demand (BOD), Chemical Oxygen
Demand (COD), Bicarbonate (HCO3), Sodium (Na), Potassium(K), Calcium(Ca), Magnesium (Mg), Chloride(CI'),
Phosphorus (P), Ammonium(NHy4), Nitrite (NO,), Nitrate (NOs), Sulphate (SO4) and heavy metals, namely; Iron
(Fe), Manganese (Mn), Zinc (Zn), Copper (Cu), Chromium (Cr), Cadmium (Cd), Nickel (Ni) and Lead (Pb). The
microbiological parameters include: Total Coliform Counts (TCC) and E. Coli

2.3.1 Determination of in-situ parameters; (pH, EC, TDS, DO and Temperature)

For electrical conductivity (EC), total dissolved solids (TDS), pH, temperature and dissolved oxygen (DO), in-situ
measurements were carried out since the measurement values of the parameter’s changes with storage time (WHO,
2003). pH, electrical conductivity, temperature and total dissolved solids were measured using portable meter’s
(multi-parameters) while dissolved oxygen was examined using DO meter (Lutron DO-5509, Range 0 — 20mg/1)
shown in Figure 3

Figure 3: DO meter and multi portable meter

The multi portable meter probe was submerged in the water at 4cm and pH mode selected. Water sample was
stirred gently and pH value displayed on the meter was allowed to adjust and stabilize before recording. Other
measurements buttons were pressed successively and values recorded. The procedure was repeated three (3) times
and the mean value calculated for each parameter. DO meter was also inserted into the water sample at about 10cm
depth using the oxygen probe handle.

UNICAM 969 Atomic Absorption Spectrometer (AAS) shown in Figure 4 was used to determine the
concentration of heavy metals such as; Iron (Fe), Manganese (Mn), Zinc (Zn), Copper (Cu), Chromium (Cr),
Cadmium (Cd), Nickel (Ni), Lead (Pb), and Vanadium (V) while UV visible spectrophotometer (Thermo Scientific
Spectronic 20D+ ) presented in Figure 5 was used to analyzed the level of phosphorous (P), Nitrate (NO3), Nitrite
(NO») and Sulphate (SO4). Other apparatus utilized included 250ml separating glass funnels, Cuvette, 10ml and
50ml pipette, 250ml conical flask, 50ml burette, 25ml and 50ml volumetric flask, glass beads, refrigerator, oven
and whatman filter paper.
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Figure 4: UNICAM 969 AA Spectrometer Figure 5: UV Visible Spectrophotometer
Preparation of reagents and procedures employed in the laboratory for the analysis and determination of all
water quality parameters followed the standard methods recommended by relevant authorities such as World
Health Organization (WHO).

2.4 Groundwater contaminant identification

Statistical computations involving the application of principal component analysis for groundwater analysis was
done using statistical package for the social sciences (SPSS 22 software). Principal component analysis (PCA) is
a powerful tool that attempts to explain the variance of a large dataset of intercorrelated variables with a smaller
set of independent variables. The Principal Components (PC) is the uncorrelated (orthogonal) variables obtained
by multiplying the original correlated variables with the eigenvector, which is a list of coefficients (loadings or
weightings). Thus, the PCs are weighted linear combinations of the original variables. PC provides information on
the most meaningful parameters, which describe the whole data set while affording data reduction with a minimum
loss of original information (Gajbhiye et al., 2014). Application of PCA to ground water analysis was conducted
by using the following step by step methodology

i Computation of Anti-image correlation matrix
il. Computation of eigen values
iii. Extraction of the component matrix
iv. Extraction of the rotated component matrix
v. Horizontal decentralization of the component matrix

2.4.1 Anti- Image Correlation Matrix

The anti-image correlation matrix was employed to test the suitability of principal component analysis (PCA) in
explaining the underlying correlation between selected water quality parameters. The suitability of PCA is based
on the values of the off diagonal matrix. If the off-diagonal matrix are very close to zero, then PCA is suitable
otherwise we must think of another statistical method (Gajbhiye et al., 2014).

2.4.2 Computation of Eigen values

The eigen value is normally used as cutoff in factor analysis since it is the sum of the squared factor loadings of
all variables. Factors with eigen values greater than 1 represent the number of component factors needed to
describe the underlying variation of the groundwater quality. This are the component factors that contributes an
adequate amount to the variation in the ground water quality. Factors with eigen value less than 1 means that such
factor do not have any influence on the overall groundwater quality.

2.4.3 Computation of communualities

It is also important in the extraction phase to examine the communualities. The communalities is represented by
the sum of the square loading for a variable across factor. Communality can range from 0 to 1. Communality of 1
means that all of the variation in the groundwater quality is explained by the component factors.

2.4.4 Extraction of component matrix

In other to identify the groundwater quality parameters that make up the members of each component factors, the
component matrix was generated. The extracted component matrix was employed to understand the correlation
between the groundwater quality parameters in each component group. In regression terms, the component matrix
is the standardized regression coefficient between the observed values and the component factors. Higher factor
loading indicates that a parameter is closely associated with the component factor. To determine the water quality
parameters that make up each of the component factors, horizontal decentralization of the component matrix was
done and the best favoured parameters was selected as member of that particular component factor.
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2.4.5 Extraction of the rotated component matrix

The rotated component matrix gives you the factor (s) you need to pay more attention to in other to improve the
overall quality of the groundwater in any location. To understand the factors that is most critical towards improving
the overall groundwater quality of the study area, vertical decentralization of the rotated matrix was done (Gajbhiye
et al., 2014). For principal component analysis (PCA) to work, the mean was subtracted from each of the data
dimensions. The mean subtracted represent the average across each dimension. The mean was computed from

D

Yo (1)
n
To compute the covariance matrix, equation (2) was employed as follows;

SO
Var(X) ==

2
n—1
From equation (2), the covariance matrix was computed using
S
Cov(X,Y)=" (3)

n—1
Covariance is normally measured in 2-dimensions such as (X, Y); (X, Z) or (Y, X). Provided the X and Y
covariance matrix are of the same size, addition and multiplication of the covariance matrix was employed to
calculate the eigenvector and eigenvalues of the covariance matrix. The notion of data compression and reduced
dimensionality comes into PCA in computing the feature vector. To compute the feature vector, equation (4) was
employed as follows
Feature Vector = (eigl, eig2, eig3 ------------------ eign) 4

Once the component eigenvector is chosen, the feature vector was formed and then transposed to get the final
solution as follows; Final Data = (Row Feature Vector) * (Row Data Adjust) ®)]

2.5 Groundwater analysis using geostatistical techniques
The geostatistical analyst is an Arcmap extension that provides a wide variety of tools for spatial data exploration,
identification of data anomalies and evaluation of error in prediction surface models, statistical estimation, and
optimal surface creation. The geostatistical analyst can determine the approximate concentration of selected water
quality parameters in an unsampled location and can determine the spatial distribution of the parameter i.e. where
they may be moving by creating an optimal interpolated surface.
The step by step methodology involved in the creation of interpolation surface for selected groundwater quality
parameters are:

i Collection of water sample from selected boreholes within the study area

ii. Collection of spatial data (Northings, Easting and Elevation) of the selected boreholes within the study

area using Garmin Hand-held GPS

iil. Analysis of the physico-chemical and microbiological properties of the collected groundwater samples
iv. Modelling the spatial distribution of selected groundwater parameters using kriging interpolation in
ArcGIS

Kriging is a geostatistical interpolation technique that considers both the distance and the degree of variation
between known data points when estimating values in unknown areas. It attempts to minimize the error variance
and set the mean of the prediction errors to zero so that there are no over- or under-estimates. It is a robust
interpolation tool which derives weights from surrounding measured values to predict values at unmeasured
locations. The kriging weights are obtained from fitting of semi- variogram models, developed by viewing the
spatial structure of the data. To create a continuous surface or map of any phenomenon, predictions are made from
the models and the spatial arrangement of measured values. In this study, ordinary kriging method was employed
for the spatial analysis of some selected groundwater quality parameters owing to its simplicity and prediction
accuracy in comparison to other kriging methods. In addition, it is an error minimization technique where the
values of a property (water quality) at unsampled location are predicted such that the variance of the estimated
value is reduced to the barest minimum. The following steps are involved in the use of kriging interpolation method
for the geospatial analysis of selected groundwater quality parameters

1. Evaluation of normality test

il. Selection of attribute data and model interpolation method
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ii. Semivariogram fitting and testing
iv. Cross validation
v. Spatial Dependency determination
vi Creation of groundwater quality prediction maps

2.5.1 Test of Normality

To test the normality of the water quality datasets, histogram plots of the different water quality parameters were
generated using statistical package for the social sciences (SPSS version 22) software

2.5.2 Selection of attribute data and model interpolation method

Geostatistics can reveal stochastic structure of groundwater quality variations in space and can showed a significant
variation in the pH of groundwater within and around the study area. Table 2 presents the modelling step for the
spatial variation of pH and other selected water quality parameters. It is observed that the attribute data selected is
pH while the interpolation method is Kriging/Cokriging method.

Table 2: Kriging modeling for the spatial variation of pH

Geostatistical Wizard: Kriging / CoKriging L_Iﬂléj
Methods Input Data
= Deterministic methods E Dataset
Inverse Distance Weighting Source Dataset Sheet1$ Events
Global Polynomial Interpolation Data Field pH
Radial Basis Functions El Dataset 2
Local Polynomial Interpolation Source Dataset EhoRe
= Geostatistical methods E Dataset 3
§r|g|r||gl l."t(;oKrllg:?g Source Dataset <none >
real Interpolation Eineiaara
Empirical Bayesian Kriging
Source Dataset <none>

= Interpolation with barriers
Kernel Smoothing
Diffusion Kernel

Kriging / CoKriging
Kriging is an interpolator that can be exact or smoothed depending on the measurement error model. It is very flexible and allows you to investigate graphs of spatial auto- and

cross-correlation. Kriging uses statistical models that allow a variety of output surfaces induding predictions, prediction standard errors, probability and quantile. The flexibility of
kriging can require a lot of dedision-making. Kriging assumes the data come from a stationary stochastic process, and some methods assume normally-distributed data.

il
About Kriging f Cokriging 1

< Back l MNext = | | Finish ] [ Cancel ]

The kriging interpolation method was selected based on its capability to determine the corresponding value
of the attribute data in an unsampled location. The kriging method is also very flexible and allows you to
investigate the graph of auto-and cross-correlation. In addition, the kriging method uses statistical models that
allow a variety of output surface including predictions, standard error, probability and quantile. More also, unlike
other methods of interpolation that assumes that the input data are normally distributed, kriging interpolation
method recognizes the stochastic nature of the input data.

2.5.3 Fitting and testing of semivariogram

The semivariogram/covariance model allows you to select the model that best described the groundwater quality
data. In addition, the nugget, range and partial sill can also be determined. The interphase of Arcmap showing the
s!emivariogram/covariance modelling of pH is presented in Figure 6

Geostatistical wizard - Kriging step 2 of 5 - Semivariogram/Covariance Medeling L = = |
Semivariogram E General
Optimize model B
v -101
v variable Semivariogram
5 = . E rModel Nugget
375 . - Enable True
- . o Calculate Mugget True
- - . - - . - * * - 5
L . S T 0 e Measurement Error 100 £
= * L = e E Model #1
o 0579 1159 1738 2318 2837 3476 4056 4635 5214 5754
= = = =3 Type Stable
= Model * Binned = Averaged Distance , h 10
Model - 0.0015597°1 0 098027 Stable(332 66.2 Semels
lodel 7 Nugget+ 7*Stable .2) ] [
0.5 |[B view Settings Anisotropy False
0.41667 Show search direction Calculate Partial Sill True
N Show all lines
= 0.33333 Show points Model #2
E Export Model #3
E 0.25 El Lag
E Lag Size 48.28169
‘E 016667 Mumber of Lags 12
£
0.083333 General <more >
View Settings Kriging is an interpolator that can be exact or smoothed
o depending on the measurement error model. Tt is very flexi...
<Back |[ mext= | [ Fmsh | [ cancal |

Figure 6: Semivariogram/covarince modelling of pH
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2.5.4 Estimation of cross validation statistics

The Cross Validation statistics gives you an idea of how well the model predicts the values at the unknown
locations. The essence of cross validation was to examine closely the fitted models and select the model that gives
the best result (prediction). To select the model that gives the best result, goodness of fit statistics, namely; Root
mean square error (RMSE), Mean square error (MSE), Root mean square standard error (RMSSE) and Average
standard error (ASE) were employed

3. Results and Discussion

Principal component analysis (PCA) was performed to identify the most critical water quality parameter (s) that
significantly influenced the overall quality of groundwater within the study area. To perform the analysis, water
samples were collected from hundred (100) boreholes and twenty one (21) water quality parameters were
monitored during dry and wet season. These water quality parameters include; pH, Electrical conductivity (EC),
Salinity, Total Dissolve Solids (TDS), Dissolved Oxygen (DO), Bicarbonate (HCO3), Sodium (Na), Potassium(K),
Calcium (Ca), Magnesium (Mg), Chloride (Cl'), Phosphate (PO,), Nitrate (NO3), Sulphate (SO4), Iron (Fe), Zinc
(Zn), Copper (Cu), Turbidity, Total suspended solid (TSS), Temperature and Alkalinity.

3.1 Testing the suitability of PCA

To ascertain the potential of principal component method in handling the specific objectives of this study, Kaiser-
Meyer-Olkin measure of sampling adequacy and anti-image correlation matrix were employed. The estimated
statistics based on Kaiser-Meyer-Olkin measure of sampling adequacy is presented in Tables 3

Table 3: Testing the suitability of principal component analysis

KMO and Bartlett's Test

aisaer-Meyer-QOlkin Measure of Sampling Adegquacy.
az23
Eaﬁlet_‘t'g Test af Approx. Chi-Sgquare 2. O35E=2
phericity df 210
Sig. ajulu]

From the result of Table 3, it was observed that the significant value based on Bartletts test of sphericity was
0.000. Since the calculated (p-value) was less than 0.05, it was concluded that the model is significant and that
principal component analysis (PCA) was suitable for the analysis. A further test of suitability of principal
component analysis is the use of anti-image correlation matrix presented in Table 4
Table 4: Anti-image correlation matrix

Eile Eeit iew Data Iransform  |neert  Formst  Analyze  Graphs  Wities  Add-ons  Wincow  Help
EHER B B BEx®k 0% 5 Gus & + - BB %5
3eneral Linear Model =
(1 Title Correlation Matrix*
Motes
Ly Aetive Dataset Electrical Disgolved D\.srg'uav‘eu
@Wam\ﬂﬂﬁ pH Mitrate Conductivity Turbidity Owygen Solids Sodium Sulphate Zing Copper Chioride | |
L Between-Bubjects Factors Correlation pH 1.000 - 544 -168 135 552 027 -518 -516 - 424 - 433 -507
Qmﬁ”m““a Statistics Mitrate 544 1.000 395 199 -.805 2 702 781 720 759 582
% ;Em;?:";;sﬁ"f"“f of Covy Electrical Conductivity -168 385 1.000 -114 -4 871 475 433 375 372 366
. ' Turhidity 135 -.199 114 1.000 190 -.058 -181 -182 -149 077 -150
L&) Levene's Test of Equality of 5
5 Tesls of Between-Subjects £ Dissolved Oxygen 552 -.805 -441 180 1.000 -278 - BEB7 -7 733 -4 -.595
L& Parameter Estimates Total Dissoved Solids 027 221 871 -058 -276 1.000 234 207 201 217 167
L& General Estimahle Function Sodium -518 702 475 -181 -B67 234 1.000 890 B85 588 B41
{&] Lack of Fit Sulphate -518 781 439 -182 -7 207 590 1.000 537 "7 B48
I:%Tme Zine -424 720 378 -159 -733 201 B85 887 1.000 735 557
Multivariate Tests Copper -423 750 372 -o077 -714 217 580 717 735 1.000 496
09 Chioride -.507 582 366 -150 -595 167 641 643 557 486 1.000
actor Analysis Iron -073 272 227 001 -.267 133 223 289 219 282 161
L‘Qis Carbonate _ -317 603 472 - 101 -.558 254 595 622 558 614 470
[ Active Datasel Total Suspenderd Solids 141 -123 072 -018 128 071 -.089 -150 -148 -.059 124
B Descrrtive Statistics Phosphate -482 587 401 184 - 605 51 643 603 505 480 408
L& Correlation Matrix Temperature -241 356 185 062 -336 175 278 340 295 383 232
(&5 Inverse of Comalation Matrs: Alkalinity -355 624 347 172 -628 136 606 640 558 585 534
L5 KMO and Bartiett's Test Salinity -157 228 106 -.066 -242 051 206 227 213 188 208
L5 Anti-mage Malrices Magnesium -.497 813 480 -145 -790 256 899 815 877 701 577
L Communalities Potassium -.488 710 ar4 -151 -.888 143 631 788 539 644 569
L8 Total variance Explained || Caloium -283 .509 31 034 -489 182 470 542 387 452 386
—

Result of Table 4 shows that principal component analysis is suitable for this analysis. The suitability of PCA
is based on the fact that; the off diagonal matrix are less than one with a host of them very close to zero. Since the
off diagonal matrix are less than one, it was concluded that PCA is good for the study.

3.2 Extraction of communualities
It is also important in the extraction phase to examine the communualities. Communalities representes the sum of
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the square loading for a variable across factor. Communality can range from 0 to 1. A communality of 1 means
that all of the variation in the groundwater quality is explained by the component factor. The computed
communualities is presented in Table 5

Table 5; Computed communalities of groundwater quality parameters

FEil= Ecdlit i Data Transtarm In=ert Format Analyze Sraphs Litilitie= Addd-ons LA T [u]
=H&E B B o BiaESE e = B E ] 1
seneral Linear Model [ =] Lommunalities
Initial Extraction
= pH 1.000 568
Active Dataset Mitrate 1. 000 raog
@Warnings . Electrical Conductivity 1.000 g324
= Eletwe_en_—SubjeF:ts_Factnrs Turbidity 1. 000 714
L& Descriptive Statistics )
L& Box's Test of Equality of Cova Dissoled Oxaen 1.000 rrd
L& Multivariate Tests Total Dissoved Solids 1.000 ga55
LE Levene's Test of Equality of B Sodiurm 1.000 BE8T
LE Tests of Between-Subjects E Sulphate 1.000 Fas5
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It was observed from the result of Table 5 that the initial communualities was 1.000 for all the ground water
quality parameters employed for this analysis. Communualities of 1.000 is good since it indicates that the variation
in groundwater quality around the study area can be explained with the aid of principal component analysis.
Extraction communualities are estimates of the variance in each variables accounted for by the factors. High
extraction indicates that the extracted components represents the variables well. If any extraction is very low (<
0.3), then one may need to extract another component factor. Since non of the extraction is less than 0.3, it was
concluded that the extracted components are good enough to explain the underlying variation associated with the
quality of groundwater.

3.3 Extraction of Component Factors

Using the method of principal component analysis, result of the component factor extracted is presented in Table
6
Table 6: Extraction of compoent factors using principal componet analysis method (PCA)
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The extraction analysis determines how well the component factors explains the variation in the overall
quality of groundwater from the hundred boreholes using the total varianced explained as presented in Table 6.
Factors with eigen values greater than one represent the number of component factors needed to describe the
underlying variation of the ground water quality. This are the component factors that contributes an adequate
amount to the variation in the ground water quality. The eigen value is normally used as cutoff in factor analysis
since it is the sum of the squared factor loadings of all variables. Factors with eigen value less than one means that
such factor do not have any positive influence on the overall groundwater quality. From the results of Table 6, it
was observed that five component factors had eigen value greater than one. These component factors contributed
to change in the quality of the groundwater aroung the study area. This claim was further supported using the scree

plot presented in Figure
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Figure 7: Scree plot of component factors with most significant contributions
From the scree plot of Figure 7, it was again observed that five component factors possess very strong

influence on the overall quality of the groundwater around the study location.

3.4 Extraction of Component Matrix

In other to identify the groundwater quality parameters that make up the members of each component factors, the

component matrix was generated as presented in Table 7
Table 7: Component matrix showing the five component factors
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The extracted component matrix was employed to understand the correlation between groundwater quality
parameters in each component group. In regression terms, the component matrix is the standardized regression
coefficient between the observed values and the component factors. Higher factor loading indicates that a
parameter is closely associated with the component factor. To determine the water quality parameters that is most
highly correlated with the component factors, horizontal decentralization of the component matrix was done and
the best favoured parameters was selected as member of that particular component factor. Result of the horizontal

decentralization of the component matrix is presented in Table 8
Table 8; Result of horizontal decentralization of the component matrix

Variables Componet Factors

S/No Variable Code Variable Name 1 2 3 4 5

1 Xi pH 0.368

2 X2 Nitrate 0.878

3 X3 EC 0.753

4 X4 Turbidity 0.589

5 X5 DO 0.104

6 X6 TDS 0.840

7 X7 Sodium 0.817

8 X3 Sulphate 0.886

9 Xo Zinc 0.794

10 X0 Copper 0.806

11 Xi1 Chloride 0.715

12 Xi2 Iron 0.534

13 Xi3 Carbonate 0.758

14 X14 TSS 0.396

15 Xis Phosphate 0.727

16 Xi6 Temperature 0.454

17 X17 Alkalinity 0.770

18 Xis Salinity 0.451

19 Xi9 Magnesium 0.913

20 X20 Potassium 0.842

21 X21 Calcium 0.656

Results of Table 8 revealed that:

1.
il.
iii.

iv.
V.

The first component factor is most highly correlated with nitrate, sodium, sulphate, zinc, copper, chloride,
carbonate, phosphate alkalinity, magnesium, potassium and calcium
The second component factor is most highly correlated with pH, electrical conductivity and total

suspended soilds.

The third component factor is most highly correlated with dissolved oxygen and concentration of iron

The fourth component factor is most highly correlated with turbidity and tenmperature while
The fifth component factor is most highly correlated with salinity

3.5 Extraction of Rotated Component Matrix

The rotated component matrix is presented in Table 9
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Table 9: Rotated component matrix
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The rotated component matrix gives you the factor (s) you need to pay more attention to in other to improve
the overall quality of the groundwater in any location. To understand the factors that are most critical towards
improving the overall groundwater quality of the study area, vertical decentralization of the rotated matrix was
done and result obtained is presented in Table 10
Table 10: Result of vertical decentralization of the rotated component matrix

Variables Componet Factors

S/No Variable Code Variable Name 1 2 3 4 5

1 X1 pH

2 X2 Nitrate 0.859

3 X3 EC

4 X4 Turbidity 0.792

5 X5 DO

6 X6 TDS 0.971

7 X7 Sodium

8 X3 Sulphate

9 Xo Zinc

10 X0 Copper

11 Xi1 Chloride

12 Xi2 Iron 0.795

13 Xi3 Carbonate

14 X14 TSS 0.830

15 Xis Phosphate

16 Xi6 Temperature

17 Xi7 Alkalinity

18 Xig Salinity

19 Xi9 Magnesium

20 X20 Potassium

21 Xa1 Calcium

From the result of Table 10, it was observed that; nitrate, total dissolved solids, concentration of iron, total
suspended solids and turbidity were the most important variables affecting the quality of the groundwater within
the study area. The component plot in rotated space is presented in Figure 8
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Figure 8: Component plot in rotated space

From the component plot of Figure 8, it was observed that the combined isolated variables is X3 and X6
which represent electrical conductivity and total dissolved solids an indication that both variables are not only
highly correlated, they also jointly contributes to variation in the quality of groundwater within the study area.

The final result of principal component analysis revealed that; nitrate, total dissolved solids, concentration of
iron, total suspended solids and turbidity were the most important variables affecting the quality of the groundwater.
To study the spatial distribution of these water quality parameters around the study location, geospatial analysis
was done using kriging method of interpolation. The input variables for spatial analysis include; coordinates of the
sampled boreholes (Northing and Easting), and the attribute variables (concentration of iron, nitrate, total dissolved
solid, total suspended solids and turbidity).

3.6 Exploring Data Distribution

Exploring the data helped examine how the data is distributed and also to examine the global trends associated
with the data. Geostatistical analysis provides many data exploration tools that helped examine the distribution of
observed water quality parameters. For this study, frequency histogram plots were done to verify the distribution
of the critical water quality parameters identified by principal component analysis and results are presented in
Figures 8a, 8b, 8c, 8d and 8e respectively
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Figure 8a: Histogram plot of Nitrate
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Figure 8d: Histogram plot of total dissolved solids
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Figure 8e: Histogram plot of turbidity

From the result of Table 8a, it was observed that; though the concentration of nitrate was below the maximum
allowable limit, the highest concentration of nitrate was recorded in water samples collected from Mini-Ama,
Bakana and Woji. From the result of Table 8b, it was observed that; the concentration of iron in some of the
borehole sampled was higher than the maximum allowable limit. The highest concentration of iron was recorded
in water samples collected from Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo, Air force base,
Buguma and Amakiri-polo. From the result of Table 8c, it was observed that; though the concentration of total
suspended solids was below the maximum allowable limit, the highest concentration of TSS was recorded in water
samples collected from Mini-Ama, Bakana, Woji, Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo,
Air force base, Buguma and Amakiri-polo. Others are; Edeoha-Ahoada, Okoboh-Abua, Trans-Amadi, Aggrey,
Amadi-Ama and Owodu. From the result of Table 8d, it was observed that; though the concentration of total
dissolved solids was below the maximum allowable limit, the highest concentration of TDS was recorded in water
samples collected from Rumuokwurushi, Amadi-Ama, Owodu, Trans-Amadi, Oyigbo and Yegha-Gokona. From
the result of Table 8e, it was observed that; though the turbidity of the water samples was below the maximum
allowable limit, the highest turbidity was recorded in water samples collected from Mini-Ama, Bakana, and Woji.
Owodu, Okochiri, Rumuokwurushi, Rukpokwu, Amakin-Polo, Air force base, Buguma and Amakiri-polo others
are; Edeoha-Ahoada, Okoboh-Abua, Trans-Amadi, Aggrey, Amadi-Ama and Owodu.

The histogram of Figures 8a, 8b, 8c, 8d and 8e revealed that the parameters are not normally distributed. This
further support the claim that seasonal variation exist among the water quality parameters. The results are in line
with that of previous study conducted by (Hooshmand et al., 2011) in which two geostatistical methods, kriging
and co-kriging, were applied to estimate chloride content and sodium adsorption ratio (SAR) of ground water in
the Boukan area of Iran. The histogram plot generated for the chloride concentration around the study area did not
also obey normality an indication that ground water quality parameters varies with depth, time and season. In
addition, in the study by (Ahmadi et al., 2008) in which geostatistical methods, namely; kriging and co-kriging
were applied to study the maximum, minimum and mean ground water depths of 39 wells, the ground water depths
were all observed to be spatially correlated an indication that they are not normally distributed. The basic steps
invloved in the development of the spatial distribution map of the critical water quality parameters around the
study location using kriging interpolation method is presented as foloows.

3.6.1: Fitting and testing of semivariogram

Eight semivariogram models, namely; Circular, Spherical, Exponential, Gaussian, Hole effect, K-Bessel, J-Bessel
and Stable) were fitted for each of the five critical water quality parameters used for geostatistical analysis during
wet season in order to select the best fitted model for the parameter. Table 11 shows the result of the semivariogram
models for nitrate and the corresponding values of nugget (the variability in the field data that cannot be explained
by distance between the observations), major range (represents the distance at which two observations are
unrelated/independent) and sill (the semi-variance at which the leveling takes place. The end point of range is the
beginning point of sill. The different between the sill and the nugget is called partial sill).
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Table 11: Semivariogram models for Nitrate

S/N Model Type Nugget Major Range Partial Sill
1. Circular 25.88929 122473.6 58.77035
2. Spherical 24.03614 122473.6 44.43717
3. Exponential 23.88726 122473.6 29.36212
4. Gaussian 25.88929 122473.6 58.77035
5. Hole effect 25.73296 122473.6 30.75632
6. K-Bessel 25.81664 122473.6 54.20273
7. J-Bessel 25.74801 122473.6 33.8048
8 Stable 24.02447 122473.6 38.82232

Fitted Semivariogram models presented in Table 11 provided information about the range, nugget and partial
sill (Model Parameters) which were used to measure the degree of spatial dependency of sampled borehole points
as a result of distance between them. It also provides the input parameters that were utilized for the kriging
interpolation. To select the model that best described each water quality parameters and which was employed to
generate the final prediction map, selected goodness of fit statistics generated from the cross-validation step were
employed.

3.6.2: Estimation of cross validation statistics

To select the most suitable model needed to generate the final prediction map, selected goodness of fit statistics,
namely; Root mean square error (RMSE), Mean square error (MSE), Root mean square standardized error
(RMSSE) and Average standard error (ASE) were employed and the calculated values corresponding to the
different models is presented in Table 12

Table 12: Result of cross validation statistics

S/N Model Type RMSE MSE RMSSE ASE
1. Circular 6.828 -0.00610 1.245 5.369
2. Spherical 6.944 -0.00292 1.255 5.408
3. Stable 4.949 -0.00252 1.255 5.415
4. Exponential 6.972 -0.00067 1.241 5.496
5. Gaussian 6.828 -0.00610 1.245 5.369
6. Hole effect 6.858 -0.00343 1.250 5.367
7. K-Bessel 6.842 -0.00439 1.247 5.369
8 J-Bessel 6.860 -0.00286 1.250 5.370

Following the application of different models on each water quality parameter, the errors were calculated
using cross validation and the model that gives the best result was chosen. The criterion for selecting the best
model is as follows:

i.  The mean standardized error should be close to 0,

ii. The root mean square error and average standard error should be as small as possible and close to each
other

iii. The root mean square standardized error should be close to 1.

Based on the above criterion, and examining the results of Table 12, the stable model was selected as the best

fit model for each selected water quality test parameters.

3.6.3: Examination of spatial dependency

Fitted semi variogram chart can be used to examine the spatial dependence between the measured sample points.
Based on the results of Tables 11 and 12, the stable model was selected as the best fit model and a summary Table
was generated and presented in Table 13

Table 13: Summary table for estimating spatial dependence

S/N Parameter Best Model Nugget Major Range Partial Sill
1. Nitrate Stable 24.02447 122473.6 38.82232
2. Iron Stable 26.0645 10564.9 19.0956
3. TSS Stable 3.44782 33089.6 55.0934
4. TDS Stable 13.4667 9.04586 6.78023
5. Turbidity Stable 1.0456 107783.3 32.9067

C
The sill (¢) is the summation of nugget and partial sill while the ratio of Nugget to Sill (?n) was employed to

measure the degree of spatial structure (dependence) of a water quality parameter. If the ratio is less than 25%, the
variable has strong partial dependence; between 25% and 75%, the variable has moderate spatial dependence, and
greater than 75%, the variable shows only weak spatial dependence. The computed spatial dependence for the
selected water quality parameters using the selected best fit model is presented in Table 14
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Table 14: Estimated spatial dependence of water quality parameters

Parameter Best Nugget Partial Sill (C) [Cn/C] Degree of Spatial
Model (Cn) Sill Dependency
Nitrate Stable 24.02447 38.82232 | 62.84679 | 0.38227 Strong
Iron Stable 26.0645 19.0956 45.1601 | 0.577158 Strong
TSS Stable 3.44782 55.0934 | 58.54122 | 0.058896 Strong
TDS Stable 13.4667 6.78023 | 20.24693 | 0.665123 Strong
Turbidity Stable 1.0456 32.9067 33.9523 | 0.030796 Strong

Results of Table 14 revealed that the water quality parameters showed relatively strong degree of spatial
dependency which made it possible to generate the spatial distribution map for the selected water quality
parameters.

3.6.4: Generation of water quality parameters distribution map

Finally the prediction map which can be employed to predict nitrate, concentration of iron, total suspeneded soilds
(TSS), total dissolved solids (TDS) and turbidity of unsampled boreholes within the study area was generated and
presented in Figures 9a to 9e respectively
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Figure 9a: Final prediction map for Nitrate distribution
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Figure 9b: Final prediction map for Iron distribution
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Figure 9c: Final prediction map for TSS distribution
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Figure 9d: Final prediction map for TDS distribution
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Figure 9e: Final prediction map for Turbidity distribution
It was observed from the prediction map of Figures 9a to 9e that areas with red colour codes represent higher
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values of Nitrate, Iron, TSS, TDS and Turbidity while areas with blue colour codes represent lower values of
Nitrate, Iron, TSS, TDS and Turbidity. To validate the result of this study, a comparison was made with the results
of previous studies as follows; in a study by Ramesh and Elango (2013). The study was carried out to analyze the
spatial variability of groundwater quality for the region using samples collected from twenty-three (23) boreholes.
The parameters analyzed included pH, EC, TDS, TH, Calcium, Magnesium, Bicarbonate, Chloride and Sulphate
which were compared with permissible limits. Spatial interpolation technique using IDW approach was used to
delineate the distribution of water pollutants. Results of the study revealed that the stable and K-Bessel model was
the best fit model which is similar to the results of this study.

Research work done by Balakrishnan et al. (2011) on the use of GIS to map groundwater quality variation in
Gulbarga City Karnataka India shows that GIS is a very powerful tool for investigating groundwater quality
information. The study sampled 76(seventy-six) bore wells and open wells representing the entire corporation area.
The analysis was based on the physico-chemical parameters which were restricted to measurement of hardness,
salinity and determination of potential contamination by sewage. Spatial interpolation (IDW) techniques was used
to delineate the locational distribution of groundwater pollutants and through GIS, overlay map of the critical
parameters were also produced. Results obtained revealed a very strong spatial dependency of the measured
parameters with a calculated (nugget to sill ratio) of less than 25% which is similar with the results of this study

4. Conclusion

The study was conducted to determine the critical contaminants affecting the overall quality of groundwater around
the study area and develop a spatial map using kriging interpolation to visualize the distribution of these
contaminants. Results of the study attest to the potential of factor analysis using principal component techniques
in the assessment of water quality parameters with a view of selecting the parameters with critical influence on the
water quality. More also, geospatial analysis using kriging interpolation revealed that; the water quality parameters
showed relatively strong degree of spatial dependency which made it possible to generate the spatial distribution
map for the selected water quality parameters.
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